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A sequential multicomponent reaction (SMCR) strategy:
Synthesis of novel pyrazolo-1,4-dioxaspiro[4,5]decane
grafted spiro-indenoquinoxaline pyrrolidine heterocycles

Gavaskar Deivasigamania and Suresh Babu Adukamparai Rajukrishnanb

aSchool of Basic Sciences, Vels University, Chennai, India; bDepartment of Chemistry, University of
Calicut, Calicut, India

ABSTRACT
A facile and expedient one-pot sequential five-component synthesis
of highly substituted trispiro-pyrrolidine heterocycles is described.
The key step involves [3þ 2]-cycloaddition of azomethine ylide. This
multicomponent reaction (MCR) strategy provides a mild reaction
condition, high yield of the products, high regioselectivity, and oper-
ational simplicity to assemble complex structural entity in a single
operation. The structure of product was confirmed by IR, 1H-NMR,
13C-NMR, and high-resolution mass spectroscopic analysis. A theoret-
ical insight is provided through MM2 calculation for the formation of
the observed products.
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Introduction

A multicomponent reaction (MCR) can be simply classified as a reaction in which three
or more components are combined together in a single reaction vessel to produce a final
product or products displaying features of all inputs and thus offer greater possibilities
for molecular diversity per step with a minimum of synthetic time and effort.
Multicomponent reactions offer a convenient strategy for the rapid elegant and conver-
gent construction of complex and structurally diverse organic molecules in a single oper-
ation resulting in substantial minimization of waste, labor, time, and cost[1,2] and play a
vital role in combinatorial and diversity-oriented synthesis.[3] MCRs result in high atom
and step economy. MCRs are more advantageous than conventional approach which
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generally involves the use of multistep reaction sequence which is typically associated
with low yields, high cost, tedious isolation, and purification of the resulting products.
One of the major challenges often encountered in modern drug discovery program is the
design of highly efficient chemical reactions for accessing structurally complex and
diverse compounds, possessing important biological activities, in a minimum number of
synthetic steps. MCR strategy can be useful in this regard which has emerged as an
advanced tool for sustainable organic synthesis. Among MCRs, the intermolecular
[3þ 2]-cycloaddition of azomethine ylides to olefinic dipolarophiles[4] constitutes a facile
approach for the efficient assembly of five-membered heterocyclic rings of biological
importance particularly pyrrolidines and spiro-pyrrolidines due to their occurrence in a
large number of natural products.[5] Spiropyrrolidines act as potential antileukemic,[6]

anticonvulsant[7] antiviral,[8] local anesthetic,[9] and anti-inflammatory agents.[10]

Quinoxalines, indazoles, and pyrazoles are important classes of nitrogen-containing het-
erocycles with broad spectrum of biological activities such as anti-viral,[11 anti-cancer,[12]

anti-inflammatory,[13] anti-tubercular,[14] anti-leishmanial,[15] anti-malarial,[16] and anti-
depressant activities.[17] Recently, some of the quinoxaline derivatives such as brimonidine
and varenicline have been approved by the food and drug administration for the treat-
ment of glaucoma[18] and anti-smoking therapy.[19] Some of the synthetic and naturally
occurring biologically significant spiro-pyrrolidine, quinoxaline, pyrazole, and dioxalane
derivatives are shown (Fig. 1). The potential pharmaceutical significance of these
backbones has led to a demand for the synthesis of hybrid systems incorporating all these
significant entities in a single molecule.

Results and discussion

In continuation of our research in the area of cycloaddition reactions and with renewed
interest in such complex spiro-pyrrolidine heterocycles,[20,21] we herein report for the
first time, a mild, rapid, and a facile one-pot sequential five-component synthesis of
highly substituted trispiroheterocyles containing 1,4-dioxa-spiro[4,5]decane, pyrrolidine,
indenoquinoxaline, and pyrazole moieties using various unusual 7, 9-bis-[(E)-arylmethy-
lidene]-1.4-dioxa-spiro[4,5]-decan-8-one derivatives, 1,2-phenylenediamine, ninhydrin,
sarcosine, and hydrazine hydrate (Scheme 1).
The one-pot sequential five-component reaction involving ninhydrin 2, 1,2-phenyle-

nediammine 3, sarcosine 4, dipolarophile 1a, and hydrazine hydrate 5 proceeded at
reflux temperature in methanol, to give pyrazolo-1,4-dioxa-spiro[4,5]decane grafted
spiro-indenoquinoxaline pyrrolidine 6a. The multistep sequence of events involves,
initial heterocyclization of phenylenediamine 3 with ninhydrin 2 giving indenoquinox-
line-11-one 7[22] which further condensed with sarcosine 4 to produce 1,3-dipole, azo-
methine ylide 10 via thermal decarboxylation of 9.[20a,b,23] The azomethine ylide 10
undergoes cycloaddition across one of the exocyclic double bond of the dipolarophile
1a to afford the intermediate product 11 which undergoes cyclization with hydrazine to
give the final product 6a in good yield (Scheme 2).
Thus, the IR spectrum of 1-N-methyl-spiro[7.30’]-3,3a,4,5,6,7-hexahydro-2H-indazole-3-

(p-methoxyphenyl)–spiro-[5.20]-10,30-dioxalane-spiro[20’.110’’]-indeno-[1,2-b]-quinoxaline-4-
(p-methoxyphenyl)-pyrrolidine 6a revealed the complete disappearance of carbonyl group
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of cyclohexanone and exhibited a peak at 1605 and 3317 cm�1due to the C¼N and NH
group of the pyrazole ring. The 1H NMR spectrum of the product 6a exhibited a singlet at
d 1.77 ppm due to -NCH3 pyrrolidine protons. The two pyrrolidine-NCH2 protons
exhibited triplets at d 3.55 and d 4.14. The pyrrolidine ring proton attached to the aryl
moiety exhibited a doublet of doublet at d 5.14 ppm. The two methoxy groups on the
aryl moiety exhibited a singlet at d 3.79 and 3.84. The pyrazole ring proton attached to the
aryl moiety exhibited a doublet at d 4.28. The -CH ring proton fused to the pyrazole moi-
ety exhibited a multiplet in the region d 2.04� 2.10. The -NH ring proton exhibited a sing-
let at 6.02 ppm. The aromatic rings protons exhibited a doublet at d 6.84, d 6.95, d 7.84,
triplet at d 7.26, d 7.49, d 8.09 and multiplet in the region d 7.61-7.74 and d 8.22-8.26. No
trace of the other regioisomer 7a was observed. If the other regioisomer 7a had been
formed, the benzylic proton attached to the pyrrolidine ring would have appeared as a
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Figure 1. Some synthetic and naturally occurring biologically significant molecules having
spiro-pyrrolidine, spiro[4,5]decane, dioxalane, pyrazole, and quinoxaline moieties.
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singlet in the 1H NMR spectrum of 7a and this was not observed (Scheme 1). The off-res-
onance proton decoupled 13C spectrum of 6a exhibited peaks at 34.63 and 39.04 ppm due
to the pyrrolidine NCH3 and NCH2 carbons.[21a] The two methoxy carbon resonated at
55.31 and 55.46 ppm. The two spirocarbon resonated at 73.26 and 78.18 ppm. The spiro
carbon of the dioxalane ring resonated at 108.33 ppm (Table 1).[24] The C¼NH carbon of
the indazole ring resonated at 155.92 ppm and the signals of all other carbons appeared at
appropriate chemical shifts in agreement with the proposed structure. The formation of the
product is confirmed by mass spectral and elemental analysis. The high-resolution mass
spectrum of 6a showed a molecular ion peak (Mþ) at 665.7738. The regiochemical out-
come of the cycloaddition is also confirmed by the 1H-NMR and single-crystal analysis of
one of the similar intermediate in the isatin series [24] (Fig. S5, Supplementary file).
Even with an excess of 1,3-dipole (generated from excess of ninhydrin 2, 1,2-phenyl-

enediamine 3, sarcosine 4) and prolonged reaction times as evidenced by thin-layer
chromatography (TLC), the reaction failed to proceed to give the bis-adduct 13a
(Scheme 2). Thus, the addition occurs at only one of the exocyclic double bonds. This
may be due to the steric hinderance of the spiro-indenoquinoxaline pyrrolidine ring
which prevents the attack of 1,3-dipole on the other exocyclic double bond. The forma-
tion of bis-adduct 13a was ruled out from the high-resolution mass spectrum analysis.
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In order to optimize and improve the yield of the product, the reaction was also car-
ried out in various other solvents (Table 2). The results showed that even under reflux-
ing condition for prolonged time in toluene (12 h), there was not much significant
increase in the isolated yield of product (23%). However, in refluxing methanol, better
chemical yield of the product was obtained (reaction time: 3.6 h.; isolated chemical yield:
79%) due to the better solubility of all the reactants favoring the easy formation of
azomethine ylide 10. Hence, methanol was chosen as solvent for invariably conducting
the one-pot sequential MCR with various other dipolarophiles (1b–e), ninhydrin 2,

Table 1. 13C NMR values of spiro carbons.
S. no C2 pyrrolidine ring C3 pyrrolidine ring Dioxalane ring

6a 73.26 78.18 108.33
6b 72.81 78.09 107.79
6c 72.84 78.12 108.00
6d 72.56 78.16 107.34
6e 72.44 78.12 108.20

N

N

O

N

N

N
H3C

N

N
ONH3C

O

N

N
O-NH3C

O

N

N

N
H3C
H2O

O-

O

N

N

NH3C
HO OH

O
O

O

OH

OH
-H2O

H2O

-CO2

O

O

O

-2H2O

NH2

NH2
NH-CH2-COOH
CH3

-H2O

N

NH2NH2.H2O

2

3

910

4

CH3OH, Reflux

6a-e

5

12a-e

1a-e

11a-e

13 a-e

8

NN
HN

R

R

O O

N
NO

N
O

O

N

N

NN
N

O

R

H
R

H

O O

O
H
R

O O

N
N

N N
N

HR
O

O
O

R

R

R
R

Scheme 2. Mechanism for the formation of the product 6a–e from azomethine ylide 10 and dipolaro-
phile 1a–c followed by annulation with hydrazine hydrate 5.

SYNTHETIC COMMUNICATIONSVR 2067



1,2-phenylenediamine 3, sarcosine 4, and hydrazine hydrate 5 affording pyrazolo-1,4-
dioxa-spiro[4,5]decane grafted spiro-indenoquinoxaline pyrrolidines (6b–e) in good
yield (Table 3).
A sequential one-pot five-component is implemented in order to have the pyrazolo-

1,4-dioxa-spiro[4,5]decane and indenoquinoxaline moiety on the pyrrolidine platform.
When all the five components were added in one-pot and refluxed in methanol, mixture
of unidentified inseparable products was obtained. Alternatively, when changes in the
sequential addition were brought by the addition of hydrazine hydrate 5 with the dipo-
larophile 1a followed by the addition of ninhydrin 2 and 1,2-phenylenediammine 3, the
product 6a was formed in poor yield (20%). Hence, this methodology was abandoned.

Molecular mechanics (MM2)

Molecular mechanics or force-field method use classical type models to predict the
energy of a molecule as a function of its conformation. This allows predictions of equi-
librium geometries and transition states and also relative energies between conformers
or between different molecules. Molecular mechanics can be used to supply the poten-
tial energy for molecular dynamics computations on large molecules. In our study,
molecular mechanics (MM2) calculations have been carried out to rationalize the for-
mation of the spiroheterocyclic hybrid 6a–e.[25,26] The energy minimized structure is
expressed in kcal/mol. Through the MM2 calculations, it is observed that the total
energy of the product 6a–e formed, ranges from 63 to 81 kcal/mole (Fig. 2). Depending
upon the various substituents on the hybrid heterocycle, the total energy of the individ-
ual product is different. The total energy of the possible regioisomer 12a–e ranges from
74 to 90 kcal/mole (Fig. 3) whereas the total energy of the bis-cycloadduct 13a–e ranges
from 1010 to 1190 kcal/mole which is extremely large (Fig. 4). From the overall com-
parison of the total energy of the product formed 6a–e, its possible regioisomer 12a–e

Table 2. Optimization of solvent effect on the model reaction involving dipolarophiles 1a, 1,2-
phenylenediamine 2, ninhydrin 3, sarcosine 4, and hydrazine hydrate 5.
Entry Solvent Time (h) Yield b (%)

1 Toluene c 12 23
2 1,4-dioxane 6.0 60
3 Tetrahydrofuran 6.0 54
4 Acetonitrile 3.3 66
5 Ethanol 3.8 73
6 Methanol 3.6 79

(a) Reaction condition: 1a, 2, 3, 4, 5 (1mmol) in solvent (20mL) at reflux temperature; T(h): Time in hours, (b)Yield of
the isolated product in percentage, (c) The reaction was carried out using a Dean–Stark apparatus.

Table 3. One-pot sequential five-component reaction of dipolarophiles 1a–e, 1,2-phenylenediamine
2, ninhydrin 3, sarcosine 4, and hydrazine hydrate 5.

Entry R
Methanol
T (h) Reflux Y (%) Melting point (oC)

6a OMe 3.6 79 197–200
6b H 3.4 83 188–190
6c Cl 3.3 86 166–167
6d Br 3.5 84 158–159
6e F 3.0 88 174–175

T(h): time in hours, Y (%): yield of the product in percentage
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and the bis-cycloadduct 13a–e, it is evident that the expected product 6a–e formed has
minimum energy when compared to the 12a–e and 13a–e favoring its formation as
shown in Figs. 2–4, respectively.

Conclusion

In conclusion, we have synthesized a series of novel pyrazolo-1,4-dioxa-spiro[4,5]decane
grafted spiro-indenoquinoxaline pyrrolidines via a facile one-pot sequential five-component
reaction involving [3þ 2]- cycloaddition reaction of azomethine ylides to various 7, 9-bis-

Figure 2. Energy minimized structure of the product 6a–e.
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[(E)-arylmethylidene]-1.4-dioxa-spiro[4,5]-decan-8-one derivatives followed by ring
annulation using hydrazine hydrate. The synthesized compounds carry diverse substitution
pattern by choice. This method offers several advantages including its operational simpli-
city, selectivity with enhanced reaction rate in a one-pot five-component approach, mild
reaction conditions, easy workup, affording the desired products from readily and cheaply
available starting materials in a single step. A theoretical approach is provided for the for-
mation of the product. The biological studies on these novel compounds are in progress
and will be published elsewhere. We believe that this methodology will be useful for mod-
ern drug discovery program involving MCRs.

Figure 3. Energy minimized structure of 12a–e.
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Experimental section

General considerations

All melting points are uncorrected. IR spectra were recorded on a SHIMADZU 8300
series FT-IR instrument. 1H NMR spectra were recorded in CDCl3 using TMS as an
internal standard on a BRUKER 300 spectrometer at 300MHz. 13C NMR was recorded
on a BRUKER 300 spectrometer at 75MHz. High-resolution mass spectra were recorded
on a JEOL-GC-MATE II mass spectrometer (70 Energy eV, Quadrapole double-focusing
mass analyzer with photomultiplier tube detector). Column chromatography was per-
formed on silica gel (ACME, 100–200 mesh). Solvents were reagent grade and were

Figure 4. Energy minimized structure of 13a–e.
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purified according to standard procedures. The starting materials cyclohexanone mono-
acetal ketal, benzaldehyde, and its derivatives, 1,2-phenylenediamine, ninhydrin, sarco-
sine, hydrazine hydrate were purchased commercially and used as such. Cyclohexanone
monoacetal ketal-based dipolarophiles were synthesized as per the literature
procedures.[27]

Representative procedure for the synthesis of pyrazolo-1,4-dioxa-spiro[4,5]decane
grafted trispiro-indenoquinoxaline pyrrolidine heterocycles 6a-e

A mixture of ninhydrin (1mmol) and 1,2-phenylenediamine (1mmol) was refluxed for
10min in 10ml of methanol followed by the addition of sarcosine (1mmol). To this
mixture, a solution of dipolarophile 1a (1mmol) in 10ml of methanol was added. The
mixture was refluxed until completion of the reaction as evidenced by TLC in petrol-
eum ether-ethyl acetate mixture (3.5:1.5) and visualization was accomplished in an iod-
ine chamber. Then to the reaction mixture, hydrazine hydrate (1mmol) was added and
refluxed for 1 h. After the completion of the reaction as evidenced by TLC, the solvent
was removed under reduced pressure and the crude product 6a was further purified by
column chromatography using petroleum ether-ethyl acetate mixture (4:1) as eluent.

Spectral data of the representative product

1-N-Methyl-spiro-[2.110]oxindole-spiro[3.700][300-(p-methoxyphenyl)]-1,4 -dioxospiro[400,500]
decane-D100,700a-hexahydro-2H-indazole-4-(p-methoxyphenyl)-pyrrolidine 6a Color: green
(amorphous solid); IR (KBr): (�C¼N) 1605, (�NH) 3317 cm�1, 1H NMR (CDCl3/
300MHz): 1H NMR (CDCl3/300MHz): d 1.01–1.19 (m, 2H), 1.38–1.46 (m, 1H), 1.77 (s,
3H, -NCH3), 2.06–2.10 (m, 1H), 2.17–2.21 (m, 2H), 2.87 (q, J¼ 5.7Hz, 1H), 3.00 (q,
J¼ 5.7Hz, 1H), 3.19 (q, J¼ 6.0Hz, 1H), 3.55 (t, J¼ 8.2Hz, 1H), 3.79 (s, 3H, -OMe), 3.84
(s, 3H, -OMe), 4.14 (t, J¼ 10.0Hz, 1H), 4.28 (d, J¼ 13.2Hz, 1H), 5.14 (dd, J¼ 7.6Hz,
3.3Hz, 1H), 6.02 (bs, 1H, -NH), 6.84 (d, J¼ 8.4Hz, 2H), 6.95 (d, J¼ 8.4Hz, 2H), 7.26 (t,
J¼ 8.4Hz, 2H), 7.49 (t, J¼ 7.3Hz, 1H), 7.61–7.74 (m, 5H), 7.84 (d, J¼ 7.8Hz, 1H), 8.09
(t, J¼ 4.9Hz, 2H), 8.22–8.26 (m, 1H); 13C NMR (CDCl3/75MHz): d 30.92, 34.63, 39.04,
40.42, 49.85, 52.02, 55.31, 55.46, 59.45, 63.64, 64.45, 73.26, 78.18, 108.33, 121.03, 128.39,
128.79, 128.84, 129.02, 129.24, 129.68, 131.32, 131.57, 132.07, 132.30, 139.30, 140.24,
141.20, 147.55, 155.92, 157.99, 158.52, 159.22, 163.91 ppm; HRMS calculated for
C41H39N5O4: 665.7738, Found: 665.7739 (Mþ).
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