EXPERIMENTAL

The proton-coupled ¹³C NMR spectra in CDCl₃ were taken on a Tesla BS-567A spectrometer at 25.1 MHz. The assignment of the direct ¹³C-¹H coupling constants of the β -carbon of the vinyl group was carried out using satellite signals in the PMR spectra. The error in the coupling constants was not greater than ±0.1 Hz.

CONCLUSIONS

The ¹³C-¹H direct coupling constants in the vinyl group of 1-vinylpyrazoles are stereospecific and vary with change in the conformer ratio.

LITERATURE CITED

- 1. L. A. Es'kova, V. K. Voronov, E. S. Domnina, and G. G. Skvortsov, Izv. Akad. Nauk SSSR, Ser. Khim., 1012 (1985).
- 2. P. E. Hansen, Progress in NMR Spectroscopy, Vol. 14 (1981), p. 175.
- 3. N. J. Koole, M. J. A. Bie, and P. E. Hansen, Org. Magn. Reson., 22, 146 (1984).
- 4. G. A. Kalabin and L. B. Krivdin, Zh. Org. Khim., 21, 1137 (1985).
- N. M. Sergeev, NMR Spectroscopy [in Russian], Izd. Moskovsk. Gos. Univ., Moscow (1981), p. 279.
- 6. F. W. Wehrli and T. Wirthlin, Interpretation of Carbon-13 NMR Spectra, Rheine, London-New York (1976), p. 303.
- 7. V. M. S. Gil and A. C. P. Alves, Mol. Phys., 16, 527 (1969).
- 8. W. B. Jennings, D. R. Boyd, C. C. Watson, E. D. Becker, R. B. Bradly, and D. M. Jerina, J. Am. Chem. Soc., <u>94</u>, 8501 (1972).
- 9. P. Albriksten, Acta Chem. Scand., 27, 3889 (1973).
- 10. M. V. Sigalov, B. A. Trofimov, A. I. Mikhaleva, and G. A. Kalabin, Tetrahedron, <u>37</u>, 3051 (1981).

ADDITION OF POLYHALOALKANES TO 1-VINYLSILATRANE

UDC 542,955:547,412:547.345

M. G. Voronkov, L. P. Petukhov,* S. N. Adamovich, V. P. Baryshok, V. I. Rakhlin, B. Z. Shterenberg, and R. G. Mirskov

In our previous work [1], we showed that the homolytic reaction of 1-ally1silatrane with polyhaloalkanes gives 1-halosilatranes:

 $\begin{array}{l} \mathrm{R}^{\mathrm{Hal}}\mathrm{X} + \mathrm{CH}_{2} = \mathrm{CHCH}_{2}\mathrm{Si}(\mathrm{OCH}_{2}\mathrm{CH}_{2})_{3}\mathrm{N} \rightarrow \mathrm{XSi}(\mathrm{OCH}_{2}\mathrm{CH}_{2})_{3}\mathrm{N} + \mathrm{CH}_{2} = \\ = \mathrm{CHCH}_{2} - \mathrm{R}^{\mathrm{Hal}} \\ \mathrm{R}^{\mathrm{Hal}}\mathrm{X} = \mathrm{CCl}_{4}, \ \mathrm{CCl}_{3}\mathrm{Br}, \ \mathrm{C}_{3}\mathrm{F}_{7}\mathrm{I}. \end{array}$

In the present work, we discovered the addition of polyhaloalkanes to 1-vinylsilatranes both upon photochemical initiation and in the presence of peroxides:

$$\begin{array}{l} \mathrm{R}^{\mathrm{Hal}X} + \mathrm{CH}_{2} = \mathrm{CHSi}(\mathrm{OCH}_{2}\mathrm{CH}_{2})_{3}\mathrm{N} \rightarrow \mathrm{R}^{\mathrm{Hal}}\mathrm{CH}_{2}\mathrm{CH}(\mathrm{X})\mathrm{Si}(\mathrm{OCH}_{2}\mathrm{CH}_{2})_{3}\mathrm{N} \\ \mathrm{R}^{\mathrm{Hal}X} = \mathrm{CHCl}_{3}, \ \mathrm{CCl}_{3}\mathrm{Br}, \ \mathrm{CF}_{3}\mathrm{I}, \ \mathrm{C}_{3}\mathrm{F}_{7}\mathrm{I}. \end{array}$$

The ease of this reaction, its regiospecificity and high product yields permit us to recommend it as a preparative method for the synthesis of 1-polyhaloalkylsilatranes.

EXPERIMENTAL

<u>1-(3,3,3-Trichloropropyl)silatrane (I)</u>. A solution of 2 g (10 mmoles) 1-vinylsilatrane and 0.1 g benzoyl peroxide in 100 ml CHCl₃ was heated in a sealed ampul for 1 h at 100°C. The solution was evaporated to half volume. The precipitate formed was recrystal-

*Deceased.

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 204-205, January, 1987. Original article submitted March 10, 1986. lized from CCl₄ to give 2.85 g (89%) (I) as colorless crystals, mp 206-207°C, M⁺ m/z 319. ¹H NMR spectrum in CDCl₃ at 100 MHz (δ , ppm): 3.78 t (OCH₂), 2.83 t (NCH₂), 2.60 m (Cl₃CCH₂), 1-0.6 m (CH₂Si). Found: C 33.60; H 5.11; Cl 33.01; Si 8.54%. Calculated for C₉H₁₆Cl₃NO₃Si: C 33.71; H 5.03; Cl 33.17; Si 8.76%.

<u>1-(3,3,3-Trichloro-1-bromopropyl)silatrane (II)</u>. A mixture of 2 g (10 mmoles) 1-vinylsilatrane, 1.98 g (10 mmoles) Cl₃CBr, and 0.1 g benzoyl peroxide in 20 ml CHCl₃ was heated in a sealed ampul for 6 h at 80°C. The reaction mixture was poured into 50 ml dry hexane. The precipitate was filtered off, dried and sublimed in vacuum to give 3.42 g (85.2%) (II) as colorless crystals, mp 175°C. ¹H NMR spectrum in CDCl₃ (δ , ppm): 3.86 t (OCH₂), 3.43 m (Cl₃CCH₂CHBr), 2.90 t (NCH₂). Found: C 27.00; H 3.81; Br 19.70; Cl 26.56; Si 6.98%. Calculated for C₉H₁₅BrCl₃NO₃Si: C 27.06; H 3.75; Br 19.8; Cl 26.70; Si 7.01%.

<u>1-(3,3,3-Trifluoro-1-iodopropyl)silatrane (III)</u>. A solution of 3 g (14.9 mmoles) 1vinylsilatrane and 3.9 g (20 mmoles) trifluoroiodomethane in a mixture of 50 ml CCl₄ and 10 ml CHCl₃ was maintained for 30 h in a sealed ampul in diffuse sunlight. The precipitate formed was recrystallized from 1:1.5 chloroform-heptane, washed with hexane, and dried to give 94.5% (III) as colorless crystals, mp 119.5-120.5°C. ¹H NMR spectrum in CDCl₃ (δ , ppm): 3.84 t (OCH₂), 2.89 t (NCH₂). Found: C 27.49; H 4.03; F 14.04, I 31.85; Si 6.80%. Calculated for C₉H₁₅F₃INO₃Si: C 27.31; H 3.81; F 14.35; I 31.95; Si 7.06%.

<u>1-(2-Perfluoropropyl-1-iodoethyl)silatrane (IV)</u>. A solution of 1.7 g (8.4 mmoles) 1vinylsilatrane and 4.1 g (14 mmoles) perfluoropropyl iodide in 30 ml CHCl₃ in a sealed Pyrex ampul and irradiated for 3 h using a PRK-2 UV lamp to give 98.1% (IV) as colorless crystals, mp 137-138°C (from CHCl₃-hexane). ¹H NMR spectrum in CDCl₃ (δ , ppm): 3.85 t (OCH₂), 2.90 t (NCH₂). Found: C 26.53; H 3.03; I 26.70; Si 5.73%. Calculated for C₁₁H₁₃F₇INO₃Si: C 26.57; H 3.04; I 26.58; Si 5.65%.

CONCLUSIONS

Polyhaloalkanes react readily with 1-vinylsilatrane upon photoinitiation or in the presence of peroxides with almost quantitative formation of the products of the regiospecific addition of the perhaloalkyl radical to the terminal carbon atom of the vinyl group.

LITERATURE CITED

 M. G. Voronkov, L. P. Petukhov, V. I. Rakhlin, B. Z. Shternberg, N. Kh. Khangazheev, R. G. Mirskov, and V. A. Pestunovich, USSR Inventor's Certificate No. 1,031,181 (1983); Byull. Izobret., No. 21 (1985).