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Chlorofluoromethyl phenyl sulfide was prepared from the
reaction of chloromethyl phenyl sulfide with Selectfluor·.
Monofluorocyclopropanation of an alkene was achieved via
cyclopropanation using a fluorocarbene derived from the product
chlorofluoromethyl phenyl sulfide, followed by oxidation and
desulfurization.

Cyclopropanes are important synthetic intermediates owing
to their unique chemical properties. They are also important in
the biological sciences and medicinal chemistry. In fact, there are
numerous natural products and artificial pharmaceutics contain-
ing cyclopropane moieties.1 A large number of organofluorine
compounds are similarly important in material sciences and
medicinal chemistry, because the introduction of fluorine atoms
into organic compounds results in dramatic physical and chemi-
cal changes.2 Therefore, fluorinated cyclopropanes are important
and have received much attention, especially in medicinal
chemistry.3 Among them, monofluorocyclopropane moieties
are attractive groups, with one of their most important applica-
tions being sitafloxacin, which has a monofluorocyclopropane
moiety and is used as an antibacterial pharmaceutical agent.4

Monofluorocyclopropanes have traditionally been prepared
through the halofluorocyclopropanation of alkenes with subse-
quent reduction of the halogen atom (Scheme 1).5 Although
these methods are reliable, Freons (chlorofluorocarbon and
related compounds) are required as reagents.5 Freons have been
heavily regulated because of their destructive effects on the
ozone layer.6 They are no longer commercially available and are
thus very difficult to obtain. Therefore, it has become almost
impossible to use these standard methods.

Monofluorocyclopropanes can also be synthesized through
a Simmons­Smith reaction with alkenes using fluorodiiodo-
methane (not commercially available) as the reagent.7 Although
fluorodiiodomethane itself is not a Freon, it is typically prepared
from dibromofluoromethane (Scheme 2), which is a Freon, and
is therefore also impossible to obtain.

Chlorofluoromethyl phenyl sulfide (1) has also been used as
a building block for the synthesis of monofluorocyclopropanes
from alkenes. The treatment of chlorofluoromethyl phenyl
sulfide with a base produces fluoro(phenylthio)carbene, and the
resulting carbene reacts with alkenes to afford the corresponding
fluoro(phenylsulfanyl)cyclopropanes.8 Desulfurization of the
fluoro(phenylsulfanyl)cyclopropane provides the desired mono-
fluorocyclopropane.8 Unfortunately, chlorofluoromethyl phenyl
sulfide is also not commercially available and has traditionally
been prepared through the reaction of sodium phenylthiolate with
dichlorofluoromethane, another Freon (Scheme 3).9

As described above, because of the use of Freons in the
traditional synthetic methods, it has been very difficult lately
to synthesize monofluorocyclopropanes from alkenes. To over-
come this difficulty, we have developed a novel synthetic route
to 1 without the use of Freons, and describe the results in this
communication.

It has been reported that fluoromethyl phenyl sulfide can be
synthesized through the reaction of Selectfluor· with thioani-
sol,10 or the reaction of N,N-diethylaminosulfur trifluoride
(DAST) with methyl phenyl sulfoxide in the presence of
antimony chloride.11 We planned to synthesize 1 through the
reaction of Selectfluor· with chloromethyl phenyl sulfide or
the reaction of DAST with chloromethyl phenyl sulfoxide. The
chlorination of fluoromethyl phenyl sulfide using sulfanyl
chloride12 or N-chlorosuccinimide13 and deoxygenative chlori-
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nation of fluoromethyl phenyl sulfoxide using sulfinyl chloride14

were also examined. The reaction of chloromethyl phenyl
sulfide13 with Selectfluor· produced the desired 1 in 65%
yield.15 On the other hand, the other reactions were unsuccessful
(Scheme 4).

1 synthesized by this method was pure enough to be used
for the cyclopropanation of an alkene without further purifica-
tion (Table 1). Treatment of 1,1-disubstituted alkenes or a
1-monosubstituted alkene with 1 in aqueous base in the presence
of a phase-transfer catalyst provided the 1-fluoro-1-(phenyl-
sulfanyl)cyclopropanes 2. Since these cyclopropanes were not
stable enough to be purified, they were subsequently oxidized
with m-chloroperbenzoic acid (m-CPBA) to afford the corre-
sponding sulfoxides 3.16 The sulfoxides 3 have two or three
stereogenic centers (one chiral sulfur, and one or two chiral

carbons of the cyclopropane ring), so they were obtained as a
mixture of diastereomers. They were then oxidized further by
using m-CPBA to produce the corresponding sulfones 4.17

Desulfurization of 4 was achieved by using magnesium metal
in the presence of a catalytic amount of mercury chloride19 to
provide the desired monofluorocyclopropanes 5.20 For the
monofluorocyclopropanes 4c and 5c, a single stereoisomer was
obtained in each case (Entry 3). The stereochemistry of 4c was
determined to be as depicted in Scheme 5 according to the X-ray
crystallography results.21 Additionally, the desulfurization of
a 2-substituted-1-fluoro-1-sulfonylcyclopropane using metallic
magnesium has been found to proceed with retention of
configuration.24 As a result, 5c may be a cis-isomer, but further
spectroscopic elucidation is necessary.

The fluoro(phenylsulfanyl)carbene, which was produced
from 1, attacked (4-t-butylphenyl)ethylene from a less hindered
site to afford 2c stereoselectively, as shown in Scheme 6.

In contrast to the reaction of 1,1-disubstituted alkenes, 1,2-
disubstituted alkenes are almost inert to the fluoro(phenylsul-
fanyl)carbene derived from 1, forming trace amounts of the
cyclopropanes under the same conditions (Scheme 7), presum-
ably owing to steric hindrance.
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Scheme 4. Synthesis of 1 without using Freons.

Table 1. Reaction of 1 with 1,1-disubstituted alkenes or a
1-monosubstituted alkene, and further transformation to mono-
fluorocyclopropanes
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F

S

S
F

H

t -Bu

H

t-Bu

SF

H

FS

H

t-Bu

t -Bu2c

2c' not obtained

Scheme 6. Origin of the stereoselectivity.

Ph

HPh

H

H

PhPh

H

FS
Ph Ph

Ph
trace

FS
Ph

PhPh

trace

Ph
S

CHClF

CH2Cl2, 45 oC, 9 h

aq. NaOH, BnNEt3Cl
1 (3 equiv)

1)

2)

O

O
m-CPBA (3 equiv)
CHCl3, -20 oC to rt, 8 h

Scheme 7. The reaction with 1,2-disubstituted alkenes.

1378

© 2013 The Chemical Society of JapanChem. Lett. 2013, 42, 1377­1379 www.csj.jp/journals/chem-lett/

http://www.csj.jp/journals/chem-lett/


In conclusion, a synthetic method for the preparation of
chlorofluoromethyl phenyl sulfide without using Freons has
been developed. The chlorofluoromethyl phenyl sulfide prepared
through this method can be used for the synthesis of mono-
fluorocyclopropane from 1-monosubstituted alkenes or 1,1-
disubstituted alkenes. This method is the sole Freons-free
procedure for the synthesis of monofluorocyclopropanes from
alkenes.25,26
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