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A B S T R A C T   

In this work, a tridentate ONO Schiff base ligand,1-[(((2-hydroxyphenyl)imino)methyl)]naphthalen-2-ol [H2L] 
and its di-oxido vanadium(V) complex [(VO2(L)](NHET3) have been synthesized and fully characterized using 
elemental analysis, molar conductivity and FT-IR, UV–Vis, and 1HNMR spectroscopies. Single crystal X-ray 
diffraction was also used to accomplish the crystal structure of di-oxido vanadium(V) complex. The catalytic 
activity of the complex was also evaluated for the synthesis of tetrahydro-4H-chromene derivatives. The syn-
thesized [VO2(L)](NHET3) complex showed superior catalytic characteristics in comparison to the previously 
reported catalysts. Furthermore,the antimicrobial properties of the complex against both gram-positive and 
gram-negative pathogens were evaluated, that an enhanced antibacterial activity was obtained with MIC values 
in the range of 100–200 µg/ml.   

1. Introduction 

Schiff bases derived from the reaction of primary amines and alde-
hydes have gained extensive interest due to their widespread applica-
tions. Schiff bases as polydentate ligands can form stable complexes with 
transition metals with versatile and tunable structures which have 
distinct catalytic and biologic activities [1–4]. The presence of azome-
thine (–N––CH) bond in Schiff bases is the crucial factor for the for-
mation of stable complexes with transition metals [5]. An extensive 
library of Schiff bases have been synthesized and complexed with 
transition metal ions with potential applications in medicine and in-
dustry (catalysis and anticorrosion) [6–17]. Among the studied metals, 
vanadium complexes have gained much attention not only for their 
catalytic activities but also due to their antibacterial, anticancer, and 
other medicinal applications [8,18–21]. Vanadium complexes can act as 
the catalyst in several industrially important oxidation, epoxidation, and 
hydroxylation processes [22,23]. Also, it has crucial roles in many 
immune-related pathways in biological systems [24–26]. It is believed 
that the ability of vanadium to exist in three different forms and 
oxidation states is responsible for its physiological characteristics [27]. 

Recognizing the importance of both biological and industrial aspects, 
herein, we reported a di-oxido vanadium(V) Schiff base-complex using 
1-[(((2-hydroxy)phenyl)imino)methyl]naphtalen-2-ol, [H2L] as the 
ligand. [H2L] and the [VO2(L)](NHET3) complex have been synthesized 
and characterized using UV–Vis, FT-IR, and 1HNMR spectroscopies 
while the crystal structure of complex was evaluated using X-ray crystal 
diffraction. Finally, the catalytic performance of the [VO2(L)](NHET3) 
complex was evaluated in the synthesis process of tetrahydro-4H- 
chromenes. In addition, the biological activity of the parent ligand 
and the vanadium complex were evaluated against four different gram- 
positive and gram-negative pathogens. The synthesized compounds are 
stable at room temperature. They are soluble in most organic solvents 
including DMSO, DMF, methanol and ethanol and less soluble in other 
common solvents like dichloromethane, acetonitrile and insoluble in 
toluene, benzene and n-hexane. The molar conductivity value of the 
synthesized complex in EtOH shows that it is an 1:1 type electrolyte. In 
the asymmetric unit of the complex, two [VO2(L)] (NHET3) species exist. 
Figs. 1 and S1 depict the perspective view of these species and the 
assymetric unit of the crystal, respectivley. Also, Table S2 represents 
some selected bond distances and interbond angles. To determnine the 
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geometry of the pentacoordinated complexes, trigonality index (τ5) 
described by Addison et al. is calculated [28]. τ5 = 0 indicates an ideal 
square–pyramid while τ5 = 1 indicates an ideal trigonal bipyramid. The 
values of τ5 for [VO2(L)] (NHET3) (1) and [VO2(L)] (NHET3) (2) were 
calculated to be 0.21 and 0.14, respectively, confirming the distorted 
square pyramidal geometry of both molecules in the assyemtric unit. In 
the structure of the complex, the coordination sphere of the vanadium 
ion are occupied by two oxido groups (in cis-position) and ONO donor 
atoms of the dianionic Schiff base ligand. The nitrogen atom of the imino 
group and the oxygen atoms of the naphtholate and phenolate groups 
are the donor atoms of the deporotonated Schiff base [L2− ]. 

In the complex structure, the triethylammonium cation is strongly 
bonded to the apical oxygen atom via hydrogen bonding. According to 
the obtained results (Fig. S2), the FT-IR spectrum of [H2L] ligand 
showed a vibrational band at 1630 cm− 1, which can be attributed to the 
C––N group and approved the formation of a Schiff base ligand. The 
tensile vibration of OH and vibration band of C––C in the aromatic rings 
can be seen at 3447 cm− 1 and 1406–1459 cm− 1, respectively. After 
complexation, the frequency of the mentioned azomethine (C––N) band 
at 1630 cm− 1 decreased to 1615 cm− 1 [8]. Two absorption bands 
observed at 987 cm− 1 and 824 cm− 1 are attributed to the symmetric and 
asymmetric stretching vibration bands of cis-VO2, respectively [18]. In 
addition, the vibrations appeared at 459 cm− 1, 506 cm− 1 and 2977 cm− 1 

can be related to the V–N, V–O, and N–H bonds, respectively. Two 
absorption bands at 2496 cm− 1 and 2602 cm− 1 were also ascribed to 
CH2 and CH3 groups of triethyl amine, respectively [29]. According to 
the 1H NMR measurements (Fig. S3), three singlet signals were observed 
at 8.3 ppm, 10.8 ppm, and 12.0 ppm, which can be assigned to the 
protons of CH––N, amine OH, and aldehyde O–H, respectively [9]. The 
presence of the azomethine proton confirms the formation of the ligand, 
while the protons of the aromatic rings are observed in the range of 
7.2–8.1 ppm [2]. In title V(V) complex, the protons of the azomethin 
moiety and aromatic rings were spotted at 10.1 and 6.7–9.3 ppm 
respectivley. The triplet and quaternary peaks observed at 1.2 ppm and 
3.1 ppm are assigned to the CH3 and CH2 groups of triethylamine [30]. 
In the UV–Vis spectrum of the [H2L] ligand (Fig. S4), three absorption 
bands appeared at 320 nm, 450 nm, and 470 nm can be attributed to π 
→ π* transition in the aromatic rings, π → π* transition in the azome-
thine, and n → π* transition in azomethine, respectively. In the case of 
the V(V) complex, the absorption band corresponded to the π → π* 
transition is observed at 345 nm. The absorption peak appeared at 455 
nm is related to the charge transfer from the ligand to the metal (LMCT) 
[2,6]. 

The title complex was used in the synthesis process of tetrahydro-4H- 
chromene derivatives in order to evaluate its catalytic activity. At first, 

an initial optimization was conducted on the reaction conditions (tem-
perature, solvent, and catalyst loading). Three different solvents (DI 
water, acetonitrile, and ethanol), three different levels of catalyst 
loading (5, 10, and 20 mol%), and four levels of temperature (30, 50, 80, 
100 ◦C) were used in this optimization. The title V(V) complex acted as a 
homogenous catalyst and finally column chromatography was used for 
the purification of the product. For a complete list of the results obtained 
from this optimization, one can refer to Tables S3–S5. As one can see, the 
di-oxido vanadium(V) complex shows an optimum catalytic perfor-
mance (97% yield and the reaction time of 45 min) in acetonitrile at 
50 ◦C, using 10 mol% catalyst loading for the synthesis of 2-amino-7,7- 
dimethyl-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene-3-carboni-
trile (1a). Using the optimal conditions, various tetrahydro-4H- 
chromene derivatives were synthesized [29,31]. Table 1 reports the 
obtained reaction time and yield for the synthesis of tetrahydro-4H- 
chromenes using the aromatic aldehydes. According to the obtained 
results, the nature and position of the substituents on the aromatic ring 
have no discernible impact on the success of the reaction. In addition, 
the recyclability of the di-oxido vanadium(V) complex was studied by 
monitoring the efficiency of the catalyst after three consecutive runs 
under the optimal conditions (1a: 97%, 95%, 93%). The efficiency of the 
catalyst was reduced by only 4% after three consecutive runs, which 
demonstrated the ability of the catalyst for multiple uses. 

In order to compare the performance of [VO2(L)](NHET3) complex, 
the obtained results in this study were compared with those of the 
previously catalysts used in the catalytic synthesis of 1a. As can be seen 
in Table 2, the yield, reaction time, and temperature of the reaction are 
superior or comparable with the other catalysts [2,29,32–33]. The 
possible mechanism proposed for the synthesis of tetrahydro-4H- 
chromene derivatives catalyzed by the di-oxido-vanadium(V) complex 
is shown in Fig. 2. 

The antibacterial activity of [H2L] and [VO2(L)](NHET3) complex 
against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, 
and Bacillus cereus bacteria were evaluated using inhibition zone and 
MIC assays (Fig. 3). According to the obtained results (Table 3), [H2L] 
ligand is effective on all of the studied bacteria, except E. coli. However, 
the [VO2(L)](NHET3) complex have higher antibacterial activity against 
both gram-negative and gram-positive bacteria, especially Staphylo-
coccus aureus. Interestingly, this complex shows a considerable 

Fig. 1. Perspective view of [VO2(L)] (NHET3).  

Table 1 
Three component reaction of dimedone, malononitrile and aromatic aldehydes.  

Entry Ar Time (min) Yield (%) M.p. (◦C) 

Found Reported 

1a C6H5 45 97 231–233 231–232 [29] 
1b 4-Cl-C6H4 45 95 214–216 215–217 [29] 
1c 3-NO2-C6H4 50 87 216–218 217–219 [31] 
1d 2,4-(Cl)2-C6H3 55 88 176–178 175–178 [29] 
1e 4-CH3-C6H4 50 85 217–219 218–220 [29]  

Table 2 
Comparison between previous catalysts used for the synthesis of 2-amino-7,7- 
dimethyl-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile and 
[VO2(L)](NHET3) used in this study.  

Catalyst Reaction 
conditions 

Time 
(min) 

Yield 
(%) 

Reference 

[VO(L)(phen)] EtOH, reflux 20 90 [29] 
Triethylbenzylammonium 

chloride 
H2O, 90 ◦C 240 90 [32] 

K3PO4 EtOH, stirred 45 94 [31] 
[Cu(L′)(Imi)] (8%mol)a EtOH, 50 ◦C 20 92 [2] 
Tetrabutylammonium 

bromide 
EtOH, reflux 20 92 [33] 

[VO2(L)](NHET3) Acetonitrile, 
50 ◦C 

45 97 This work  
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antibacterial activity against E. coli, even though this bacteria is resistant 
to the parent ligand. The obtained MIC values for [H2L] and [VO2(L)] 
(NHET3) complex are reported in Table 4, and it can be inferred that the 

Fig. 2. Proposed mechanism for the synthesis of tetrahydro-4H-chromene derivatives catalyzed by di-oxido vanadium(V) complex.  

Fig. 3. The measured zone of inhibition (mm) of [H2L] (1000 µg/ml), [VO2(L)] 
(NHET3) (1000 µg/ml) and chloramphenicol antibiotic (15 µg/ml) as positive 
control against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa 
and Bacillus cereus bacteria. 

Table 3 
Antimicrobial activities of [H2L] and [VO2(L)](NHET3)+ complex against gram- 
positive and gram-negative bacteria determined by the inhibition zone method.   

[H2L] [VO2(L)] 
(NHET3) 

Positive control  

500 
µg/ 
ml 

1000 
µg/ml 

500 
µg/ 
ml 

1000 
µg/ml 

(Chloramphenicol 
15 µg/ml) 

Escherichia coli 0 0 25 15 10 
Staphylococcus 

aureus 
20 20 35 35 30 

Pseudomonas 
aeruginosa 

10 20 15 20 10 

Bacillus cereus 10 20 25 15 25  

Table 4 
The MIC values (µg/ml) of [H2L] and [VO2(L)](NHET3) complex against studied 
microorganisms.   

E. coli S. aureus P. aeruginosa B. cereus 

[H2L] 250 7.8 250 31.2 
[VO2(L)](NHET3) 250 250 125 125  
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antibacterial activity of [VO2(L)](NHET3) complex against P. aeruginosa 
bacteria is considerably higher (125 µg/ml) than that of [H2L] (250 µg/ 
ml). 

Based on the previous studies [6,30], the enhanced activity of 
[VO2(L)](NHET3) complex against microorganisms can be attributed to 
the delocalization of the π-electrons in chelate moiety and also the 
positive charge of the central atom in the complex. The two mentioned 
phenomena have a significant impact on the lipophilicity of the com-
plex, which will facilitate its penetration into the microorganism 
membranes and, eventually result in the cell death. 

In conclusion, a tridentate ONO Schiff base ligand;1-[(((2 hydrox-
yphenyl)imino)methyl)]naphthalen-2-ol [H2L] and its di-oxido vana-
dium(V) complex [VO2(L)](NHET3) were successfully synthesized and 
fully charecterized. The di-oxido vanadium(V) complex showed 
enhanced antibacterial activity against all of the studied microorgan-
isms (especially Staphylococcus aureus), which confirmed the antibac-
terial activity of the synthesized complex. The efficiency of the [VO2(L)] 
(NHET3) complex as the catalyst remains more than 90% even after 
three consecutive runs. High yield, mild temperature reaction, and the 
possibility to use the [VO2(L)](NHET3) catalyst several times are the 
advantages of the synthesized complex in comparison to the previously 
reported catalysts for the synthesis of tetrahydro-4H-chromene 
derivatives. 
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Appendix A. Supplementary material 

The synthesis and characterization of the ligand [H2L] and its di- 
oxido vanadium(V) complex, Crystal structure determination, Cata-
lytic activity, Parameters optimization, Biological activity and related 
figures and tables are in Supporting information. Crystallographic data 
for the structure reported in this paper have been deposited with the 
Cambridge Crystallographic Data Centre, CCDC No. 2033464. Copies of 
this information may be obtained from the Director, CCDC, 12 Union 
Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: 
deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk). Supplemen-
tary data to this article can be found online at https://doi.org/10.1016/j 
.inoche.2021.108561. 
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