

Tetrahedron Letters 39 (1998) 5799-5802

TETRAHEDRON LETTERS

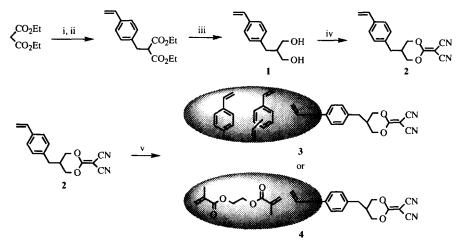
Unprecedented Polymer-Supported π -Acid: Synthesis and Its Application as a Promoter to the Monothioacetalization of Acetals

Yukio Masaki,* Nobuyuki Tanaka, and Tsuyoshi Miura

Gifu Pharmaceutical University, 5-6-1 Mitahora Higashi, Gifu 502-8585, Japan Fax: 81-58-237-5979. E-mail: masaki@gifu-pu.ac.jp

Received 14 May 1998; revised 4 June 1998; accepted 5 June 1998

Abstract: A novel polymer was synthesized by copolymerization of styrene monomer bearing dicyanoketene acetal functionality and ethylene glycol dimethacrylate, and used successfully as a recyclable π -acid catalyst in monothioacetalization of aromatic, aliphatic, acyclic, and cyclic acetals with thiophenol and phenylthiotrimethylsilane. © 1998 Elsevier Science Ltd. All rights reserved.


Since Merrifield's solid phase synthesis of peptides^{1a} polymer-supported catalysts, reagents, and substrates have attracted much attentions for many years due to their inherent advantages in synthetic chemistry: simplification of reaction procedures including easy separation of products, application to automation systems leading to the combinatorial chemistry, and recycling of catalysts and reagents.^{1b}

Useful polymer-supported acid catalysts so far, are classified to several types from the view point of situations of elements of intrinsic acidity: 1) Lewis acids incorporated coordinately in inorganic and organic polymer matrix such as zeolites, ^{2a} clays, ^{2b} silica, ^{2c} and resins, ^{2d} 2) Lewis acidic metals introduced covalently in organic^{3a} and mixed organic-inorganic polymer matrix, ^{3b} 3) polymeric protonic (Brønsted) acids such as proton-exchanged zeolites^{4a} and clays, ^{4b} and protonated ion-exchange resins including hydrochloric, ^{4c} sulfonic, ^{4d} and carboxylic acid, ^{4e} 4) organic cation species bound to a polystyrene resin.⁵

In the couse of our investigation on the π -acid property of tetracyanoethylene (TCNE) we have found that certein capto-dative olefins, dicyanoketene acetals (DCKA), in which two geminal cyano groups are substituted with alkoxy groups, work well as a promoter in alcoholysis of epoxides, ^{6a} tetrahydropyranylation of alcohols, ^{6b} and monothioacetalization of acetals. ^{6c} During the modification of the structure of DCKA aiming at novel catalytic activities, we have designed polymer-supported dicyanoketene acetals, which are accessible by polymerization of styrene derivatives bearing dicyanoketene acetal moiety. Reported herein are a synthesis of a unprecedented polymer-supported dicyanoketene acetal, another type of polymer-supported acid, and its use as a recyclable polymeric π -acid catalyst in monothioacetalization of acetals with thiophenol and phenylthiotrimethylsilane.

The preparation of polymeric DCKA (3 and 4) is shown in Scheme 1. Condensation of diethyl malonate with an equiv. mole of 4-chloromethyl styrene in the presence of NaH followed by reduction with $LiAlH_4$ gave a diol derivative (1) in 46% overall yield for two steps. Condensation of the diol (1) with 1.3 mole equiv. of TCNE in the presence of a catalytic amount of Et_2NH in THF produced a monomeric styrene derivative (2) in 67% yield, which was ascertained to have the catalytic activities in the reaction of benzaldehyde dimethyl acetal (5) with

thiophenol (1.5 equiv.) in CH₃CN at 60 \bigcirc for 3 h to give the corresponding monothioacetal (6) in 87% yield. A simple copolymerization of 2 with each one equivalent mole of styrene and divinylbenzene as cross-linking agents produced in 49% yield a polymer-supported DCKA (3) as a white powder, which was estimated to be composed of a 2 : 2 : 1 ratio of 2, styrene, and divinylbenzene from elemental analysis (2.30 mmol/g for loaded DCKA). Another one (4) was obtained with ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent according to Dhai's method⁷ in 80% yield as a white powder, which was estimated to be composed of a 2 : 1 ratio of 2 and EGDMA from elemental analysis (2.74 mmol/g for loaded DCKA).

Scheme 1. i: 1.1 eq. NaH, DMF, r.t., 1 h; ii: 0.3 eq. NaI, 1.0 eq. 4-chloromethylstyrene, 50 °C, 2 h; iii: 3.0 eq. LiAlH4, Et₂O, reflux, 2 h (46 % for 2 steps); iv: 0.2 eq. Et₂NH, 1.3 eq. TCNE, THF, r.t., 2 h (67%); v: (synthesis of **3**), 0.05 eq. AIBN, 1.0 eq. styrene, 1.0 eq. divinylbenzene, Toluene, 100 °C, 22 h (49%); (synthesis of **4**), 0.05 eq. AIBN, 1.0 eq. EGDMA, Toluene, 100 °C, 2 h (80%)

The polymeric DCKAs (3 and 4) were evaluated as catalysts in monothioacetalization of benzaldehyde dimethyl acetal (5) with thiophenol. The polymer (3 or 4) (50 mg) was added to a solution of the dimethyl acetal (5) (50 mg, 0.33 mmol) and thiophenol (PhSH) (0.50 mmol) in a solvent (1.0 ml). The mixture was stirred at 60 C and the reaction was monitored by TLC. The reaction displayed a noticeable solvent dependence listed in Table 1. Although the polymeric DCKA (3) showed little catalytic activity, another one (4) accelerated remarkably the monothioacetalization reaction in acetonitrile, which was the solvent of choice for providing a high yield (83%) of a monothioacetal (6). Solvents, CH_2Cl_2 , Et_2O , C_6H_6 , $CH_3C_6H_5$, and DMSO were poor to sluggish and DMF was moderate for the reaction. The product could be easily isolated by filtration of the catalyst followed by the usual work-up. After washing the recovered polymer successively with water and ethyl acetate followed by drying at room temperature in vacuo for 4 h, the catalysts (3 and 4) could be reused without loss of the activities (entry 1, 2 and 8).

Next, efficiency of the catalyst (4) was investigated in the monothioacetalization of several aliphatic acetals including a methoxymethyl (MOM) (10), tetrahydropyranyl (THP) (11), and tetrahydrofuranyl (THF) ethers (12) using PhSH as well as phenylthiotrimethylsilane (TMS-SPh) as a nucleophile, and the results are summarized in Table 2. Typical dimethyl acetals of decyl aldehyde (7), 2-octanone (8), and cyclohexanone (9)

Ph-CoMe 5 (50 mg)		3 h			← ← Ph ← SPh 6	
Entry	Solvent	Polymer	T/°C	Yield (%)		
				lst.	2nd.	3rd.
1	CH ₃ CN	3	60	21	25	_
2	CH ₃ CN	4	60	83	88	87
3	CH_2Cl_2	4	reflux	10	_	_
4	Et ₂ O	4	reflux	32	_	—
5	Benzene	4	60	29	—	_
6	Toluene	4	60	35		
7	DMSO	4	60	42		
8	DMF	4	60	61	58	60

 Table 1. Solvent effect and the reusing of polymeric DCKA (3 and 4) in the monothioacetalization of benzaldehyde dimethyl acetal

Table 2. Monothioacetalization of acetals catalyzed by polymeric DCKA (4)

	$R \prec_{OMe}$ 50 mg		CH ₃ CN, 60	$rac{\text{leophile (1.5 eq.)}}{\circ C} R \prec SPh$
Entry	Substrate	Nucleophile	Time (h)	Product / Yield (%)
1		PhSH	6	73 <i>a</i>
2 3 4 5	$n-C_9H_{19} \rightarrow OMe OMe$ 7	PhSH	20	$n-C_9H_{19} \rightarrow OMe \qquad 75 \\ SPh \qquad 50^{b}$
3	OMe	TMS-SPh	7	SPh 50^{b}
4	7	TMS-SPh	20	13 61
5		TMS-SPh	40	86
6	n-C ₆ H ₁₃ , OMe	PhSH	2	$n-C_6H_{13}$ OMe 64
6 7	$^{n-C_6H_{13}} \times_{OMe}^{OMe}$	TMS-SPh	2 5	$^{n-C_6H_{13}} \times_{SPh}^{OMe} = {}_{69}^{64}$
1	8	1010 011	5	14
8	OMe	PhSH	6	OMe 29 SPh 36
8 9	⟨× _{OMe}	TMS-SPh	6 7	$\langle X_{SPh} \rangle_{80} \rangle \langle X_{SPh} \rangle_{SPh} \rangle_{SPh}$
-	9 9	1.10 01 1		15
10	^	PhSH	31	no reaction
11	$n-C_{12}H_{25}-OOMe$	TMS-SPh	31	no reaction
	10			
12	\frown	PhSH	12	$\bigcap_{\substack{O \\ I6}} \frac{73}{48^{d}} + HOPhS O - n - C_5 H_{11} = \frac{32}{14}$
13		TMS-SPh	19	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ O \end{array} \\ \textbf{SPh} \end{array} \\ \begin{array}{c} 6 \end{array} \\ \begin{array}{c} 6 \end{array} \\ \begin{array}{c} 48 \end{array} \\ \begin{array}{c} d \end{array} \\ \textbf{HOPhS} \end{array} \\ \begin{array}{c} \begin{array}{c} O \\ \textbf{O} \\ \textbf{O} \\ \textbf{I8} \end{array} \\ \begin{array}{c} O - n - C_5 H_{11} \end{array} \\ \begin{array}{c} 32 \\ 14 \end{array} \\ \begin{array}{c} 14 \end{array} \\ \begin{array}{c} 14 \end{array} \\ \begin{array}{c} \end{array} $
14	O^O-n-C ₅ H ₁₁	TMS-SPh	40	$O^{\text{SPh}} = O^{\text{SPh}} = O^{$
	11		.0	16 ⁴ ⁶ 18 ¹⁴
15	\square	PhSH	12	
16	` 0 ^ 0-n-C ₅ H ₁₁	TMS-SPh	40	O^{SPh} 75 PhS $O^{\text{-}n-C_5H_{11}}$ 13
10	12	11410-0111	.0	17 19

^{*a*} 14% of the starting material was recovered. ^{*b*} 40% of the starting material was recovered. ^{*c*} 31% of the starting material was recovered. ^{*d*} 21% of the starting material was recovered.

$$HO_{PhS} \xrightarrow[O-n-C_5H_{11}]{} - \frac{polymer (4) (50 mg)}{CH_3CN, 60 °C, 20 h} = 18 (5\%) + O_{O} SPh + O_{O} O \cdot n - C_5H_{11} + 11 (11\%)$$

underwent smoothly substitution reactions under the conditions at 60 C within two days to give the corresponding monothioacetal (13), (14), and (15), respectively, although the ketone acetals (8, 9) reacted more rapidly than that of the aldehyde (7) (entry 3, 4, 5, 7, 9). Unexpectedly, no reaction was observed with dodecyl-MOM ether (10) (entry 10 and 11). Mixed acetals, THP (11) and THF ethers (12) derived from n-pentanol, underwent regioselective thiolysis depending on the amount of the catalyst and the reaction time especially when TMS-SPh was used as a nucleophile to afford selectively endo- (18) or exo-cyclic C-O bond cleaved products (16) (entry 12~16). The fact that a smaller amount of the catalyst and shorter period of the reaction time led to the linear monothioacetals (18) selectively (entry 13) indicated that the endocyclic C-O bond of the THP ether (11) appears to be cleaved more rapidly than the exocyclic one, leading initially to 18 which is transformed to cyclic monothioacetal (16) with elimination of n-pentanol under the reaction conditions. Thus, the intermediate linear monothioacetal (18) (50 mg, 0.177 mmol) was warmed at 60 C for 20 h with the polymer catalyst (4) (50 mg) to produce 71% yield of the cyclic monothioacetal (16).

In conclusion, we synthesized a novel polymer-supported DCKA (4), which was found to be a unprecedented and recyclable polymeric π -acid and successfully promoted mild monothioacetalization reaction of acetals. Further application of this polymer-supported catalyst to the nucleophilic substitution reaction of acetals using such carbon-nucleophiles as TMS-CN and TMS-enol ethers is currently under investigation.

References

- (a) Merrifield, B. Science, 1986, 232, 341-347 and references cited therein.; (b) Reviews: Akelah, A.; Sherrington, D. C. Chem. Rev, 1981, 81, 557-587; Frechet, J. M. J. Tetrahedron, 1981, 37, 663-683; Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K. Synthesis, 1997, 1217-1239.
- (a) Onaka, M.; Sugita, K.; Izumi, Y. Chem. Lett., **1986**, 1327-1328; (b) Clark, J. H.; Martin, K.; Teasdale, A. J.; Barlow, S. J. J. Chem. Soc., Chem. Commun., **1995**, 2037-2040; Villemin, D.; Martin, B. J. Chem. Res. (S), **1994**, 146-147; (c) Iranpoor, N.; Tarrian, T.; Movahedi, Z. Synthesis, **1996**, 1473-1476; (d) Kobayashi, S.; Nagayama, S. J. Org. Chem., **1996**, 61, 2256-2257; Tamami, B.; Iranpoor, N.; Zarchi, M. A. K. Polymer, **1993**, 34, 2011-2013.
- (a) Kobayashi, S.; Nagayama, S. Synlett, 1997, 653-654; Nagahara, S.; Maruoka, K.; Yamamoto, H. Chem. Lett., 1992, 1193-1196; (b) Otera, J.; Niibo, Y.; Tatsumi, N.; Nozaki, H. J. Org. Chem., 1988, 53, 275-278.
- (a) Kumar, P.; Dinesh, C. U.; Reddy, R. S.; Pandey, B. Synthesis, 1993, 1069-1070; Takeuchi, H.; Kitajima, K.; Yamamoto, Y.; Mizuno, K. J. Chem. Soc., Perkin Trans. 2, 1993, 199-203; (b) Hoyer, S.; Laszlo, P. Synthesis, 1986, 655-657; (c) Johnston, R. D.; Marston, C. R.; Krieger, P. E.; Goe, G. L. Synthesis, 1988, 393-394; (d) Olah, G. A.; Husain, A.; Singh, B. P. Synthesis, 1983, 892-895; (e) Svec, F.; Bares, M.; Zajic, J.; Kalal, J. Chem. Ind., 1977, 159.
- 5. Mukaiyama, T.; Iwakiri, H. Chem. Lett., 1985, 1363-1366.
- (a) Masaki, Y.; Miura, T.; Ochiai, M. Bull. Chem. Soc. Jpn., 1996, 69, 195-205; (b) Masaki, Y.; Miura, T. Synth. Commun., 1995, 25, 1981-1987; (c) Masaki, Y.; Miura, T. Tetrahedron, 1995, 51, 10477-10486.
- 7. Dhai, P. K.; De, B. B.; Lohray, B. B.; Sivaram, S. Tetrahedron: Asymmetry, 1995, 6, 2105-2108.