Organocatalysis

Asymmetric Allylic Monofluoromethylation and Methylation of Morita–Baylis–Hillman Carbonates with FBSM and BSM by Cooperative Cinchona Alkaloid/FeCl₂ Catalysis**

Tatsuya Furukawa, Jumpei Kawazoe, Wei Zhang, Takayuki Nishimine, Etsuko Tokunaga, Takashi Matsumoto, Motoo Shiro, and Norio Shibata*

Fluorine-containing organic compounds are well recognized as potential medicinal and agrochemical candidates.^[1] Incorporation of a fluorine atom into organic molecules, especially biomolecules and pharmaceuticals, can dramatically alter their lipophilicity, membrane permeability, and binding capacity to target receptors in the body.^[2] Metabolic stability is also improved when a fluorine atom is introduced at a suitable position of the parent molecule. Fluorine is a close steric replacement for hydrogen, and also serves as an isosteric mimic of the hydroxy group.^[3] To minimize the change in the steric bulk of the parent biomolecules, the introduction of a single fluorine atom is often strategized for the synthesis of isosteres.^[4] Therefore the synthesis of monofluorinated compounds is of great importance. Among various strategies, direct monofluoromethylation with high stereoselectivity is particularly attractive as is the direct monofluorination reaction.^[5] In 2006, our group^[6b] and group of Hu^[7a] in Shanghai independently developed fluorobis(phenylsulfonyl)methane (FBSM) as a synthetic equivalent of a monofluoromethide species for the direct construction of a C-CFH₂ bond. FBSM has now become commercially available and a number of nucleophilic monofluoromethylation reactions using FBSM have emerged, including Tsuji-Trost allylation, the Mannich reaction, conjugate addition, the Mitsunobu reaction, and the monofluoromethylation of epoxides and benzynes.^[6,7] Research into FBSM has also sparked the imagination of chemists to design similar types of nucleophilic reactions using a-monofluorocarbonyl compounds as nucleophiles; these reactions afford a variety of monofluorinated compounds, represented by -CFR1R2 (but not CFH₂).^[8] However, the introduction of an entire CFH₂

[*] T. Furukawa, J. Kawazoe, W. Zhang, T. Nishimine, E. Tokunaga, Prof. N. Shibata

Department of Frontier Materials, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555 (Japan) E-mail: nozshiba@nitech.ac.jp

T. Matsumoto, Dr. M. Shiro Rigaku Corporation

3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666 (Japan)

- [**] This study was financially supported in part by Grants-in-Aid for Scientific Research (21390030, 22106515, Project No. 2105: Organic Synthesis Based on Reaction Integration). We also thank TOSOH F-TECH INC. and the Asahi Glass Foundation. FBSM = fluorobis(phenylsulfonyl)methane, BSM = bis(phenylsulfonyl)methane.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201103748.

group to an asymmetric carbon center is not easy, and a limited number of successful asymmetric monofluoromethylation reactions have been published.^[6b-d,7e-i] We disclose herein the first example of an organocatalyzed enantioselective allylic monofluoromethylation of Morita–Baylis–Hillman carbonates^[9] **1** with FBSM using a bis(cinchona alkaloid), to provide the medicinally attractive synthons chiral α -methylene β -monofluoromethyl esters **2** with high *ee* values of 84– 97% (Scheme 1). Cooperative catalysis using a bis(cinchona

Scheme 1. Enantioselective monofluoromethylation and methylation of Morita–Baylis–Hillman carbonates with FBSM and BSM catalyzed by cooperative catalysts, bis(cinchona alkaloid) and FeCl₂.

alkaloid) and a Lewis acid, particularly FeCl₂, is more effective for this transformation and using this cooperative catalysis compounds **2** are furnished with over 90 % *ee* for all substrates **1**. The β -monofluoromethyl esters **2** obtained can be efficiently converted into monofluoromethylated ester **4** and interesting carbocyclic compounds **5** without any loss of enantiomeric purity. Enantioselective allylic methylation of Morita–Baylis–Hillman adducts **1** using bis(phenylsulfonyl)-methane (BSM), a nonfluorinated analogue of FBSM, was also performed in the presence of a bis(cinchona alkaloid) and FeCl₂ (or Ti(O*i*Pr)₄) to provide methylated adducts **3** in high yields with high enantioselectivities of up to 96 % *ee* (Scheme 1).

Our initial investigation started by establishing a suitable catalyst for the allylic addition of FBSM to Morita–Baylis– Hillman carbonate **1a** (Table 1). Quinidine gave FBSM

 Table 1: Optimization of the reaction conditions.^[a]

 FBSM

	OBoc MeO₂C、 ↓ c	atalyst (10 mol%)	F SO₂Ph	l
	1a	solvent RT, 3–4 days	* Ph 2a	
Entry	Catalyst	Solvent	Yield [%] ^[b]	ee [%]
1	Quinidine	DCE	38	9 (S)
2	Quinine	DCE	75	14 (R)
3	Cinchonine	DCE	51	18 (S)
4	Cinchonidine	DCE	78	65 (R)
5	β-ICD	DCE	31	11 (R)
6	(DHQD)₂PYR	DCE	75	75 (R)
7	(DHQD)₂PHAL	DCE	76	55 (R)
8	(DHQD) ₂ AQN	DCE	81	76 (R)
9	(DHQ)₂PYR	DCE	92	59 (S)
10	(DHQ)₂PHAL	DCE	81	10 (S)
11	(DHQ)₂AQN	DCE	87	15 (S)
12	(DHQD)₂AQN	CH_2CI_2	60	85 (R)
13	(DHQD)₂AQN	THF	15	35 (R)
14	(DHQD)₂AQN	Toluene	68	95 (R)
15	(DHQD)₂AQN	PhCF ₃	66	96 (R)
16 ^[c]	(DHQD)₂AQN	PhCF ₃	90	94 (R)
17 ^[d]	(DHQD) ₂ AQN	PhCF ₃	93	94 (R)
18 ^[e]	(DHQD) ₂ AQN	PhCF ₃	80	88 (R)
19 ^[d]	(DHQ) ₂ PYR	PhCF ₃	70	64 (S)

SO₂Ph

[a] Reactions were carried out using **1a** (1.1 equiv), FBSM (1.0 equiv), catalyst (10 mol%) in solvent at room temperature for 3–4 days unless otherwise noted. [b] Yield of the isolated product. [c] Reaction was performed at 30°C. [d] Reaction was performed at 40°C. [e] Reaction was performed at 50°C. β -ICD = β -isocupreidine, DCE = 1,2-dichloroethane, (DHQD)₂PHAL = hydroquinidine 1,4-phthalazinediyl diether, (DHQD)₂PYR = hydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether, (DHQ)₂PYR = hydroquinine anthraquinone-1,4-diyl diether, (DHQ)₂PYR = hydroquinine, (2,5-diphenyl-4,6-pyrimidindiyl) diether, THF = tetrahydrofuran.

adduct 2a in low yield with low enantioselectivity (entry 1). The use of quinine and cinchonine slightly improved the yields and enantioselectivities of 2a (entries 2 and 3, respectively). When cinchonidine was used, the enantioselectivity was improved to 65% ee (entry 4). In contrast, β -ICD was found to be ineffective (entry 5). We next attempted to use bis(cinchona alkaloids). such as (DHQD)₂PYR, (DHQD)₂PHAL, (DHQD)₂AQN, (DHQ)₂PYR, (DHQ)₂-PHAL, and (DHQ)₂AQN (entries 6-11). High enantioselectivities of 2a (up to 76% ee) were observed in the presence of (DHQD)₂PYR and (DHQD)₂AQN (entries 6 and 8, respectively). The effect of the solvent was next surveyed (entries 12-15); toluene and 1,1,1-trifluorotoluene were found to be equally suitable for this reaction with a catalytic amount of (DHQD)₂AQN (entries 14 and 15, respectively). The reaction temperature was studied and the yield of 2a was improved at a slightly higher reaction temperature (entries 16–18). Thus, the best result ((R)-2a, 93% yield with 94% ee) was obtained at 40°C (entry 17). It should be mentioned that the ee value of the other enantiomer of 2a ((S)-2a) was also improved to an acceptable value under the best temperature and solvent conditions in the presence of (DHQ)₂PYR (entries 9–11 and 19).

With the optimized reaction conditions established, the scope of substrates ${\bf 1}$ for the enantioselective allylic mono-

fluoromethylation reaction using FBSM was investigated (Scheme 2). Compounds **2** were obtained with high yields and high enantioselectivities and these results were almost

Scheme 2. Enantioselective monofluoromethylation of Morita–Baylis– Hillman carbonates with FBSM catalyzed by cinchona alkaloids.

independent of the nature (halides, electron-donating, and electron-withdrawing groups) and position (ortho, meta, and para positions) of the substituent on the aromatic ring of the Morita-Baylis-Hillman carbonates. Functional groups, such as chloro (1b-d), bromo (1e-g), methyl (1h-i), methoxy (1jk), and nitro (11) groups, were well tolerated under the reaction conditions and the corresponding allylic FBSM adducts 2b-I were obtained with up to 97% ee. Sterically demanding 1-naphthyl and 2-naphthyl Morita-Baylis-Hillman carbonates 1m and 1n were also nicely converted into the desired adducts 2m and 2n in high yields and with high ee values of 96% (2m) and 92% (2n). However, the nonaromatic Morita-Baylis-Hillman carbonate 10 failed to undergo the FBSM addition reaction with high enantiocontrol, thus giving 20 with 22% ee (Scheme 2). This lack of enantiocontrol for nonaromatic substrates is a limitation of the present method.^[10] The absolute stereochemistry of 2 was confirmed by X-ray crystallographic analysis of the derivative (1S,2S)-7 (see Scheme 5 and Figure S1 in the Supporting Information).

This procedure works particularly well with the aromatic Morita–Baylis–Hillman carbonates 1a-n as substrates and

Communications

gives high levels of enantioselectivity^[10] (14 examples, up to 97% *ee*), although half of the products did not have fully satisfactory *ee* values, that is they had values of less than 90% *ee* (7 examples: **2b**, **2c**, **2d**, **2f**, **2g**, **2i** and **2l**; 84–89% *ee*). To improve the enantioselectivity of the corresponding substrates to over 90% *ee* we next examined the effect of the Lewis acid on the reaction outcome. After considerable investigation using a variety of Lewis acids, including FeCl₃, FeBr₂, Ti(O*i*Pr)₄, AlCl₃, and Y(OTf)₃ (see Table S1 in the Supporting Information for details), both FeCl₂ and Ti(O*i*Pr)₄ were found to be equally effective cooperative catalysts with (DHQD)₂AQN for this transformation, and over 90% *ee* was achieved for all the substrates **1** (Scheme 3; FeCl₂ gave slightly better results

MeO ₂		FB (DHQD) ₂ A FeCl ₂ or Ti(C Pl 40 °C,	SM QN (10 mol%)/Pr) ₄ (10 mo hCF ₃ 3–4 days	⊳) ^{%)} → MeO ₂	F ↓ SO ₂ Ph SO ₂ Ph R ¹ 2
2b	80%, 95% 91%, 91%	ee (FeCl ₂) ee (Ti(O <i>i</i> Pr) ₄)	2g	81%, 94% 99%, 91%	<i>ee</i> (FeCl ₂) <i>ee</i> (Ti(O <i>I</i> Pr) ₄)
2c	95%, 97% 96%, 92%	<i>ee</i> (FeCl ₂) <i>ee</i> (Ti(O <i>i</i> Pr) ₄)	2i	91%, 97% 89%, 95%	<i>ee</i> (FeCl ₂) <i>ee</i> (Ti(O <i>I</i> Pr) ₄)
2d	85%, 93% 93%, 92%	ee (FeCl ₂) ee (Ti(O <i>i</i> Pr) ₄)	2j 21	43%, 92% 80%, 92%	<i>ee</i> (FeCl ₂) <i>ee</i> (FeCl ₂)
2f	91%, 92% 91%, 92%	<i>ee</i> (FeCl ₂) <i>ee</i> (Ti(O <i>i</i> Pr) ₄)	2n	99%, 90% 93%, 96%	<i>ee</i> (Ti(O <i>l</i> Pr) ₄) <i>ee</i> (FeCl ₂)

Scheme 3. Improvement of enantioselectivity by up to 10% *ee* was observed by cooperative catalysts, cinchona alkaloid and FeCl₂ or Ti(O/Pr)₄.

than Ti(OiPr)₄). The enantioselectivity was improved by as much as 10% (2g). It should be noted that the method was also found to be applicable for the enantioselective methylation of aromatic Morita–Baylis–Hillman carbonates 1m and 1n using BSM,^[11] the nonfluorinated analogue of FBSM, to furnish the corresponding methylated products 3m and 3n in 96% *ee* and 92% *ee*, respectively. The slightly lower *ee* value for 3n was improved to 96% *ee* by using the cooperative catalyst, FeCl₂ (Scheme 4).

The FBSM adducts **2** were smoothly transformed into pure monofluoromethylated compounds. Two examples were carried out (Scheme 5): 1) Reduction of **2a** using H₂ over Pd/ C followed by reductive desulfonylation with Mg/MeOH furnished monofluoromethylated ester **4**^[12] diastereoselec-

Scheme 4. Enantioselective methylation of Morita–Baylis–Hillman carbonates with BSM, a nonfluorinated analogue of FBSM.

Scheme 5. Conversion of chiral α -methylene β -monofluoromethylated esters 2a and 2e into monofluoromethylated compounds 4 and 5.

tively in good yield without any loss of enantiopurity. 2) Intramolecular radical cyclization of 2e was carried out in the presence of nBu_3SnH and AIBN to afford dihydroindene derivative **7** in 70% yield with diastereoselectively. The stereochemistry of **7** was assigned a *cis* configuration by X-ray analysis (see Figure S1 in the Supporting Information).^[13] The dihydroindene **7** was converted into 1-monofluoromethylindene **5** (47% yield)^[14] by reductive desulfonylation mediated by Mg in MeOH without any loss of enantiopurity of the starting substrate **2e** (Scheme 5).

Although the number of possible conformations of the cinchona alkaloids in solution make it difficult to analyze the transition-state structure of the substrate/catalyst complexes, the reaction intermediate for the R-selective formation of 2 catalyzed by (DHQD)₂AQN is presumably in the open conformation, similar to the conformation reported for the reaction intermediates of the osmium-catalyzed asymmetric dihydroxylation^[15] and the asymmetric direct aldol reaction^[16] (Scheme 6a). With (DHQD)₂AQN in the open conformation, the quinuclidine nitrogen atom of (DHQD)₂AQN could attack the MBH carbonate 2a in a S_N2' manner to afford the cationic intermediate I. The (DHOD)2AON-MBH adduct would be preferentially formed as the E isomer II, in accordance to the conformational analysis of quinuclidine-MBH ester adducts by Mayr and co-workers (Scheme 6b).^[90] The MBH moiety (from 1a) in I might be in part stabilized through the π - π stacking in the U-shape cleft of (DHQD)₂AQN. The Si face of adduct is blocked by the left half of the quinidine moiety, which is bonded to the MBH moiety by a N-C covalent bond. Thus, the FBSM anion would presumably approach the Re face in the preferable $S_N 2'/anti$ elimination manner (Scheme 6a). The low enantioselectivity of the nonaromatic MBH carbonate 10 could be explained by the lack of corresponding π - π stacking interactions in the transition state. The addition of a Lewis acid, either FeCl₂ or $Ti(OiPr)_4$, improves the enantioselectivity of 2, but the effect is not so striking (maximum 10% ee increase). This could be explained by bidentate chelation^[17] of FBSM with the Lewis acid, thus locking the FBSM conformation so as to favor a closed conformation (III; Scheme 6c), although the closed

Scheme 6. a) A proposed transition-state model from **1a** to (*R*)-**2a**; b) the proposed geometry of the (DHQD)₂AQN/MBH adduct; c) the proposed coordinated structure of FBSM with a Lewis acid.

conformation is an inherent preference of a FBSM carbanion even in the absence of Lewis acid.^[19] A ¹H NMR investigation of 1:1 mixture of FBSM and Ti(O*i*Pr)₄ in [D₆]benzene strongly supports this hypothesis, since the methine proton of FBSM gives a signal that is $\delta = 0.036$ ppm downfield relative to the signal in the original spectrum of FBSM (see Figure S2 and S3 in the Supporting Information). In the locked closed conformation **III**, FBSM would easily approach the reaction center and avoid steric interactions in the transition state **I**, although this outcome is dependent on the substate structure (Scheme 6 a).^[19,20]

In summary, the organocatalyzed enantioselective allylic monofluoromethylation of Morita–Baylis–Hillman carbonates using FBSM was achieved in high yields with high *ee* values for the first time.^[19b] Cooperative catalysis with bis(cinchona alkaloid) and FeCl₂ was found to be most suitable for this transformation. Addition of Ti(O*i*Pr)₄ instead of FeCl₂ also improves the enantioselectivity. This should be a powerful protocol to access enantiomeric α -methylene β monofluoromethyl esters, which are useful synthetic building blocks for further transformations. Enantioselective allylic methylation was also achieved using BSM instead of FBSM under identical catalytic conditions.

Received: June 1, 2011 Published online: September 1, 2011

Keywords: fluorine · monofluoromethyl · Morita–Baylis– Hillman reaction · nucleophilic substitution · organocatalysis [2] a) D. B. Harper, D. O'Hagan, Nat. Prod. Rep. 1994, 11, 123-133.

- [3] a) Fusso Yakugaku (Eds.: Y. Kobayashi, I. Kumadaki, T. Taguchi), Hirokawa, Tokyo, 1992; b) J. Kollonitsch, Biomedicinal Aspects of Fluorine Chemistry, Elsevier Biomedical Press and Kodansha Ltd, New York, 1982, pp. 93–122; c) Organo-fluorine Chemistry, Principles and Commercial Applications (Eds.: R. E. Banks, B. E. Smart, J. Fluorine Chem. 2001, 109, 3–11; d) K. L. Kirk, J. Fluorine Chem. 2006, 127, 1013–1029; e) D. O'Hagan, H. S. Rzepa, Chem. Commun. 1997, 33, 645–652.
- [4] a) J. Kollonitsch, A. A. Patchett, S. Marburg, A. L. Maycock, L. M. Perkins, G. A. Doldouras, D. E. Duggan, S. D. Aster, Nature 1978, 274, 906-908; b) G. L. Grunewald, T. M. Caldwell, Q. Li, M. Slavica, K. R. Criscione, R. T. Borchardt, W. Wang, J. Med. Chem. 1999, 42, 3588-3601; c) R. B. Silverman, S. M. Nanavati, J. Med. Chem. 1990, 33, 931-936; d) P. Bey, F. Gerhart, V. V. Dorsselaer, C. Danzin, J. Med. Chem. 1983, 26, 1551-1556; e) G. L. Grunewald, M. R. Seim, R. C. Regier, J. L. Martin, L. Gee, N. Drinkwater, K. R. Criscione, J. Med. Chem. 2006, 49, 5424-5433; f) G. W. Gribble, J. Chem. Educ. 1973, 50, 460-462; g) R. Peters, R. W. Wakelin, Proc. R. Soc. London Ser. B 1953, 140, 497-507; h) E. Kun, R. J. Dummel, Methods Enzymol. 1969, 13, 623-672; i) A. L. Maycock, S. D. Aster, A. A. Patchett, Biochemistry 1980, 19, 709-718; j) D. Kuo, R. R. Rand, Biochemistry 1981, 20, 506-511; k) M. K. Bhattacharjee, E. E. Snell, J. Biol. Chem. 1990, 265, 6664-6668.
- [5] a) N. Shibata, T. Ishimaru, S. Nakamura, T. Toru, J. Fluorine Chem. 2007, 128, 469-483; b) N. Shibata, J. Synth. Org. Chem. Jpn. 2006, 64, 14-24; c) D. S. Reddy, N. Shibata, J. Nagai, S. Nakamura, T. Toru, S. Kanemasa, Angew. Chem. 2008, 120, 170-174; Angew. Chem. Int. Ed. 2008, 47, 164-168; d) T. Ishimaru, N. Shibata, T. Horikawa, N. Yasuda, S. Nakamura, T. Toru, M. Shiro, Angew. Chem. 2008, 120, 4225-4229; Angew. Chem. Int. Ed. 2008, 47, 4157-4161; e) P. Kwiatkowski, T. D. Beeson, J. C. Conrad, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 1738-1741; f) T. Umemoto, R. P. Singh, Y. Xu, N. Saito, J. Am. Chem. Soc. 2010, 132, 18199-18205; g) D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. G. Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661-1664; h) T. Furuya, T. Ritter, J. Am. Chem. Soc. 2008, 130, 10060-10061; i) K. L. Hull, W. Q. Anani, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 7134-7135; j) Y. Hamashima, K. Yagi, H. Takano, L. Tamás, M. Sodeoka, J. Am. Chem. Soc. 2002, 124, 14530-14531; k) J. Erb, D. H. Paull, T. Dudding, L. Belding, T. Lectka, J. Am. Chem. Soc. 2011, 133, 7536-7546; 1) M. H. Katcher, A. G. Doyle, J. Am. Chem. Soc. 2010, 132, 17402-17404; m) J. A. Kalow, A. G. Doyle, J. Am. Chem. Soc. 2010, 132, 3268-3269; n) C. Hollingworth, A. Hazari, M. N. Hopkinson, M. Tredwell, E. Benedetto, M. Huiban, A. D. Gee, J. M. Brown, V. Gouverneur, Angew. Chem. 2011, 123, 2661-2665; Angew. Chem. Int. Ed. 2011, 50, 2613-2617.
- [6] a) N. Shibata, T. Furukawa, D. S. Reddy, *Chem. Today* 2009, 27, 38–42; b) T. Fukuzumi, N. Shibata, M. Sugiura, H. Yasui, S. Nakamura, T. Toru, *Angew. Chem.* 2006, 118, 5095–5099; *Angew. Chem. Int. Ed.* 2006, 45, 4973–4977; c) S. Mizuta, N. Shibata, Y. Goto, T. Furukawa, S. Nakamura, T. Toru, *J. Am. Chem. Soc.* 2007, 129, 6394–6395; d) T. Furukawa, N. Shibata, S. Mizuta, S. Nakamura, T. Toru, M. Shiro, *Angew. Chem.* 2008, 120, 8171–8174; *Angew. Chem. Int. Ed.* 2008, 47, 8051–8054; e) M. Ogasawara, H. Murakami, T. Furukawa, T. Takahashi, N. Shibata, *Chem. Commun.* 2009, 7366–7368.
- [7] a) C. Ni, Y. Li, J. Hu, J. Org. Chem. 2006, 71, 6829-6833;
 b) G. K. S. Prakash, S. Chacko, S. Alconcel, T. Stewart, T. Mathew, G. A. Olah, Angew. Chem. 2007, 119, 5021-5024; Angew. Chem. Int. Ed. 2007, 46, 4933-4936; c) C. Ni, L. Zhang, J. Hu, J. Org. Chem. 2008, 73, 5699-5713; d) G. K. S. Prakash, X. Zhao, S. Chacko, F. Wang, H. Vaghoo, G. A. Olah, Beilstein J. Org. Chem. 2008, 4, 17; e) A. N. Alba, X. Companyó, A.

Angew. Chem. Int. Ed. 2011, 50, 9684-9688

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

a) P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004; b) K. Uneyama, Organofluorine Chemistry, Blackwell Publishing, Oxford, 2006; c) J.-P. Begué, D. B. Delpon, Wiley, New York, 2008; d) I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell, Oxford, 2009.

Communications

Moyano, R. Rios, Chem. Eur. J. 2009, 15, 7035-7038; f) H. W.
Moon, M. J. Cho, D. Y. Kim, Tetrahedron Lett. 2009, 50, 4896-4898; g) S. Zhang, Y. Zhang, Y. Ji, H. Li, W. Wang, Chem. Commun. 2009, 4886-4888; h) F. Ullah, G. L. Zhao, L. Deiana, M. Zhu, P. Dziedzic, I. Ibrahem, P. Hammar, J. Sun, A. Córdova, Chem. Eur. J. 2009, 15, 10013-10017; i) W. B. Liu, S. C. Zheng, H. He, X. M. Zhao, L. X. Dai, S. L. You, Chem. Commun. 2009, 6604-6606; j) G. K. S. Prakash, S. Chacko, H. Vaghoo, N. Shao, L. Gurung, T. Mathew, G. A. Olah, Org. Lett. 2009, 11, 1127-1130; C. Ni, J. Hu, Tetrahedron Lett. 2009, 50, 7252-7255; k) X. Zhao, D. Liu, S. Zheng, N. Gao, Tetrahedron Lett. 2011, 52, 665-667.

- [8] a) D. Cahard, X. Xu, S. C. Bonnaire, X. Pannecoucke, *Chem. Soc. Rev.* 2010, *39*, 558–568; b) G. Valero, X. Companyó, R. Rios, *Chem. Eur. J.* 2011, *17*, 2018–2037; c) B. Jiang, Z. G. Huang, K. J. Cheng, *Tetrahedron: Asymmetry* 2006, *17*, 942–951; d) N. A. Beare, J. F. Hartwig, *J. Org. Chem.* 2002, *67*, 541–555; e) C. Ding, K. Maruoka, *Synlett* 2009, 664–666; f) N. Ishikawa, A. Takaoka, M. K. Ibrahim, *J. Fluorine Chem.* 1984, *25*, 203–212.
- [9] a) S. J. Zhang, H. L. Cui, K. Jiang, R. Li, Z. Y. Ding, Y. C. Chen, Eur. J. Org. Chem. 2009, 5804-5809; b) J. R. Huang, H. L. Cui, J. Lei, X. H. Sun, Y. C. Chen, Chem. Commun. 2011, 47, 4784-4786; c) L. Hong, W. Sun, C. Liu, D. Zhao, R. Wang, Chem. Commun. 2010, 46, 2856-2858; d) H. L. Cui, J. R. Huang, J. Lei, Z. F. Wang, S. Chen, L. Wu, Y. C. Chen, Org. Lett. 2010, 12, 720-723; e) J. Peng, X. Huang, H. L. Cui, Y. C. Chen, Org. Lett. 2010, 12, 4260-4263; f) H. L. Cui, J. Peng, X. Feng, W. Du, K. Jiang, Y. C. Chen, Chem. Eur. J. 2009, 15, 1574-1577; g) K. Jiang, J. Peng, H. L. Cui, Y. C. Chen, Chem. Commun. 2009, 3955-3957; h) Y. Du, X. Han, X. Lu, Tetrahedron Lett. 2004, 45, 4967-4971; i) D. J. V. C. van Steenis, T. Marcelli, M. Lutz, A. L. Spek, J. H. Maarseveen, H. Hiemstra, Adv. Synth. Catal. 2007, 349, 281-286; j) W. Sun, L. H. J. N. Kim, H. J. Lee, J. H. Gong, Tetrahedron Lett. 2002, 43, 9141-9146; k) T. Z. Zhang, L. X. Dai, X. L. Hou, Tetrahedron: Asymmetry 2007, 18, 1990-1994; 1) Y. Q. Jiang, Y. L. Shi, M. Shi, J. Am. Chem. Soc. 2008, 130, 7202-7203; m) L. Wang, B. Prabhudas, D. L. J. Clive, J. Am. Chem. Soc. 2009, 131, 6003-6012; n) E. Gómez-Bengoa, A. Landa, A. Lizarranga, A. Mielgo, M. Oiarbide, C. Palomo, Chem. Sci. 2011, 2, 353-357; o) M. Baidya, G. Y. Remennikov, P. Mayer, H. Mayr, Chem. Eur. J. 2010, 16, 1365-1371; p) H. L. Cui, X. Feng, J. Peng, J. Lei, K. Jiang, Y. C. Chen, Angew. Chem. 2009, 121, 5847-5850; Angew. Chem. Int. Ed. 2009, 48, 5737-5740.
- [10] There are many reports concerning asymmetric addition to aromatic Morita–Baylis–Hillman carbonates with nucleophiles, however, no successful result is reported using nonaromatic

Morita–Baylis–Hillman carbonates as substrates, see Ref [9]. In practice, the result of 20 was not improved at all even in the presence of FeCl₂ (a trace amount of 20 was observed).

- [11] The use of BSM to perform asymmetric methylation reactions is attracting more interest, see: a) J. Luis, G. Ruano, V. Marcos, J. Alemán, *Chem. Commun.* 2009, 4435–4437; b) A. N. Alba, X. Companyó, A. Moyano, R. Rios, *Chem. Eur. J.* 2009, 15, 11095–11099; c) A. Landa, Á. Puente, J. I. Santos, S. Vera, M. Oiarbide, C. Palomo, *Chem. Eur. J.* 2009, 15, 11954–11962; d) S. Zhang, J. Li, S. Zhao, W. Wang, *Tetrahedron Lett.* 2010, 51, 1766–1769.
- [12] The stereochemistry of 4 was assigned to be (2S,3S)-4 according to a report that was published after submission of this manuscript, see Ref [19b].
- [13] CCDC 828122 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif.
- [14] The synthesis of the nonfluorinated analogue of 5 using different strategies has been reported, see: a) P. Canonne, J. Plamondon, *Can. J. Chem.* 1989, 67, 555-564; b) D. B. Ramachary, R. Mondal, C. Venkalah, *Eur. J. Org. Chem.* 2010, 3205-3210; c) A. Beckwith, S. Gerba, *Aust. J. Chem.* 1992, 45, 289-308.
- [15] E. J. Corey, M. C. Noe, J. Am. Chem. Soc. 1993, 115, 12579– 12580.
- [16] S. Ogawa, N. Shibata, J. Inagaki, S. Nakamura, T. Toru, M. Shiro, Angew. Chem. 2007, 119, 8820–8823; Angew. Chem. Int. Ed. 2007, 46, 8666–8669.
- [17] G. Poli, G. Giambastiani, A. Mordini, J. Org. Chem. 1999, 64, 2962–2965.
- [18] a) G. K. S. Prakash, F. Wang, N. Shao, T. Mathew, G. Rasul, R. Haiges, T. Stewart, G. A. Olah, *Angew. Chem.* 2009, *121*, 5462–5466; *Angew. Chem. Int. Ed.* 2009, *48*, 5358–5362; b) T. Furukawa, Y. Goto, J. Kawazoe, E. Tokunaga, S. Nakamura, Y. Yang, H. Du, A. Kakehi M. Shiro, N. Shibata, *Angew. Chem.* 2010, *122*, 1686–1691; *Angew. Chem. Int. Ed.* 2010, *49*, 1642–1647.
- [19] During the reviewing process of this manuscript, related work using Morita–Baylis–Hillman carbonates was published, see: a) L. Jiang, Q. Lei, X. Huang, H. L. Cui, X. Zhou, Y. C. Chen, *Chem. Eur. J.* 2011, *17*, 9489–9493; b) W. Yang, X. Wei, Y. Pan, R. Lee, B. Zhu, H. Liu, L. Yan, K. W. Huang, Z. Jiang, C. H. Tan, *Chem. Eur. J.* 2011, *17*, 8066–8070.
- [20] Discussion of the optimized geometries of the catalyst/substrate complex using DFT calculations for the reaction of Morita– Baylis–Hillman carbonates with FBSM without cooperative catalysis appeared during the reviewing process of this manuscript, see reference [19b].