Journal of Medicinal Chemistry

Functionally Selective Dopamine D₂, D₃ Receptor Partial Agonists

Dorothee Möller,[†] Ralf C. Kling,[†] Marika Skultety,[†] Kristina Leuner,[‡] Harald Hübner,[†] and Peter Gmeiner^{*,†}

[†]Department of Chemistry and Pharmacy, Medicinal Chemistry, and [‡]Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany

Supporting Information

ABSTRACT: Dopamine D_2 receptor-promoted activation of $G\alpha_o$ over $G\alpha_i$ may increase synaptic plasticity and thereby might improve negative symptoms of schizophrenia. Heterocyclic dopamine surrogates comprising a pyrazolo[1,5-*a*]pyridine moiety were synthesized and investigated for their binding properties when low- to subnanomolar K_i values were determined for D_{2L} , D_{2S} , and D_3 receptors. Measurement of [³⁵S]GTP γ S incorporation at D_{2S} coexpressed with G-protein subunits indicated significant bias for promotion of $G\alpha_{o1}$ over $G\alpha_{i2}$ coupling for several test compounds. Functionally selective D_{2S} activation was most striking for the carbaldoxime **8b** ($G\alpha_{o1}$, pEC₅₀ = 8.87, $E_{max} = 65\%$; $G\alpha_{i2}$, pEC₅₀ = 6.63, $E_{max} = 27\%$). In contrast, the investigated 1,4-disubstituted aromatic piperazines (1,4-DAPs) behaved as antagonists for β -arrestin-2 recruitment, implying significant ligand bias for G-protein activation over β -arrestin-2 recruitment at D_{2S} receptors. Ligand efficacy and selectivity between D_{2S} and D_3 activation were strongly influenced by regiochemistry and the nature of functional groups attached to the pyrazolo[1,5-*a*]pyridine moiety.

INTRODUCTION

Schizophrenia is characterized by the coexistence of positive and negative symptoms, cognitive impairment, and a decline in psychosocial functioning.¹ The etiology of schizophrenia is still unknown, but hyper- and hypofunctions in monoamine neurotransmitter systems, especially the mesolimbic and mesocortical dopaminergic pathways, play an important role.² Due to a complex pathophysiology, an adequate treatment of schizophrenia still remains a challenge.^{3,4} Whereas firstgeneration antipsychotics mainly act via the blockade of dopamine D₂ receptors, second-generation compounds have a broadened receptor-binding profile. This leads to a lower liability to cause extrapyramidal side effects (EPS) and a more efficient treatment of negative symptoms, but goes along with other drawbacks caused by severe side effects including agranulocytosis or obesity.² Third-generation antipsychotics, including aripiprazole (2a) and the promising drug candidate N'-[trans-4-[2-[4-(2,3-dichlorophenyl)-1-piperazinyl]ethyl]cyclohexyl]-N,N-dimethylurea (cariprazine, RGH-188, 2b), act as partial agonists at D₂ and D₃ receptors, thereby stabilizing the dopaminergic system.⁵⁻⁷ Several other attempts to bring dopamine receptor partial agonists to the market [e.g., bifeprunox, 7-[3-(4-[2,3-dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392) and N-[(8 α)-2-chloro-6-

methylergoline-8-yl]-2,2-dimethylpropanamide (SDZ 208-912)] failed either because of a lack of efficacy or for safety reasons.⁴ The underlying question relating the optimal intrinsic efficacy and ligand selectivity is further complicated by the growing evidence for a phenomenon referred to as functional selectivity or biased agonism.⁸ Functional selectivity explains the capacity of a ligand to preferentially orientate the coupling of a GPCR with a subset of signal transducers, including Gprotein-mediated effects and G-protein-independent responses.^{9,10} The possibility to modulate these pathways independently from each other was convincingly demonstrated by applying the angiotensin II receptor as a model system by Lefkowitz and co-workers.^{11,12} Such ligand-induced bias between β -arrestin recruitment and G-protein coupling was also reported for 2a, 2b, and structurally related analogues.^{13–15} Interestingly, Masri et al. identified inhibition of β -arrestin-2 recruitment rather than antagonism of G-protein-promoted signaling at D_{2L} and D_{2S} receptors as a common property of clinically effective antipsychotics.¹⁶ Very recently, we could demonstrate that dopaminergics comprising an enyne moiety are able to separate G-protein activation from β -arrestin

Received: March 14, 2014

recruitment and to discriminate between $G\alpha_{01}$ - and $G\alpha_{12}$ mediated signaling at D_{2L} and D_{2S} receptors.¹⁷ Encouraged by these findings on the biased signaling of atypical dopaminergics, we explored novel 1,4-disubstituted aromatic piperazines (1,4-DAPs) of type 1 for their structural determinants of D_2/D_3 subtype selectivity on a functional level, ligand efficacy, and individual ligand controlled activity patterns. $G\alpha_{0}$ protein triggers neurite outgrowth in several different neuronal cell lines, suggesting that partial agonists that favor the D2promoted activation of $G\alpha_{o}$ over $G\alpha_{i}$ may have positive effects on synaptic plasticity $^{18-21}$ and thereby might improve negative symptoms of schizophrenia. Moreover, the D₃ receptor partial agonist **2b** positively affects cognitive deficits in a mouse model treated with phencyclidine.²² Thus, functionally selective promotion of $G\alpha_{o1}$, $G\alpha_{i2}$, and β -arrestin-2-mediated signaling at the D_{2S} receptor, and $G\alpha_{o1}$ activation at the D_3 receptor was investigated. On the basis of recent findings indicating that the nature of the heterocyclic appendage of 2a derivatives is associated with the ratio of G-protein activation and β -arrestinpromoted signaling,^{23,14} the quinolinone scaffold was bioisosterically replaced. Since an incorporation of the pyrazolo-[1,5-*a*]pyridine unit using different attachment points proved to be beneficial for fine-tuning the dopaminergic properties of 1,4-DAPs,²⁴⁻²⁸ we prepared and studied a collection of regioisomeric target compounds of type 1, formally hybridizing the antipsychotic 2a, the drug candidate 2b, and our previously described dopaminergics of type 3 (Figure 1).²

Figure 1. Structural hybridization of 2a, 2b, and the dopaminergic azaindoles (3).

RESULTS AND DISCUSSION

Synthesis. Pyrazolo[1,5-a] pyridines were shown to be valuable azaindole derivatives incorporating a hydrogen-bond-accepting nitrogen in position 1.³⁰ The chemically stable heterocyclic system has been proven to be very useful in medicinal chemistry because it is readily accessible by 1,3-dipolar cycloaddition, allowing various functionalizations in any position.³¹ We intended to bioisosterically displace the dihydroquinolinone unit of our lead compound **2a** by the pyrazolo[1,5-a] pyridine framework that should be linked to an oxyalkylene spacer via different points of attachment. Introduction of a second H-bond-accepting functional group into the heteroarene moiety mimicking the lactam group of the lead structure **2a** was also envisioned. Starting from 1,4-disubstituted phenylpiperazines (1,4-DAPs), known as priv-

ileged structural surrogates for biogenic amines,^{32,33} we built our synthesis strategy in analogy to previously described routes leading to analogues of **2a** (Scheme 1).^{34–36} Initially, pyrazolo[1,5-*a*]pyridine scaffolds **4a–4e** were prepared in different regioisomeric forms.^{25,29,37–39} For the synthesis of the 5-substituted carboxylate **4f**, we adopted our previously described protocol⁴⁰ involving 1,3-dipolar cycloaddition of dimethylacetylene dicarboxylate and 4-methoxy-*N*-aminopyridinium ions under oxidative conditions, followed by simultaneous ester hydrolysis, decarboxylation, and ether cleavage by hydrobromic acid and subsequent re-esterification (for details, see the Supporting Information).

Alkylation of the phenolic hydroxyl group with 1,4dibromobutane in analogy to a literature described protocol³⁴ afforded the alkyl bromides 5a-f, which were subsequently reacted with 1-(2,3-dichlorophenyl)piperazine in the presence of sodium iodide to yield the target compounds 6a-f. To mimic the carboxamide moiety of the dihydroquinolin-2(1H)one substructure of 2a, we introduced a formyl group into position 3 of the pyrazolo [1,5-a] pyridine ring⁴¹ by a protocol involving the Vilsmeyer reaction,⁴² resulting in formation of the test compounds 7a-e. Because direct formylation of the π electron-poor position 2 was not possible, the regioisomer 7f was prepared by reduction of the ethyl ester 6f and subsequent oxidation of the hydroxymethyl-substituted intermediate 6g with manganese(IV) oxide. Conversion of the carbaldehydes 7a and 7f to the corresponding aldoximes by refluxing with hydroxylamine hydrochloride in ethanol⁴¹ yielded mixtures of scis and s-trans isomers in each case. For the 3-substituted pyrazolo [1,5-a] pyridine, the isomers could be separated by column chromatography. Diagnostic NOESY experiments revealed oxime E- and s-trans configuration for isomer 8a and a combination of *E* and *s*-cis configuration for isomer **8b**, respectively (Figure 2). Oxime 8c exists as an inseparable mixture of a major isomer (75%) with *E* and *s*-*cis* configuration and a minor component (25%) with s-trans relationship and an oxime geometry that could not be determined. To study the impact of individual substituents on GPCR binding and activation, the aldoximes 8a,b and 8c were converted into the cyano derivatives 9a and 9b by employing acetic anhydride and cyanuric chloride/DMF, respectively.⁴³⁻⁴

Ligand Binding Experiments. To evaluate the impact of the pyrazolo [1,5-a] pyridine-derived lipophilic appendages on receptor binding, radioligand displacement assays were conducted. The resulting affinity and selectivity profiles of the target compounds were compared with those of 2a and 2b (Table 1). Binding data were generated by measuring the ability of the test compounds to compete with [³H]spiperone for the cloned human dopamine receptor subtypes D_{2L} , D_{2S} , D_{3} , and D_{4.4} stably expressed in Chinese hamster ovary (CHO) cells. D₁ and 5-HT_{2A} receptor affinities were determined utilizing the D₁-selective radioligand [³H]SCH23390 or [³H]ketanserine and cloned human D₁/5-HT_{2A} receptors transiently expressed in HEK 293 cells. For 5-HT_{1A} and α_1 receptor affinities, competition experiments were performed by employing porcine cortical membranes and the selective radioligands [³H]WAY600135 and [³H]prazosin, respectively. Our initial investigations were directed to the evaluation of the attachment point of the pyrazolo[1,5-a]pyridine moiety. Interestingly, all regioisomers of type 6a-6e displayed K_i values between 2.1 and 64 nM for $\rm D_{2L'}\, D_{2S'}$ and $\rm D_3$ receptors, indicating substantial binding affinity. A linkage via position 6 was most favorable, leading to affinities of 4.2, 2.1, and 2.3 nM at D_{2L}, D_{2S}, and D₃

Scheme 1. Synthesis of Dopaminergic Pyrazolo[1,5-a]pyridines^a

^aReagents and conditions: (a) 1,4-dibromobutane, K_2CO_3 , 60 °C, 8 h (31–85%); (b) (1) NaI, acetonitrile, reflux, 30 min; (2) 1-(2,3-dichlorophenyl)piperazine, Et₃N, 85 °C, 5–16 h (62–84%); (c) LiAlH₄, Et₂O, 0 °C to rt, 3 h (85%); (d) for 7a–7e, POCl₃, DMF, rt, 1 h (40–95%); (e) for 7f, MnO₂, DCM, rt, 14 h (99%); (f) NH₂OH HCl, H₂O/EtOH (1:8), reflux, 2 h (81–82%); (g) for 9a, Ac₂O, reflux, 8 h (72%); (h) for 9b, cyanuric chloride, DMF, rt 7 h (65%).

Figure 2. Diagnostic NOESY experiments revealed the exact configuration of aldoximes 8a-8c. Arrows indicate the observed NOE signals in DMSO- d_6 .

receptors, respectively, for test compound 6c. When the delocalized π -electron system was enlarged by addition of a formyl substituent in position 3 of the heterocyclic ring, an approximately 10-fold increase in D₂ receptor affinity was observed for the 5-alkoxy-substituted azaindole 7a, compared to the nonfunctionalized 5-alkoxy precursor 6a (4.6 and 3.2 nM vs 34 and 39 nM at D_{2L} and D_{2S}, respectively). Likewise, 2-15fold increases of D₂ affinities were observed for ligands 6f, 6g, and 7f when polar substituents were formally introduced into position 2 of the 5-alkoxy-substituted heteroarene scaffold. The conversion of the carbaldehydes 7a and 7f to the corresponding aldoximes 8a, 8b, and 8c led to low to subnanomolar affinities of 1.8, 0.17, and 3.3 nM at D₂₁, 1.7, 0.25, and 2.3 nM at D₂₈, and 2.3, 0.69, and 0.86 nM at D₃ receptors, respectively. Interestingly, the s-cis configurated aldoxime 8b showed a receptor binding profile similar to those of the lead compounds **2a** and **2b**, except for a 10–20-fold higher D_4 receptor affinity. Introduction of a cyano group into position 3 of the azaindole ring led to high D_2 affinity: subnanomolar K_i values of 0.58 and 0.32 nM were observed for test compound 9a at D_{2L} and D_{2S} receptors, respectively. Interestingly, D4 and D3 receptor affinities were in the same low nanomolar range for this 3substituted cyano derivative (1.5 and 5.7 nM). Only moderate to poor D1 receptor affinities could be determined for the compound collection. However, K_i values in the nanomolar range were observed for the D_4 subtype and 5-HT_{1A}, 5-HT_{2A}, and α_1 receptors.

Functional Experiments. To investigate the impact of the functionalized pyrazolo[1,5-a]pyridine moiety on balanced or biased G-protein activation at D_{2S} and D_3 receptors, ligand-

induced nucleotide exchange was determined in cell lines coexpressing receptor and individual $G\alpha$ subunits. Whereas highly selective coupling to $G\alpha_0^{46}$ has been described for the D_3 subtype, the two isoforms of D_2 (D_{2S} and D_{2L}) are known to couple promiscuously to different $G\alpha_{i/o}$ subunits.^{47–51} However, activation of $G\alpha_0$ has been associated with neurite outgrowth in different neuronal cell lines, thereby offering the possibility to alter interneuronal connections.¹⁸⁻²¹ A reduction of dendritic spines in the hippocampus and prefrontal cortex of schizophrenic patients was found to be associated with cognitive impairment. $^{52-54}$ To better understand differential contributions of distinct signaling pathways of the dopaminergic system, functionally selective ligands are required. To identify such ligands, we performed $[^{35}S]GTP\gamma S$ incorporation assays with membrane preparations from HEK 293 cells coexpressing D_{25} receptors and the previously described PTX-insensitive $C^{352}I$ and $C^{351}I$ variants⁵⁵ of $G\alpha_{12}$, the most abundant $G\alpha_i$ subunit, ^{56,57} and $G\alpha_{01}$, the predominant isoform in the central nervous system (CNS), respectively.^{51,58} Pertussis toxin was used in control experiments to exclude interference of endogenously expressed G-proteins in the used HEK cell line (Figure S1, Table S1, Supporting Information). Likewise, ligand-induced activation of D₃ receptors coexpressed with $G\alpha_{o1}$ was evaluated. As indicated in Table 2, the reference agonists quinpirole and dopamine displayed similar potencies for activation of $G\alpha_{o1}$ and $G\alpha_{i2}$ subunits at D_{2S} receptors. However, the endogenous ligand was slightly less effective in $G\alpha_{o1}$ coupling (87% vs 102%). Interestingly, 2a, 2b, and our novel 1,4-DAPs showed substantially higher ligand efficacy for D_{2S} -induced $G\alpha_{o1}$ coupling ($E_{max} = 25-72\%$) than for $G\alpha_{i2}$ coupling (E_{max} < 3–39%). Functional selectivity for D_{2S}promoted $G\alpha_{01}$ activation was most striking for the 5substituted azaindole-3-carbaldoxime 8b, showing a difference in potency of 2 orders of magnitude and a substantial bias of ligand efficacy (G α_{o1} activation: pEC₅₀ = 8.87, E_{max} = 65%; G α_{i2} activation: $pEC_{50} = 6.63$, $E_{max} = 27\%$) (Figure 3). It is worthy to note that the pEC_{50} value for **8b** induced $G\alpha_{01}$ activation at the D_{2S} receptor indicated 30-fold higher potency than the lead compound 2a (pEC₅₀ = 7.41), although D_{2S} affinity was in the subnanomolar range for both compounds. Superior and functionally selective $D_{2S}G\alpha_{01}$ activation was also observed Table 1. Receptor Binding Data for the Compounds 6a-g, 7a-f, 8a-c, and 9a, b Compared to the Reference Compounds Quinpirole, 2a, and 2b, Employing Human D₁, D_{2b}, D_{2s}, D₃, D₄₄, and 5-HT_{2A} Receptors and Porcine 5-HT_{1A} and α_1 Receptors

Ū Ū Ū
1 R2=
R ₂ N N
6a to 9b :

						$K_i \pm$	SD (nM) ^a			
			[³ H]SCH23390		[³ H]spi	perone		[³ H]WAY100635	[³ H]ketanserin	[³ H]prazosin
compd	\mathbb{R}_1	R ₂ position	hD_1	hD_{2L}	hD_{2S}	hD_3	$hD_{4,4}$	p5-HT _{1A}	hS-HT _{2A}	$p\alpha_1$
quinpirole			87000 ± 6000	260 ± 38	70 ± 18	15 ± 3.7	8.5 ± 1.4	6300 ± 1100	25000 ± 920^{b}	55000 ± 6200
2a			310 ± 110	0.54 ± 0.17	0.45 ± 0.05	3.0 ± 0.61	81 ± 14	88 ± 7.1	4.0 ± 1.1	17 ± 0.70
2b			2100 ± 1200	0.47 ± 0.13	0.41 ± 0.06	0.27 ± 0.07	110 ± 10	0.49 ± 0.13	22 ± 6.0	70 ± 2.5
6a	Н	S	2900 ± 800^{b}	34 ± 12	39 ± 16	7.0 ± 1.3	130 ± 39	110 ± 5.0	390 ± 30^{b}	62 ± 8.0
6b	Н	4	1800 ± 450^{b}	25 ± 3.5	30 ± 6.5	10 ± 2.8	16 ± 0.0	83 ± 11	340 ± 70^{b}	22 ± 1.5
6c	Н	6	1200 ± 340^{b}	4.2 ± 2.2	2.1 ± 0.0	2.3 ± 0.55	4.4 ± 0.95	82 ± 1.0	260 ± 35^{b}	28 ± 7.5
6d	Н	7	580 ± 30^{b}	64 ± 9.5	16 ± 3.0	7.2 ± 2.1	16 ± 3.0	43 ± 16	77 ± 17^{b}	15 ± 0.50
6e	Н	2	1100 ± 190^{b}	9.4 ± 0.60	10 ± 0.65	3.5 ± 0.45	33 ± 2.0	17 ± 2.5	150 ± 0.0^{b}	23 ± 5.0
6f	2-COOEt	S	150 ± 10	7.4 ± 0.70	6.7 ± 2.4	2.1 ± 0.77	47 ± 18	48 ± 1.0	22 ± 0.0	43 ± 6.2
6g	$2-CH_2OH$	S	240 ± 20	3.1 ± 2.6	2.3 ± 0.79	1.3 ± 0.54	35 ± 7.4	5.7 ± 1.7	16 ± 1.0	5.1 ± 0.50
7 a	3-CHO	S	970 ± 10	4.6 ± 2.2	3.2 ± 1.1	6.9 ± 3.1	57 ± 13	95 ± 68	240 ± 12	18 ± 0.50
7b	3-CHO	4	390 ± 5.0^{b}	29 ± 7.0	24 ± 6.0	20 ± 4.5	41 ± 3.5	42 ± 1.0	95 ± 5.5^b	20 ± 2.0
7 c	3-CHO	6	570 ± 85^{b}	6.2 ± 0.85	8.1 ± 0.75	2.0 ± 0.05	18 ± 1.0	15 ± 0.0	170 ± 45^{b}	9.7 ± 3.3
7d	3-CHO	7	1600 ± 250^{b}	51 ± 11	15 ± 0.0	6.4 ± 0.20	78 ± 1.5	31 ± 17	53 ± 15^b	15 ± 1.5
7e	3-CHO	2	590 ± 70^{b}	10 ± 0.55	14 ± 1.5	5.9 ± 0.10	29 ± 6.0	29 ± 1.5	260 ± 130^{b}	11 ± 1.8
7f	2-CHO	S	180 ± 70	14 ± 8.9	14 ± 4.8	6.0 ± 2.1	89 ± 23	36 ± 1.5	56 ± 6.0	18 ± 2.0
8a	3-CHNOH (E) -s-trans	S	4300 ± 300	1.8 ± 0.25	1.7 ± 0.10	2.3 ± 0.35	5.3 ± 0.30	21 ± 6.5	7.7 ± 0.50	2.9 ± 0.30
$\mathbf{8b}$	3-CHNOH (E) -s-cis	S	670 ± 50	0.17 ± 0.05	0.25 ± 0.01	0.69 ± 0.10	6.0 ± 3.5	4.2 ± 1.5	4.0 ± 0.10	6.6 ± 2.7
8c	2-CHNOH	S	260 ± 75	3.3 ± 1.1	2.3 ± 0.21	0.86 ± 0.12	24 ± 4.7	7.1 ± 1.1	7.9 ± 0.50	8.0 ± 1.2
9a	3-CN	S	930 ± 280	0.58 ± 0.16	0.32 ± 0.04	1.5 ± 0.51	5.7 ± 1.8	98 ± 13	490 ± 40	13 ± 4.9
9b	2-CN	S	3500 ± 950	8.9 ± 3.9	6.7 ± 1.6	1.9 ± 0.22	9.3 ± 3.1	16 ± 2.5	81 ± 20	16 ± 4.0
${}^{a}K_{i}$ values in ni	$M \pm$ standard error of me	an derived fror	n at least two indiv	idual experiment	s each performed	l in triplicate. ^b D	ata obtained wit	h porcine receptors ($(pD_1, pS-HT_2).$	

Table 2. Intrinsic Activities and Potencies of Compounds 2a,b, 6a,c,f,g, 7a,c,f, 8a-c, and 9a,b Determined by $[^{35}S]GTP\gamma S$ Accumulation with Membranes from HEK 293 Cells Transiently Transfected with D_{2S} or D_3 and the PTX Resistant $G\alpha_{o1}$ or $G\alpha_{i2}$ G-Protein Subunits

				[³⁵ S]GTPγS	binding (mean :	\pm SEM) ^a			
		$D_{2S}G\alpha_{o1}$			$D_{2S}G\alpha_{i2}$			$D_3G\alpha_{o1}$	
compd	pEC ₅₀	EC_{50} (nM)	$E_{\max} (\%)^b$	pEC ₅₀	EC_{50} (nM)	$E_{\max} (\%)^b$	pEC ₅₀	EC_{50} (nM)	$E_{\max} (\%)^b$
quinpirole	6.21 ± 0.02	610	100 ± 1	5.79 ± 0.02	1600	100 ± 1	8.01 ± 0.03	9.7	100 ± 1
dopamine	6.51 ± 0.09	310	87 ± 4	6.33 ± 0.09	470	102 ± 3	8.03 ± 0.09	9.3	97 ± 4
2a	7.41 ± 0.09	39	67 ± 2	6.80 ± 0.20	160	29 ± 3	7.71 ± 0.17	20	52 ± 3
2b	8.51 ± 0.09	3.1	72 ± 2	6.95 ± 0.13	110	34 ± 2	8.24 ± 0.15	5.8	58 ± 3
6a	6.45 ± 0.09	360	48 ± 2	6.75 ± 0.23	180	22 ± 2	7.18 ± 0.15	66	78 ± 5
6c	8.00 ± 0.09	10	63 ± 2	5.89 ± 0.20	1300	39 ± 4	7.38 ± 0.26	41	41 ± 4
6f	6.13 ± 0.22	740	37 ± 4	6.36 ± 0.24	440	23 ± 3	7.25 ± 0.14	57	67 ± 4
6g	6.59 ± 0.17	260	49 ± 4	6.27 ± 0.19	540	28 ± 3	8.23 ± 0.19	5.9	57 ± 4
7a	6.73 ± 0.11	190	64 ± 3	6.19 ± 0.20	650	27 ± 3	8.72 ± 0.16	1.9	79 ± 5
7c	7.70 ± 0.12	20	64 ± 3	6.47 ± 0.17	340	35 ± 3	6.95 ± 0.21	110	55 ± 5
7 f	6.21 ± 0.13	620	25 ± 2	nd	nd	≤3	8.30 ± 0.21	5.0	32 ± 2
8a	8.14 ± 0.09	7.2	53 ± 2	6.56 ± 0.16	270	33 ± 2	7.37 ± 0.13	42	67 ± 4
8b	8.87 ± 0.06	1.3	65 ± 1	6.63 ± 0.18	240	27 ± 2	7.41 ± 0.14	39	68 ± 4
8c	6.21 ± 0.12	610	34 ± 2	nd	nd	≤3	7.82 ± 0.21	15	35 ± 3
9a	7.20 ± 0.11	64	48 ± 2	6.96 ± 0.25	110	18 ± 2	7.91 ± 0.22	12	58 ± 5
9b	5.75 ± 0.10	1800	43 ± 3	7.01 ± 0.27	98	16 ± 2	7.39 ± 0.16	41	60 ± 4

^aData represent mean \pm standard error of the mean from the pooled curve of three to eight individual experiments, each performed as triplicates. ^bE_{max} derived from the pooled curve and relative (%) to the maximal effect of quinpirole; nd, not determined.

Figure 3. Dose–response curves of the agonist-stimulated [35 S]GTP γ S binding at D_{2S} and D₃ receptors and β -arrestin-2 recruitment at the D_{2S} receptor. Membranes from HEK 293 cells transiently transfected with D_{2S} or D₃ and the PTX-insensitive G-proteins G α_{o1} or G α_{i2} (D_{2S} + G α_{o1} , red; D_{2S} + G α_{i2} , blue; D₃ + G α_{o1} , green) or HEK 293- β -arrestin-2 cells transiently transfected with D_{2S}-ARMS2-PK2 (light blue) were stimulated with dopamine, **2a**, **7a**,**c**, and **8b**,**c**, respectively. Responses were normalized to basal (0%) and the maximum effect of quipiprole (100%).

for the stereoisomeric carbaldoxime **8a** with *s*-trans geometry, the unsubstituted 6-alkoxy-azaindole **6c**, and its 3-carbaldehyde **7c** (pEC₅₀ = 8.14, 8.00, and 7.70, E_{max} = 53, 63, 64%, respectively). Interestingly, lead compound **2b** promoted G α_{o1} coupling with a high potency (pEC₅₀ = 8.51) and the highest intrinsic activity (E_{max} = 72%) of all 1,4-DAPs investigated. Simultaneously, **2b** was the most potent compound in D₂₈G α_{i2} activation (pEC₅₀ = 6.95, E_{max} = 34%).

Regarding D_3 receptor promoted nucleotide exchange, dopamine and quinpirole activated $G\alpha_{o1}$ coupling with equal potencies and similar efficacies. Compared to the $D_{2S}G\alpha_{o1}$ activation, potencies were measured to be 50-times higher.^{47,59} Interestingly, our subtle modifications of the pyrazolo[1,5*a*]pyridine regiochemistry and substitution pattern led to a diverse ligand-controlled receptor activation profile. Whereas the partial agonists **2a** and **2b** promoted a nearly balanced activation of $G\alpha_{o1}$ signaling at D_{2S} and D₃ receptors, the 5alkoxy carbaldehyde **7a** preferentially activated D₃ receptors with a pEC₅₀ of 8.72 and a maximal effect of 79% compared to pEC₅₀ of 6.73 and 64% at D_{2S}G α_{o1} , respectively. In contrast, the regioisomeric 6-alkoxy carbaldehyde **7c** preferentially activated $G\alpha_{o1}$ coupling at the D_{2S} receptor. This preference was even more pronounced for the 3-substituted carbaldoxime 8b, which promoted $G\alpha_{01}$ coupling at the D_{2S} with a 30-fold selectivity over $G\alpha_{01}$ coupling at D₃ receptors, although no significant difference in binding affinities for the two receptors was observed. Interestingly, besides the nature of the functional group, the attachment point of the functional group to the pyrazolo[1,5-a]pyridine moiety was of particular relevance for ligand efficacy. Whereas a substitution in position 3 of the aromatic heterocycle led to a significant partial agonist effect at D₂₈ and D₃ receptors, the regioisomeric functionalization in position 2 reduced ligand efficacy for D_{2S} and D₃ coupling to $G\alpha_{o1}$ and even revealed neutral antagonist properties for the 2substituted carbaldehyde 7f and the corresponding carbaldoxime 8c at D_{2S} coexpressed with $G\alpha_{i2}$. To further quantify the bias for differential activation of G-proteins elicited by the test compounds, we applied the operational model of agonism first derived by Black and Leff,⁶⁰ as it is one of the methods that allows one to account for differences in potencies and efficacies for different signaling pathways simultaneously.⁶¹⁻⁶⁵ The obtained transduction coefficient $\log(\tau/K_A)$ can be used as an overall measure for the power of an agonist and allows the comparison across different pathways after normalization to a reference agonist $[\Delta\Delta \log(\tau/K_A)]$.¹³ As expected, the calculation revealed the aldoxime 8b as the compound with the highest bias toward $G\alpha_{o1}$ -mediated signaling at the D_{2S} receptor $[\Delta\Delta\log(\tau/K_A) = 2.51 \pm 0.28]$. Moreover, this compound showed the strongest preference for D₂₅- over D₃-promoted activation of $G\alpha_{o1} \left[\Delta\Delta \log(\tau/K_A) = 3.01 \pm 0.26\right]$ (Table S4, Figure S9, Supporting Information).

Besides G-protein-mediated signaling, β -arrestin recruitment is another important aspect of 7-transmembrane (7-TM) receptor activation.9 Moreover, Masri and co-workers identified the inhibition of β -arrestin-2 recruitment at D₂ receptors, rather than antagonism of G-protein activation, as a property shared among clinically effective antipsychotics.¹⁶ Hence, receptormediated recruitment of β -arrestin-2 at the D_{2S} was investigated by utilizing the DiscoveRx PathHunter technology. For this purpose, HEK 293 cells stably expressing a chimeric protein of β -arrestin-2 and an enzyme acceptor (β -galactosidase fragment) were transiently transfected with a D_{2S} receptor that was Cterminally tagged with the ARMS2-PK2 donor sequence. Upon stimulation with the test compounds of type 1 and the reference agents, β -arrestin-2 recruitment was determined by measuring the occurring chemiluminescence. For the traditional agonist quinpirole and the endogenous ligand dopamine, full dose-response curves were obtained, whereas the antipsychotic 2a was not able to induce β -arrestin-2 recruitment. In contrast, the drug candidate 2b acted as a weak partial agonist with a maximal effect of 11% and a pEC₅₀ of 8.46 (data not shown), which is in excellent agreement with the literature.⁶⁶ The most interesting target compounds 6a,c,f,g, 7a,c,f, 8a-c, 9a,b did not show β -arrestin-2-recruitment at D_{2S}, when tested at a concentration up to 10 μ M, implying substantial bias for G-protein activation over β -arrestin-2 recruitment at D₂₈ receptors.

To prove receptor mediated antagonism, we tested the ability of the test compounds **2a,b**, **7a,f**, and **8b** to inhibit agonistinduced recruitment of β -arrestin-2 at D_{2S} receptors (Table 3, Figure S8, Supporting Information). Interestingly, all tested pyrazolo[1,5-*a*]pyridines were able to completely antagonize the agonist-induced β -arrestin-2 recruitment, displaying pIC₅₀ values that are similar to the G α_0 -promoted potency values obtained from the γ S-GTP assay. Whereas the 3-substituted

Table 3. Inhibition of 100 nM Quinpirole-Induced D_{25} -Mediated β -Arrestin-2 Recruitment in HEK 293 Cells for the Reference Compounds Haloperidol, 2a, 2b, and compounds 7a,f and 8b

	inhibition of β -arrestin-2 recruitment ^{<i>a</i>}							
compd	pIC ₅₀ ^b	IC ₅₀ (nM)	E_{\max} (%) ^{b,c}					
haloperidol	9.15 ± 0.05	0.70	0 ± 1					
2a	7.95 ± 0.07	11	≤ 2					
2b	8.78 ± 0.08	1.7	13 ± 2					
7a	6.44 ± 0.10	360	≤2					
7f	7.54 ± 0.11	22	≤ 1					
8b	8.42 ± 0.07	3.8	≤ 2					

^{*a*}Inhibition of β -arrestin-2 recruitment was measured with the PathHunter assay in HEK 293 cells transiently transfected with D₂₅-ARMS2-PK2 construct coincubated with 100 nM quinpirole and the test compounds. ^{*b*}Data represent mean ± SEM from the pooled curve of three to eight individual experiments, each performed as duplicates. ^{*c*}E_{max} is relative to the maximal effect of 100 nM quinpirole (100%) and the maximal inhibition thereof caused by haloperidol (0%).

aldoxime **8b** was the most potent full inhibitor of β -arrestin-2 recruitment with a pIC₅₀ of 8.42, the closely related 3-substituted aldehyde 7a and its regioisomer 7f showed pIC₅₀ values of 6.44 and 7.54, respectively, corroborating that these atypical dopaminergics show substantial bias between G-protein activation and β -arrestin recruitment. Haloperidol was used as a reference antagonist (pIC₅₀ = 9.15). Whereas **2a** also behaved as an antagonist, **2b** could not completely attenuate β -arrestin-2 recruitment.

To delineate the physicochemical properties of our compounds, we calculated the lipophilicity (clogP, Table S3, Supporting Information) of the representative pyrazolopyridines 7a, 8b, and 9a, which does not significantly differ from the properties found for the CNS active phenylpiperazines 2a and 2b. Moreover, preliminary in vivo studies of the representative compound 7a showed significant influence on auditory startle response, indicating CNS activity at a concentration of 3 mg/kg, and thus, the ability to cross the blood-brain barrier (Figure S7, Supporting Information). These data are in agreement with our recently published in vivo activity of an analogous pyrazolo[1,5-a]pyridine-carboxamide in a MPTP mouse model of Parkinson's disease.⁶⁷

Structure-Affinity/Activity Relationships. The application of 2,3-dichlorophenylpiperazines as atypical dopaminergic pharmacophores leads to a high affinity for D₂-like receptors for any of the investigated compounds. However, the affinity profile is highly influenced by the heterocyclic headgroup. Whereas most of the pyrazolo [1,5-a] pyridines show a small preference for the D_3 over the D_{2L} receptor (1.5–8.9-fold), the enlargement of the delocalized π -electron system by introduction of a formyl-, an oxime-, or a cyano-substituent in position 3 of the heterocycle leads to a preference for D_2 over D₃ receptors for compounds 7a, 8a,b, and 9a. In contrast, high 5-HT_{1A} affinity is observed for the introduction of an Hbond-donating substituent in position 2 of the pyrazolo[1,5a pyridine moiety (6g and 8c). In any case, introduction of an aldoxime-substituent to the five-membered aromatic ring goes along with an increase in 5-HT_{2A} and α_1 affinity. The investigated compounds behaved as partial agonists for Gprotein activation at D_{2S} and D₃ receptors and as antagonists for the recruitment of β -arrestin-2 at D₂₈ receptors. The intrinsic efficacy for the promotion of G-protein coupling is

Figure 4. Ligand–receptor interactions for the test compounds 7a and 8b bound to D_3 (dark gray ribbons) and D_2 (light gray ribbons), respectively. Amino acids that are expected to stabilize the test compounds have been visualized by dark gray and light gray sticks (* refers to the conserved residue Asp^{3,32}). Compound 7a within the D_3 receptor is shown by blue sticks (a), whereas compound 8b within the D_2 receptor is shown by green sticks (b). The inset depicts an alignment indicating conformational differences between the ligands bound to the respective receptor subtype.

related to the substituent of the aromatic heterocycle. Thus, substituents in position 2 lead to a low intrinsic efficacy. H-bond-donating substituents in position 3 such as a carbaldoxime moiety increase the extent of partial agonism observed.

Ligand-Receptor Interactions. To investigate the binding mode of the remarkable test compounds 7a and 8b at D₃ and D₂, respectively, molecular-dynamics-refined docking studies were performed using the crystal structure of the D_3 receptor⁶⁸ and a recently established homology model of D₂.¹ Therefore, the test compounds 7a and 8b were docked into both receptors (Figure S3, Supporting Information). On the basis of a subsequent molecular dynamics (MD) refinement, we selected an energetically favored conformation of 7a in D₃ and 8b in D₂ (Figure S4, Supporting Information) and submitted these complexes to simulation runs of 200 and 100 ns for 7a- D_3 and $8b-D_2$, respectively, carried out in a pre-equilibrated and hydrated bilayer environment, to allow the test compounds to adapt to their binding sites. We finally performed a cluster analysis on these trajectories and selected representative snapshots of the most highly populated clusters for each ligand-receptor complex (Figure S5, Supporting Information).

Overall, the test compounds 7a and 8b occupy virtually identical binding pockets in D₃ and D₂ receptors, respectively, thereby forming interactions to homologous residues of transmembrane helices (TMs) 1-7 and extracellular loops (ELs) 1 and 2 [(Figures 4 and S6 (Supporting Information)]. However, the particular conformations of the test compounds within their binding pockets differ significantly. One of these differences is related to the position of the phenylpiperazine moieties of the test compounds, as the phenylpiperazine part of 7a is buried around 2 Å deeper in the orthosteric binding site of D_3 than is the case for the analogue **8b** in the D_2 receptor (Figure 4, inset). In addition, compound 8b showed a flipped conformation of its dichlorophenyl group compared to 7a. Similar binding modes of closely related 1,4-DAPs have been previously reported.^{13,69,70} In its main conformation, the carbonyl unit of the carbaldehyde 7a preferentially points toward EL2 of the D₃ receptor (Figure S5, Supporting Information), where it is stabilized by a hydrogen bond to

Ser182 of EL2 [Figures 4a and S5 (Supporting Information)]. As the homologous residue in D_2 is a more lipophilic isoleucine (Ile183), the polar carbaldoxime moiety of 8b is oriented in the opposite direction, thereby strengthening the interaction of Glu^{2.65} and Ser^{7.36} via hydrogen bonding (Figure 4b). We have observed that the lipophilic appendages of 7a and 8b fit into and modify an extended binding site, which was identified earlier to be associated not only with subtype selectivity between D_2 and $D_3^{26,71}$ but also with receptor activation and functionally selective signaling.⁷² The predicted binding mode for 7a and 8b is in agreement with results from mutational studies employing V2.61F mutants of D_{2L} and D₃ receptors.²⁶ As expected, replacement of the diagnostic residue valine in position 2.61 by a sterically more demanding phenylalanine led to a decrease in receptor affinity (Table S2, Supporting Information) by a factor of 610 and 1230 for 7a and 46 and 33 for 8b at D_{2L} and D₃ receptors, respectively. This observation indicates an adoption of an extended binding pocket, which has been described as a general property of 1,4-DAPs.^{26,71} Although the binding modes for the $7a-D_3$ and $8b-D_2$ complexes are similar, some conformations of interacting residues differ significantly between the two subtypes investigated. It is conceivable that subtle modifications at the heterocyclic appendage have a considerable influence on ligand potency and efficacy for different receptor subtypes and signaling pathways, as these would most likely alter the capacity of the compounds to stabilize distinct active-state conformations of the receptors. As the individual transducer protein may alter the ensemble of relevant receptor conformations, comparative studies are required that employ active-state receptors coupled to $G\alpha_{ij}$, $G\alpha_{oj}$, or β -arrestin in order to fully sample the range of conformations stabilized by biased ligands.

CONCLUSIONS

Bioisosteric replacement of the dihydroquinolinone unit of our lead compound **2a** led to a group of atypical dopaminergics comprising a pyrazolo[1,5-*a*]pyridine moiety. To learn more about the structural determinants of D_2/D_3 subtype selectivity on a functional level, ligand efficacy, and individual ligand

controlled activity patterns, we measured ligand binding and $[^{35}S]GTP\gamma S$ incorporation at D_{2S} receptors in coexpression with PTX-resistant variants of $G\alpha_{01}$ or $G\alpha_{12}$ and D_3 receptors coexpressed with $G\alpha_{o1}$. The investigated 1,4-DAPs showed substantial bias for the promotion of $G\alpha_{01}$ over $G\alpha_{12}$ coupling at D_{2S} receptors. Because $G\alpha_0$ protein triggers neurite outgrowth in several different neuronal cell lines, $^{18-21}$ we suggest that partial agonists that favor the D2-promoted activation of $G\alpha_0$ over $G\alpha_i$ may have beneficial effects on synaptic plasticity and thereby might improve negative symptoms of schizophrenia, as was described for the lead compound ariprazole previously.^{73–75} Functionally selective D₂₅ receptor activation was most striking for the 5-substituted azaindole-3-carbaldoxime 8b, showing a difference in potency of 2 orders of magnitude and a substantial bias of ligand efficacy. Interestingly, our modifications of the pyrazolo [1,5a]pyridine regiochemistry and substitution led to a diverse ligand controlled receptor activation profile. Whereas the antipsychotic 2a showed a nearly balanced signaling for $G\alpha_{o1}$ activation at D_{2S} and D₃ receptors, the 5-alkoxy-carbaldehyde 7a preferentially activated D₃ receptors. In contrast, the closely related carbaldoximes 8a,b and the regioisomeric 6-alkoxy carbaldehyde 7c preferentially activated $G\alpha_{o1}$ coupling at the D_{2S} receptor. Computational studies underlined our findings that subtle modifications of the heteroaromatic pyrazolo[1,5a]pyridine are capable of strongly influencing ligand efficacy and functional selectivity at D₂₈ and D₃ receptors. In contrast to their partial agonist activity for G-protein activation, the investigated if 1,4-DAPs behaved as neutral antagonists for β arrestin-2 recruitment, a property that was associated with clinically effective antipsychotics. However, a possible in vivo effect of the investigated 1,4-DAPs will also be influenced by the response to other receptors, as the compounds have a promiscuous receptor affinity profile, including low nanomolar affinity to serotonergic 5-HT_{1A} and 5-HT_{2A} and α_1 receptors.

EXPERIMENTAL SECTION

Chemistry. Reagents and dry solvents were of commercial grade and used as purchased. Except for 1,3-dipolar cycloadditions and ester/ether hydrolysis, all reactions were carried out under nitrogen atmosphere. MS was run on a Bruker Esquire 2000 by APC or ES ionization. HR-EIMS was run on a JEOL JMS-GC mate II with a solid inlet and EI (70 eV) using peak-matching ($M/\Delta M$ > 5000). NMR spectra were obtained on a Bruker Avance 360 or a Bruker Avance 600 spectrometer at ambient temperature. All ¹H and ¹³C chemical shifts are reported in ppm (δ) relative to TMS in the solvents indicated (*J* in hertz). Melting points were determined with a MEL-TEMP II apparatus (Laboratory Devices) in open capillaries and are given uncorrected. IR spectra were performed on a JASCO FT/IR 410 or a JASCO FT/IR 4100 spectrometer. Purification by column chromatography was performed using silica gel 60. TLC analyses were performed using Merck 60 F254 aluminum sheets and analyzed with UV light (254 nm). Analytical HPLC was performed on Agilent 1100 HPLC systems employing a VWL detector or on Agilent 1200 HPLC systems using a DAD detector. As column, a ZORBAX ECLIPSE XDB-C8 (4.6 mm \times 150 mm, 5 μ m) was used. HPLC purity was measured using the following binary solvent system: 10% CH₃OH in 0.1% aqueous formic acid for 3 min, from 10% to 100% CH₃OH in 15 min, and 100% CH₃OH for 6 min (flow rate 0.5 mL/min, λ = 254 nm). The purity of all test compounds and key intermediates was determined to be >95%. C, H, N elementary analyses were performed at the Chair of Organic Chemistry, Friedrich Alexander University Erlangen-Nuremberg.

5-(4-Bromobutoxy)pyrazolo[1,5-*a*]**pyridine (5a).** To a suspension of 4a (1.19 g, 8.88 mmol) and K_2CO_3 (1.23 g, 8.89 mmol) in DMF (44.1 mL) was added 1,4-dibromobutane (3.18 mL, 26.7 mmol) dropwise. After stirring at 60 °C for 8 h, H₂O was added and the

aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄ and evaporated. The crude product was purified by flash chromatography (hexane/EtOAc 2:3) to yield **5a** as an orange oil (1.69 g, 71%). IR (NaCl): 3097, 2945, 2874, 1648, 1537, 1290, 1227, 1040, 746 cm⁻¹. ¹H NMR (CDCl₃, 360 MHz): δ 1.95–2.02 (m, 2 H), 2.04–2.12 (m, 2 H), 3.50 (t, *J* = 6.5 Hz, 2 H), 4.02 (t, *J* = 6.5 Hz, 2 H), 6.30–6.31 (m, 1 H), 6.43 (dd, *J* = 7.8, 2.6 Hz, 1 H), 6.72 (d, *J* = 2.6 Hz, 1 H), 7.85 (d, *J* = 2.1 Hz, 1 H), 8.28 (d, *J* = 7.8 Hz, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 27.6, 29.4, 33.2, 67.2, 95.4, 95.5, 106.6, 129.4, 141.0, 142.8, 155.5. HPLC: $t_{\rm R}$ = 22.5 min, purity 96%. APCI-MS: *m*/*z* 268 [M⁺ – 1], 270 [M⁺ + 1]. Anal. Calcd (%) for C₁₁H₁₃N₂OBr: C 49.09, H 4.87, N 10.41. Found: C 48.94, H 4.78, N 10.23.

6-(4-Bromobutoxy)pyrazolo[**1**,5-*a*]**pyridine** (**5**c). Compound **5**c was prepared according to the protocol of **5**a using a suspension of **4**c (110 mg, 0.82 mmol) and anhydrous K₂CO₃ (120 mg, 0.87 mmol) in DMF (4.1 mL) and 1,4-dibromobutane (0.29 mL, 2.46 mmol). The crude compound was purified by flash chromatography (hexane/EtOAc 1:1) to yield **5**c as off-white solid (153 mg, 70%). Mp: 55 °C. IR: 3105, 2943, 2873, 1642, 1525, 1291, 1239, 1199, 1025, 756 cm⁻¹. ¹H NMR (CDCl₃, 360 MHz): δ 1.96–2.01 (m, 2 H), 2.07–2.11 (m, 2 H), 3.50 (t, *J* = 6.6 Hz, 2 H), 3.99 (t, *J* = 5.9 Hz, 2 H), 6.45 (d, *J* = 2.1 Hz, 1 H), 6.91 (dd, *J* = 9.5, 2.2 Hz, 1 H), 7.41 (d, *J* = 9.5 Hz, 1 H), 7.84 (d, *J* = 2.2 Hz, 1 H), 8.05–8.06 (m, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 27.8, 29.4, 33.3, 68.0, 96.8, 111.8, 117.9, 119.0, 136.5, 140.8, 148.2.6. HPLC: $t_{\rm R}$ = 22.8 min, purity 100%. HR-EIMS: calcd 268.0211; found 268.0213. Anal. Calcd (%) for C₁₁H₁₃N₂OBr: C 49.09, H 4.87, N 10.41. Found: C 49.26, H 4.84, N 10.44.

Ethyl 5-(4-Bromobutoxy)pyrazolo[1,5-*a*]**pyridine-2-carboxylate (5f).** Compound 5f was prepared according to the protocol of 5a using a suspension of 4f (1.36 g, 6.58 mmol) and K₂CO₃ (910 mg, 6.58 mmol) in DMF (34.0 mL) and 1,4-dibromobutane (2.36 mL, 19.8 mmol). The crude compound was purified by flash chromatography (hexane/EtOAc 3:1) to yield 5f as rose solid (1.41 g, 63%). Mp: 102 °C. IR (NaCl): 3123, 3079, 2988, 2958, 1717, 1644, 1538, 1469, 1403, 1392, 1245, 1200, 1105, 858 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 1.44 (t, *J* = 7.2 Hz, 3 H), 1.97–2.03 (m, 2 H), 2.06–2.11 (m, 2 H), 3.50 (t, *J* = 6.5 Hz, 2 H), 4.03 (t, *J* = 5.9 Hz, 2 H), 4.46 (q, *J* = 7.1 Hz, 2 H), 6.57 (dd, *J* = 7.6 Hz, 1 H), 6.75 (d, *J* = 2.5 Hz, 1 H), 6.87 (s, 1 H), 8.34 (d, *J* = 7.6 Hz, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 14.4, 27.5, 29.3, 33.0, 61.3, 67.4, 95.9, 98.7, 109.4, 129.7, 141.8, 145.9, 162.8. HPLC: t_R = 20.7 min, purity 97%. HR-EIMS: calcd 340.0423; found 340.0422.

5-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo-[1,5-*a*]pyridine (6a). A solution of 5a (456 mg, 1.69 mmol) and NaI (381 mg, 2.54 mmol) in acetonitrile (7.6 mL) was refluxed for 30 min. After cooling down, a solution of 1-(2,3-dichlorophenyl)piperazine (430 mg, 1.86 mmol) in triethylamine (0.26 mL, 1.86 mmol) was added and the resulting suspension was stirred at 85 $^\circ\text{C}$ for another 5 h. Then saturated NaHCO3 solution was added and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over Na2SO4 and evaporated. The residue was purified by flash chromatography (CH₂Cl₂ + 2% MeOH) to yield 6a as an off-white solid (545 mg, 75%). Mp: 105 °C. IR (NaCl): 2944, 2817, 1647, 1578, 1290, 1227, 1190, 1044, 774 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 1.69–1.77 (m, 2 H), 1.84–1.92 (m, 2 H), 2.50 (t, J = 7.2 Hz, 2 H), 2.65–2.67 (m, 4 H), 3.06–3.09 (m, 4 H), 4.02 (t, J = 6.5 Hz, 2 H), 6.29-6.30 (m, 1 H), 6.44 (dd, J = 7.6, 2.6 Hz, 1 H), 6.73 (d, J = 2.6 Hz, 1 H), 6.95 (dd, J = 6.7, 2.9 Hz, 1 H), 7.13-7.15 (m, 2 H), 7.85 (d, J = 2.1 Hz, 1 H), 8.28 (d, J = 7.6 Hz, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 23.4, 27.0, 51.4, 53.3, 58.1, 68.0, 95.3, 95.4, 106.7, 118.6, 124.6, 127.4, 127.5, 129.3, 134.0, 141.1, 142.7, 151.3, 155.7. HPLC: t_R = 17.1 min, purity 95%. APCI-MS: m/z 419 [M⁺], 421 [M⁺ + 2]. Anal. Calcd (%) for C₂₁H₂₄N₄OCl₂: C 60.15, H 5.77, N 13.36. Found: C 59.79, H 5.81, N 13.14.

6-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo-[1,5-*a***]pyridine (6c).** Compound **6c** was prepared according to the protocol of **6a** using a solution of **5c** (40.0 mg, 0.15 mmol) and NaI (33.5 mg, 0.22 mmol) in acetonitrile (0.9 mL) as well as a solution of 1-(2,3-dichlorophenyl)piperazine (37.8 mg, 0.16 mmol) in triethylamine (0.05 mL). After purification by flash chromatography (CH₂Cl₂ + 2% MeOH) **6c** was obtained as an off-white solid (43.0 mg, 69%). Mp: 97 °C. IR (NaCl): 3106, 2944, 2811, 1647, 1578, 1291, 1240, 1199, 1043, 781 cm⁻¹. ¹H NMR (CDCl₃, 360 MHz): δ 1.72–1.81 (m, 2 H), 1.85–1.93 (m, 2 H), 2.54 (t, *J* = 7.6 Hz, 2 H), 2.68–2.73 (m, 4 H), 3.10–3.12 (m, 4 H), 4.00 (t, *J* = 6.3 Hz, 2 H), 6.44–6.45 (m, 1 H), 6.92 (dd, *J* = 9.6, 2.2 Hz, 1 H), 6.96 (dd, *J* = 6.9, 2.6 Hz, 1 H), 7.14–7.16 (m, 2 H), 7.41 (d, *J* = 9.6 Hz, 1 H), 7.84 (d, *J* = 2.2 Hz, 1 H), 8.07–8.08 (m, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 23.2, 27.1, 51.1, 53.3, 58.1, 68.7, 96.7, 111.8, 117.8, 118.7, 119.1, 124.7, 127.5, 127.6, 134.1, 136.4, 140.8, 148.3, 151.2. HPLC: *t*_R = 19.0 min, purity 99%. APCI-MS: *m/z* 419 [M⁺], 421 [M⁺ + 2]. Anal. Calcd (%) for C₂₁H₂₄N₄OCl₂·0.6H₂O: C 58.64, H 5.91, N 13.03. Found: C 58.86, H 5.81, N 12.78.

Ethyl 5-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo[1,5-a]pyridine-2-carboxylate (6f). Compound 6f was prepared according to the protocol of 6a using a solution of 5f (504 mg, 1.48 mmol) and NaI (332 mg, 2.21 mmol) in acetonitrile (12.0 mL) as well as a solution of 1-(2,3-dichlorophenyl)piperazine (375 mg, 1.62 mmol) and triethylamine (0.23 mL, 1.66 mmol) in acetonitrile (6.0 mL). The crude compound was purified by flash chromatography (CH₂Cl₂ + 1% MeOH) to afford 6f as white solid (297 mg, 41%). Mp: 144 °C. IR (NaCl): 3062, 2945, 2878, 2818, 1725, 1649, 1577, 1540, 1495, 1448, 1240, 1221, 1139, 963 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 1.44 (t, J = 7.1 Hz, 3 H), 1.71–1.78 (m, 2 H), 1.86–1.89 (m, 2 H), 2.50 (t, J = 7.6 Hz, 2 H), 2.63–2.71 (m, 4 H), 3.05-3.13 (m, 4 H), 4.04 (t, J = 6.3 Hz, 2 H), 4.47 (q, J = 7.1 Hz, 2 H), 6.57 (dd, J = 7.6, 2.6 Hz, 1 H), 6.76 (d, J = 2.4 Hz, 1 H), 6.85 (d, *J* = 0.8 Hz, 1 H), 6.95 (dd, *J* = 7.3, 2.4 Hz, 1 H), 7.13 (t, *J* = 7.7 Hz, 1 H), 7.16 (dd, J = 7.6, 2.0 Hz, 1 H), 8.34 (ddd, J = 7.3, 0.6, 0.6 Hz, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 14.4, 23.4, 26.9, 51.3, 53.3, 58.0, 61.3, 68.2, 95.9, 98.6, 109.5, 118.6, 124.6, 127.4, 127.5, 129.6, 134.0, 141.9, 145.9, 151.3, 156.0, 162.9. HPLC: t_R = 17.0 min, purity 98%. HR-EIMS: calcd 490.1539; found 490.1535.

(5-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo[1,5-a]pyridin-2-yl)methanol (6g). To an ice-cooled solution of 6f (56.2 mg, 0.12 mmol) in Et₂O (10.0 mL) was added a 4 M solution of LiAlH₄ in Et₂O (29 μ L, 0.12 mmol). After stirring at 0 °C for 1 h the cooling was removed and the solution was stirred at room temperature for 2 h. Then saturated NaHCO₃ solution (30 mL) was added, the organic layer was separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were dried over MgSO4 and concentrated. The residue was purified by flash chromatography (CH2Cl2 + 1% MeOH) to afford 6g as a rose solid (43.8 mg, 85%). Mp: 116 °C. IR (NaCl): 3298, 2926, 2823, 1646, 1577, 1541, 1228, 1421, 1241, 1203, 1044 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 1.72–1.80 (m, 2 H), 1.86–1.92 (m, 2 H), 1,92–2.06 (bs, 1H, OH) 2.53 (t, J = 6.7 Hz, 2 H), 2.65–2.75 (m, 4 H), 3.07–3.14 (m, 4 H), 4.02 (t, J = 6.3 Hz, 2 H), 4.85 (s, 2 H), 6.28 (s, 1 H), 6.43 (dd, J = 7.6 Hz, 2.7 Hz, 1 H), 6.67 (d, J = 2.5 Hz, 1 H), 6.96 (dd, J = 7.4, 2.1 Hz, 1 H), 7.14–7.21 (m, 2 H), 8.21 (ddd, J = 7.6, 0.5, 0.5 Hz, 1 H); signal for free OH not detected. ¹³C NMR (CDCl₃, 600 MHz): δ 23.3, 26.9, 51.3, 53.3, 58.1, 59.4, 68.0, 93.6, 95, 106.7, 118.6, 124.6, 127.4, 127.5, 129.2, 134.1, 142.2, 151.3, 155.7, 155.9. HPLC: $t_{\rm R} = 15.9$ min, purity 95%. HR-EIMS: calcd 448.1433; found 448.1434.

5-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo-[1,5-*a*]pyridine-3-carbaldehyde (7a). To a solution of 6a (360 mg, 0.86 mmol) in DMF (2.75 mL) was added POCl₃ (0.25 mL, 2.66 mmol). After stirring at room temperature for 1 h, the mixture was diluted with H₂O under ice cooling and alkalized by addition of 5 M NaOH. After extraction with CHCl₃, the combined organic layers were dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography (CH₂Cl₂ + 2% MeOH) to yield 7a as off-white solid (361 mg, 94%). Mp: 107 °C. IR (NaCl): 2946, 2818, 1663, 1633, 1577, 1527, 1275, 1241, 1194, 1044, 774 cm^{-1.} ¹H NMR (CDCl₃, 600 MHz): δ 1.70–1.78 (m, 2 H), 1.88–1.96 (m, 2 H), 2.51 (t, *J* = 7.6 Hz, 2 H), 2.64–2.68 (m, 4 H), 3.07–3.09 (m, 4 H), 4.16 (t, *J* = 6.5 Hz, 2 H), 6.71 (dd, *J* = 7.6, 2.6 Hz, 1 H), 6.96 (dd, *J* = 6.5, 3.0 Hz, 1 H), 7.14–7.15 (m, 2 H), 7.58 (d, *J* = 2.6 Hz, 1 H), 8.26 (s, 1 H), 9.95 (s, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 23.3, 26.9, 51.4, 53.3, 58.0, 68.9, 97.7, 109.6, 113.2, 118.6, 124.6, 127.4, 127.5, 130.1, 134.0, 141.6, 147.5, 151.3, 160.6, 183.2. HPLC: $t_{\rm R}$ = 17.1 min, purity 98%. APCI-MS: m/z 446 [M⁺ - 1], 448 [M⁺ + 1]. Anal. Calcd (%) for C₂₂H₂₄N₄O₂Cl₂·0.3H₂O: C 58.36, H 5.48, N 12.37. Found: C 58.34, H 5.43, N 12.27.

6-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo-[1,5-a]pyridine-3-carbaldehyde (7c). Compound 7c was prepared according to the protocol of 7a using a solution of 6c (60.0 mg, 0.14 mmol) in DMF (0.46 mL) as well as POCl₃ (0.04 mL, 0.44 mmol). The crude compound was purified by flash chromatography (CH₂Cl₂ + 2% MeOH) to give 7c as off-white solid (40.0 mg, 63%). Mp: 99 $^{\circ}$ C. IR (NaCl): 3096, 2946, 2818, 1663, 1578, 1519, 1278, 1242, 1185, 1044, 780 cm⁻¹. ¹H NMR (CDCl₃, 360 MHz): δ 1.71–1.79 (m, 2 H), 1.88-1.95 (m, 2 H), 2.51 (t, J = 7.6 Hz, 2 H), 2.64-2.70 (m, 4 H), 3.06–3.11 (m, 4 H), 4.05 (t, J = 6.4 Hz, 2 H), 6.96 (dd, J = 6.6, 3.0 Hz, 1 H), 7.14–7.15 (m, 2 H), 7.30 (dd, J = 9.7, 2.2 Hz, 1 H), 8.16–8.18 (m, 2 H), 8.29 (s, 1 H), 9.98 (s 1 H). 13 C NMR (CDCl₃, 360 MHz): δ 23.3, 27.0, 51.4, 53.4, 58.0, 69.1, 112.8, 113.9, 118.7, 119.1, 123.7, 124.6, 127.5, 127.6, 134.1, 135.5, 146.2, 150.6, 151.3, 183.1. HPLC: t_R = 17.0 min, purity 95%. APCI-MS: m/z 447 [M⁺], 449 [M⁺ + 2]. Anal. Calcd (%) for C₂₂H₂₄N₄O₂Cl₂: C 59.07, H 5.41, N 12.52. Found: C 58.68 H 5.43, N 12.16.

5-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo-[1,5-a]pyridine-2-carbaldehyde (7f). To a solution of 6g (56.8 mg, 0.126 mmol) in CH₂Cl₂ (5.0 mL) was added MnO₂ (110 mg, 1.26 mmol). After stirring at room temperature for 14 h, the remaining MnO₂ was removed by filtration over Celite and the solvent was evaporated to yield 7f as white solid (55.9 mg, 99%). Mp: 121 °C. IR (NaCl): 3093, 2946, 2876, 2816, 2359, 2248, 1699, 1648, 1577, 1540, 1493, 1447, 1421, 1257, 1207, 1138, 1044, 1016 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 1.71–1.80 (m, 2 H), 1.87–1.94 (m, 2 H), 2.52 (t, J = 7.3 Hz, 2 H), 2.64–2.72 (m, 4 H), 3.04–3.13 (m, 4 H), 4.05 (t, *J* = 6.4 Hz, 2 H), 6.64 (dd, *J* = 7.6, 2.6 Hz, 1 H), 6.79 (d, *J* = 2.6 Hz, 1 H), 6.82 (d, J = 0.8 Hz, 1 H), 6.96 (dd, J = 7.4, 2.3 Hz, 1 H), 7.13-7.18 (m, 2 H), 8.31 (ddd, J = 7.6, 0.8, 0.8 Hz, 1 H), 10.16 (s, 1 H). ¹³C NMR (CDCl₃, 360 MHz): δ 23.4, 26.9, 51.4, 53.3, 58.0, 68.3, 95.5, 96.3, 110.3, 118.6, 124.6, 127.4, 127.5, 129.6, 134.1, 142.3, 151.3, 152.5, 156.2, 187.7. HPLC: $t_{\rm R}$ = 16.6 min, purity 97%. HR-EIMS: calcd 446.1276; found 446.1276.

(E)-5-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo[1,5-a]pyridine-3-carbaldehyde Oxime (8a,b). A solution of hydroxylamine hydrochloride (18.0 mg, 0.26 mmol) in water (0.74 mL) and 2 M NaOH (0.07 mL, 0.14 mmol) was adjusted to pH 5.0 by the addition of 2 M HCl and cooled to 0 °C. Subsequently, a solution of 7a (57.8 mg, 0.13 mmol) in ethanol (6.45 mL) was added and the mixture was refluxed for 2 h. After cooling, saturated NaHCO₃ solution was added and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over Na₂SO₄ and evaporated. Purification of the residue by flash chromatography (CH2Cl2/MeOH 2%) yielded the isomers 8a (strans, 25.0 mg, 42%) and 8b (s-cis, 23.5 mg, 39%) as white solids. Isomer 8a: Mp: 189 °C. IR (KBr): 3446, 3078, 2956, 2831, 1647, 1578, 1535, 1267, 1244, 1038, 789 cm⁻¹. ¹H NMR (DMSO-d₆, 360 MHz): δ 1.60–1.68 (m, 2 H), 1.79–1.86 (m, 2 H), 2.44 (t, J = 7.6 Hz, 2 H), 2.52–2.60 (m, 4 H), 2.97–3.00 (m, 4 H), 4.09 (t, J = 6.4 Hz, 2 H), 6.68 (dd, J = 7.6, 2.6 Hz, 1 H), 7.11 (dd, J = 6.5, 3.0 Hz, 1 H), 7.26–7.30 (m, 3 H), 8.08 (s, 1 H), 8.29 (s, 1 H), 8.58 (d, J = 7.6 Hz, 1 H), 10.63 (s, 1 H). ¹³C NMR (DMSO- d_{6} , 360 MHz): δ 23.2, 26.9, 51.5, 53.3, 57.8, 68.6, 97.0, 104.4, 108.0, 120.1, 124.9, 126.6, 129.0, 130.9, 133.2, 138.6, 142.5, 143.1, 151.6, 157.5. HPLC: $t_{\rm R} = 16.8 \text{ min}$, purity 99%. APCI-MS: *m*/*z* 462 [M⁺], 464 [M⁺ + 2]. Anal. Calcd (%) for C22H25N5O2Cl20.4H2O: C 56.27, H 5.54, N 14.91. Found: C 56.48, H 5.47, N 14.69. Isomer 8b: Mp: 165 °C. IR (NaCl): 3425, 2846, 1684, 1649, 1542, 1204, 1051, 764 cm⁻¹. ¹H NMR (DMSO-d₆, 360 MHz): δ 1.60–1.68 (m, 2 H), 1.79–1.86 (m, 2 H), 2.43 (t, J = 7.6 Hz, 2 H), 2.52–2.58 (m, 4 H), 2.97–3.00 (m, 4 H), 4.14 (t, J = 6.3 Hz, 2 H), 6.68 (dd, J = 7.6, 2.6 Hz, 1 H), 7.11 (dd, J = 6.5, 3.0 Hz, 1 H), 7.27–7.30 (m, 2 H), 7.45 (d, J = 2.6 Hz, 1 H), 7.75 (s, 1 H), 8.56–8.59 (m, 2 H), 11.06 (s, 1 H). ¹³C NMR (DMSO- d_{6} , 360 MHz): δ 23.2, 26.8, 51.5, 53.3, 57.7, 68.8, 95.6, 103.1, 108.0, 120.0, 124.8,

126.5, 128.9, 130.6, 133.1, 137.0, 140.5, 145.6, 151.7, 157.4. HR-EIMS: calcd 461.1385; found 461.1385. HPLC: $t_{\rm R}$ = 18.1 min, purity 99%. Anal. Calcd (%) for C₂₂H₂₅N₅O₂Cl₂·0.5H₂O: C 56.06, H 5.56, N 14.86. Found: C 55.91, H 5.40, N 14.73.

5-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo-[1,5-a]pyridine-2-carbaldehyde Oxime (8c). Compound 8c was prepared according to the protocol of 8a/b, using a solution of 7f (55.9 mg, 0.13 mmol) in ethanol (6.4 mL) as well as hydroxylamine hydrochloride (17.4 mg, 0.25 mmol) in $\rm H_2O$ (0.74 mL) and 2 M NaOH (0.07 mL, 0.14 mmol). Purification by flash chromatography (CH₂Cl₂ + 2% MeOH) yielded 8c as a white solid mixture of two isomers (47.9 mg, 82%, 3:1 ratio). Mp: 126 °C. IR (NaCl): 3855, 2950, 2819, 1647, 1577, 1448, 1242, 1205, 1138, 961 cm⁻¹. ¹H NMR (DMSO-d₆, 600 MHz): δ isomer 1 (75%) 1.59-1.66 (m, 2 H), 1.76-1.83 (m, 2 H), 2.41 (t, J = 7.2 Hz, 2 H), 2.52-2.59 (m, 4 H), 2.94-3.03 (m, 4 H), 4.06 (t, J = 5.9 Hz, 2 H), 6.56 (s, 1 H), 6.57 (dd, J = 7.9, 3.0 Hz, 1 H), 7.01 (d, J = 2.3 Hz, 1 H), 7.12 (dd, J = 6.5, 3.1 Hz, 1 H), 7.28–7.32 (m, 2 H), 8.13 (s, 1 H), 8.48 (ddd, J = 7.4, 0.3, 0.3 Hz, 1 H), 11.42 (s, 1 H); isomer 2 (25%) 1.59-1.66 (m, 2 H), 1.76-1.83 (m, 2 H), 2.41 (t, I = 7.2 Hz, 2 H), 2.52–2.59 (m, 4 H), 2.94–3.03 (m, 4 H), 4.06 (t, J = 5.9 Hz, 2 H), 6.64 (dd, J = 7.6, 2.6 Hz, 1 H), 7.06 (d, J = 0.8 Hz, 1 H), 7.08 (d, J = 2.3 Hz, 1 H), 7.12 (dd, J = 6.5, 3.1)Hz, 1 H), 7.28-7.32 (m, 2 H), 7.57 (s, 1 H), 8.52 (ddd, J= 7.3, 0.3, 0.3 Hz, 1 H), 11.74 (s, 1 H). ¹³C NMR (DMSO- d_{6} , 600 MHz): δ isomer 1 (75%) 22.6, 26.2, 51.0, 52.8, 57.2, 67.9, 92.2, 95.6, 107.2, 119.5, 124.3, 126.0, 128.4, 129.4, 132.6, 141.7, 142.6, 148.6, 151.2, 155.5; isomer 2 (25%) 22.6, 26.2, 51.0, 52.8, 57.2, 67.9, 96.1, 99.2, 108.2, 119.5, 124.3, 126.0, 128.4, 129.6, 132.6, 139.6, 141.3, 144.9, 151.2, 155.1. HPLC: t_R = 16.3 min, purity 97%. HR-EIMS: calcd 461.1385; found 461.1386.

5-{4-[4-(2,3-Dichlorophenvl)piperazin-1-vl]butoxv}pvrazolo-[1,5-a]pyridine-3-carbonitrile (9a). A solution of 8a,b (126 mg, 0.27 mmol) in acetic anhydride (1.35 mL) was refluxed for 8 h. Then, ice-cold water was added, and after extraction with CHCl₃, the combined organic layers were dried over Na2SO4. Purification by flash chromatography (CH2Cl2 + 2% MeOH) yielded 9a as an off-white solid (86.4 mg, 72%). Mp: 118 °C. IR (NaCl): 3065, 2948, 2817, 2219, 1648, 1578, 1542, 1243, 1064, 781 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 1.73–1.78 (m, 2 H), 1.90–1.95 (m, 2 H), 2.53 (t, J = 7.6 Hz, 2 H), 2.67–2.72 (m, 4 H), 3.07–3.12 (m, 4 H), 4.11 (t, J = 6.4 Hz, 2 H), 6.66 (d, J = 7.6 Hz, 1 H), 6.94 (d, J = 2.6 Hz, 1 H), 7.13-7.17 (m, 2 H), 8.11 (s, 1 H), 8.35 (d, J = 7.6, 1 H). ¹³C NMR (CDCl₃, 600 MHz): δ 23.2, 26.8, 51.3, 53.3, 58.0, 68.9, 80.9, 95.0, 109.3, 114.5, 118.6, 124.7, 127.4, 127.5, 130.5, 134.0, 144.4, 145.6, 151.2, 159.2. HPLC: $t_{\rm R}$ = 18.8 min, purity 100%. APCI-MS: m/z 444 [M⁺], 446 $[M^+ + 2].$

5-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butoxy}pyrazolo-[1,5-a]pyridine-2-carbonitrile (9b). Cyanuric chloride (25.1 mg, 0.136 mmol) was dissolved in DMF (0.54 mL) under ice cooling. After 5 min at 0 °C the mixture was warmed to room temperature and stirred for 45 min. The formed suspension was subsequently added dropwise to a solution of 8c (63.1 mg, 0.136 mmol) in DMF (2.0 mL). After stirring at room temperature for 7 h, saturated NaHCO₃ solution was added and the aqueous layer was extracted with CHCl₃. The combined organic layers were dried over MgSO4 and concentrated. The residue was purified by flash chromatography ($CH_2Cl_2 + 0.5\%$ MeOH) to give 9b as white solid (39.3 mg, 65%). Mp: 128 °C. IR (NaCl): 3090, 2942, 2874, 2813, 2236, 1649, 1577, 1448, 1428, 1378, 1239, 1209, 1134 cm⁻¹. ¹H NMR (CDCl₃, 600 MHz): δ 1.70–1.77 (m, 2 H), 1.87-1.94 (m, 2 H), 2.51 (t, J = 7.6 Hz, 2 H), 2.62-2.70(m, 4 H), 3.04–3.13 (m, 4 H), 4.04 (t, J = 6.3 Hz, 2 H), 6.66 (dd, J = 7.6, 2.6 Hz, 1 H), 6.71 (d, J = 0.8 Hz, 1 H), 6.76 (d, J = 2.6 Hz, 1 H), 6.95 (dd, J = 7.3, 2.2 Hz, 1 H), 7.13–7.17 (m, 2 H), 8.29 (ddd, J = 7.6, 0.4, 0.4 Hz, 1 H). $^{13}\mathrm{C}$ NMR (CDCl_3, 360 MHz): δ 23.4, 26.8, 51.3, 53.3, 58.0, 68.4, 95.6, 101.2, 110.3, 114.3, 118.5, 124.6, 127.3, 127.4, 127.5, 129.4, 134.1, 141.5, 151.2, 156.7. HPLC: $t_{\rm R} = 17.0$ min, purity 96%. HR-EIMS: calcd 443.1280; found 443.1280.

Receptor Binding Studies. Receptor binding studies were carried out as described previously.⁷⁶ Briefly, for competition binding experiments with the human D_{2L} , D_{25} ,⁷⁷ D_3 ,⁷⁸ and D_{44} ,⁷⁹ receptors, preparations of membranes from CHO cells stably expressing the

corresponding receptor were used together with [³H]spiperone (specific activity of 81 Ci/mmol, Perkin-Elmer, Rodgau, Germany) at a final concentration of 0.10-0.30 nM. The assays were carried out at a protein concentration of 2–12 μ g/assay tube, with observed K_D values of 30-85, 85-180, 30-95, and 130-290 pM and corresponding B_{max} values of 500-1600, 2200-6500, 2600-4800, and 580–2600 fmol/mg protein for the $D_{2L},\ D_{2S},\ D_{3},$ and $D_{4.4}$ receptors, respectively. Competition binding experiments with the human D_1^{80} and 5-HT_{2A}^{81,82} receptors were performed in an analogous manner with membranes from HEK 293 cells transiently transfected with these target receptors at a protein concentration of 3 and 4–6 μ g/well, together with [³H]SCH23990 (specific activity 60 Ci/mmol, Biotrend, Cologne, Germany) (final concentration 0.40-0.50 nM, $K_D = 0.32 - 0.48$ nM, $B_{max} = 3000$ fmol/mg) or [³H]ketanserin (specific activity of 53 Ci/mmol, PerkinElmer, Rodgau, Germany) (final concentration 0.20–0.50 nM, $K_D = 0.19-0.40$ nM, $B_{\rm max} = 1000 - 2500$ fmol/mg), respectively. Binding studies with the porcine dopamine D₁, serotonin, and adrenergic receptors were carried out as described previously.⁷⁶ Homogenates from porcine striatum (D_1) or cerebral cortex were prepared, and assays were run with membranes at a protein concentration per each assay tube of 40, 80, 80, and 20-60 μ g/mL for pD₁, p5-HT_{1A}, p5-HT₂, and p α_1 , respectively, in the presence of the radioligands [³H]SCH23390 (0.30 nM final concentration, $K_D = 0.47 - 0.67$ nM, $B_{max} = 24 - 500$ fmol/mg), [³H]WAY100635 (specific activity of 80 Ci/mmol, Biotrend, Cologne, Germany) (0.30 nM final concentration, $K_{\rm D}$ = 30–60 pM, B_{max} = 40–90 fmol/mg), [³H] ketanserin (0.50 nM final concentration, $K_D = 1.1-2.2$ nM, $B_{max} = 120-520$ fmol/mg), and [³H]prazosin (specific activity of 83 Ci/mmol, PerkinElmer, Rodgau, Germany) (0.10–0.20 nM final concentration, $K_D = 40-87$ pM, B_{max} = 80-340 fmol/mg), respectively. Competition binding experiments with V2.61F mutants of human D_{2L} and D_3 receptors were carried out as described previously²⁶ in the presence of [³H]spiperone (0.30 and 0.50 nM final concentration, protein concentration 10 and 50 μ g/mL, $K_{\rm D}$ = 0.25 and 0.37 nM, $B_{\rm max}$ = 3400 and 1360 fmol/mg for hD_{2L}V2.61F and hD₃V2.61F, respectively). Protein concentration was determined by the method of Lowry using bovine serum albumin as standard.⁸³

Membrane Preparations of Transiently Transfected HEK 293 **Cells.** Membrane preparations were obtained using the methods described previously.⁸⁴ Briefly, HEK 293 cells were grown to a confluence of 70% and transiently transfected with the receptor of interest and a PTX-insensitive $\mathrm{G}\alpha$ subunit using the Mirus TransIT-293 transfection reagent (purchased from MoBiTec, Goettingen, Germany) (for $D_{2S} + G\alpha_{i2}$ and $D_3 + G\alpha_{o1}$) or by CaHPO₄ precipitation method (for $D_{2S} + G\alpha_{o1}$); 48 h after transfection, cells were washed with ice-cold phosphate-buffered saline (PBS, pH 7.4) and detached by rinsing with harvest buffer (10 mM Tris-HCl, 0.5 mM EDTA, 5.4 mM KCl, 140 mM NaCl, pH 7.4). After centrifugation (8 min, 220g) the pellet was resuspended in 10 mL of ice cold homogenate buffer (50 mM Tris-HCl, 5 mM EDTA, 1.5 mM CaCl₂ 5 mM MgCl₂, 5 mM KCl, 120 mM NaCl, pH 7.4), and subsequently, cells were lysed with an Ultraturrax. After ultracentrifugation at 50 000g the membranes were resuspended in binding buffer (50 mM Tris-HCl, 1 mM EDTA, 5 mM MgCl₂, 100 μ g/mL bacitracin, 5 μ g/ mL soybean trypsin inhibitor, pH 7.4) and homogenized with a glass-Teflon homogenizer at 4 °C. Membrane preparations were shockfrozen in liquid nitrogen and stored at -80 °C until usage. The protein concentration was determined with the method of Lowry⁸³ applying bovine serum albumin as standard.

[³⁵S]GTPγS Incorporation Assay. The [³⁵S]GTPγS binding assay was performed on membrane preparations of transiently transfected HEK 293 cells expressing the corresponding dopamine receptor and a PTX-insensitive Gα G-protein subunit ($D_{2S} + G\alpha_{o1}$, $D_{2S} + G\alpha_{i2}$, $D_3 + G\alpha_{o1}$). The receptor expression level was determined in saturation experiments with [³H]spiperone (1490 ± 190, 4840 ± 510, and 1150 ± 140 fmol/mg protein, respectively). For control experiments, cells were treated with PTX (Calbiochem, 2.5 µL per culture dish) for 18 h prior to membrane preparation to inactivate endogenous G-proteins. The assay was carried out in 96-well plates with a final volume of 200

Journal of Medicinal Chemistry

 μ L. In each well, 10 μ M GDP, the compounds (from 0.1 pM to 10 μ M final concentration, for quinpirole up to 1 mM), and the membranes (30 μ g/mL final protein concentration) were incubated for 30 min at 37 °C in incubation buffer containing 20 mM HEPES, 10 mM MgCl₂· 6H₂O, 100 mM NMDG, and 70 mg/L saponin.^{85–87} After the addition of 0.1 nM [³⁵S]GTP γ S (specific activity 1250 Ci/mmol, PerkinElmer, Rodgau, Germany), incubation was continued for another 75 min at 37 °C (30 min for D_{2S} + G α_{o1}). The equilibration was terminated by filtration through Whatman GF/B filters soaked with ice-cold PBS. Bound radioactivity was measured as described previously.⁸⁴ Four to six experiments per compound were performed with each concentration in triplicate.

 β -Arrestin-2 Recruitment Assay. The measurement of receptor stimulated β -arrestin-2 recruitment was performed using the Path-Hunter assay (DiscoveRx, Birmingham, U.K.) according to the manufacturer's protocol. In brief, HEK-293 cells stably expressing the enzyme acceptor (EA) tagged β -arrestin-2 fusion protein were grown to a confluence of approximately 70% and transiently transfected with the ProLink tagged D25-ARMS2PK2 construct by applying TransIT-293 Mirus transfection reagent (MoBiTec, Goettingen, Germany). Twenty-four hours after transfection, cells were detached from the culture dish with Versene (Life Technologies GmbH, Darmstadt, Germany), seeded into 384-well plates (5000 cells/well), and maintained for 24 h at 37 °C. After incubation with the test compounds dissolved in PBS (10 μ M or for dose-response curves 1 pM up to 10 μ M final concentration) for 6 h at 37 °C the detection mix was added and incubation was continued for a further 60 min at room temperature. Chemiluminescence was determined using the Victor³-V plate reader (Perkin-Elmer, Rodgau, Germany). For the inhibition experiments, cells were treated in an analogous manner and incubated with the test compounds dissolved in PBS (1 pM to 100 μ M final concentration) together with quinpirole (100 nM final concentration). Three to eight experiments per compound were performed, with each concentration at least in duplicate.

Data Analysis. The resulting competition curves of the receptor binding experiments were analyzed by nonlinear regression using the algorithms in PRISM 5.0 (GraphPad software, San Diego, CA). The data were initially fit using a sigmoid model to provide an IC₅₀ value representing the concentration corresponding to 50% of maximal inhibition. IC_{50} values were transformed to K_i values according to the equation of Cheng and Prusoff.⁸⁸ Dose-response curves of $[^{35}S]GTP\gamma S$ binding were analyzed by nonlinear regression using the algorithms in PRISM 6.0 (GraphPad software, San Diego, CA), fitted with a sigmoid model and normalized to basal binding of radioactivity (0%) and the maximal effect caused by the reference full agonist quinpirole (100%). For each dose-response curve, a pEC_{50} value representing the concentration corresponding to 50% of maximal radioactive binding (E_{max}) was calculated. Dose-response curves of β arrestin-2 recruitment were analyzed in the same way as $[^{35}S]GTP\gamma S$ binding curves, normalizing to basal luminescence (0%) and the maximal luminescence caused by quinpirole (100%). Dose-response curves of the inhibition of β -arrestin-2 recruitment were analyzed in an analogous manner and normalized to the maximal effect of 100 nM quinpirole (100%) and the maximal inhibition caused by 10 μ M haloperidol (0%). The operational model of agonism⁶⁰ was used to quantify ligand bias as described previously.¹³ In brief, dose-response curves for the agonists were fitted to the following equations by applying the algorithms of PRISM 6.0

$$Y = \text{basal} + \frac{E_{\text{m}} - \text{basal}}{1 + 10^{(\log \text{EC}_{50} - \log[\text{X}])}}$$

with basal being the response of a the system in the absence of an agonist, $E_{\rm m}$ the maximal response, EC₅₀ the concentration necessary to obtain a half-maximal effect, and [X] the concentration of the agonist. Transduction coefficients ($\tau/K_{\rm A}$) were used to quantify the ligand bias along different signaling pathways and obtained in their logarithmic form from

$$Y = \text{basal} + \frac{(E_{\text{m}} - \text{basal})\left(\frac{\tau}{K_{\text{A}}}\right)^{n} [X]^{n}}{\left(\frac{\tau}{K_{\text{A}}}\right)^{n} [X]^{n} + \left(1 + \frac{[X]}{K_{\text{A}}}\right)^{n}}$$

where K_A is the equilibrium dissociation constant of the compound (X), τ the transducer constant, and *n* the transducer slope. As Hill slopes were close to unity, this parameter was fixed to 1.0 throughout the analysis. Transduction coefficients where then normalized to the response of the endogenous agonist dopamine to account for cell-system-dependent factors between different assay systems.

$$\Delta \log \left(\frac{\tau}{K_{\rm A}}\right) = \log \left(\frac{\tau}{K_{\rm A}}\right)_{\rm partial agonist} - \log \left(\frac{\tau}{K_{\rm A}}\right)_{\rm dopamine}$$

Final quantification was performed by comparison of $\Delta\Delta\log(\tau/K_A)$ between different signaling pathways for D_{2S} receptors or between D_{2S} and D₃ receptors for signaling via $G\alpha_{o1}$.

Experimental Procedures for in Vivo Studies in Mice. Assessment of the startle response for compound 7a was performed by PsychoGenics Inc., Tarrytown, NY. All animals were handled in accordance to the guidelines defined by the institutional Animal Care and Use Committee. Adult, male C57Bl/6J mice were housed in groups of four on a 12 h light/dark cycle (light on at 7:00) with food and water ad libitum. Whole-body startles were measured in a soundproofed chamber. Compound 7a was dissolved in 1% Lutrol, 0.5% carboxymethylcellulose in 50 mM citrate buffer and administered ip 15 min before the measurement (3 mg/kg). After a period of habituation (5 min) to white noise background (70 dB), the startle pulse (120 dB, 40 ms) was delivered to measure the animal's startle response.

Molecular Docking. The investigated test compounds 7a and 8b were geometry-optimized by means of Gaussian 09^{89} at the HF/6-31(d,p) level (attributing a formal charge of +1). We docked these compounds into a recently published D₂ model¹⁷ (compound 8b) and the crystal structure of the D₃ receptor⁶⁸ (compound 7a) using AutoDock Vina⁹⁰ as previously described.¹⁷ On the basis of the scoring function of AutoDock Vina and experimental data, we selected one conformation of compound 8b in D₂ and four conformations of compound 7a in D₃ (Figure S3, Supporting Information). Each ligand–receptor complex was submitted to an energy minimization procedure as described.¹⁷

Docking Refinement. To select one conformation of compound 7a in D_3 for subsequent membrane simulations, we performed molecular dynamics simulation runs of 30 ns in a water box at 310 K on each of the four minimized 7a-D₃ complexes using Amber10.⁹¹ The all-atom force field ff99SB92 and the general Amber force field $(GAFF)^{93}$ were used for D₃ and compound 7a, respectively. Parameters for the test compound were assigned using antechamber and charges were calculated using Gaussian 09 at the HF/6-31(d,p) level and the RESP procedure according to the literature.⁹⁴ A formal charge of +1 was defined for compound 7a. The simulation steps were carried out in an octahedral TIP3P⁹⁵ water box with constant-pressure periodic boundary conditions. The SHAKE⁹⁶ algorithm was used to constrain bonds involving hydrogen atoms, thereby enabling an integration step size of 2 fs. The particle mesh Ewald (PME) method⁹⁷ was used to treat long-range electrostatics. The minimized complexes were gradually heated to 310 K over a simulation time of 500 ps by coupling to a temperature bath 98 and further equilibrated for 4.5 ns. During this procedure, initial restraints of 5.0 kcal mol⁻¹ Å⁻² were applied on the main chain atoms of the receptors, which were reduced to 0.5 kcal mol⁻¹ $Å^{-2}$ in a stepwise manner and maintained for the 30 ns simulation runs. Data were collected every picosecond and analyzed by means of the PTRAJ module of Amber10. Calculation of the binding free energies was accomplished using MMPBSA.py, employing intervals of 1 ns between the snapshots. On the basis of these calculations, we selected one $7a-D_3$ complex for subsequent membrane simulations (Figure S4, Supporting Information). The final complex was submitted to an energy minimization procedure as described.¹⁷ Additionally, an identical MD-procedure was performed for the docked 8b-D₂ complex.

Journal of Medicinal Chemistry

Membrane Simulations. The Amber parameter topology and coordinate files for the MD-refined and minimized complexes (7a in D_3 and **8b** in D_2) were converted into GROMACS input files.^{100,101} Each ligand-receptor complex was inserted into a pre-equilibrated system bearing a hydrated membrane of dioleoylphosphatidylcholine (DOPC) lipids by means of the GROMACS tool g_membed.¹⁰² The membrane was built up according to a procedure successfully applied earlier¹⁰³ and equilibrated for 10 ns. The charges of the simulation systems were neutralized by adding 8 and 10 chlorine atoms to the $7a-D_3$ and the $8b-D_2$ complexes, respectively. In total, the $7a-D_3$ system consisted of 101 177 atoms (273 amino acids, 243 DOPC lipids, 21 090 water molecules), and the 8b-D₂ system of 100 967 atoms (267 amino acids, 241 DOPC lipids, 21 090 water molecules). For the membrane simulations, GAFF was used for the ligands and the DOPC molecules and the force field ff99SB for the protein residues. The SPC/E water model¹⁰⁴ was applied. After insertion into the membrane, the simulation systems were submitted to a short simulation run of 10 ns each, with restraints of 1.0 kcal mol⁻¹ Å⁻² applied on the main chain atoms of D2 and D3, and subsequent production molecular dynamics simulation runs of 200 and 100 ns for the $7a-D_3$ and $8b-D_2$ complexes, respectively, using the GROMACS 4.5.2 simulation package as described earlier.¹⁰³ The analysis of the trajectories was performed with the PTRAJ module of Amber10, and figures were prepared using PyMOL.105

ASSOCIATED CONTENT

S Supporting Information

Experimental data, NMR spectra, sequence alignments of DRD2 and DRD3, results of functional assays, calculations, and in vivo data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: +49 9131 85-29383. Fax: + 49 9131 85-22585. E-mail: peter.gmeiner@fau.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The German Science Foundation (DFG) is acknowledged for financial support (GRK 1910). We thank Dr. Stefan Schuster and Dr. Nuska Tschammer for helpful discussions. We thank Prof. Graeme Milligan (University of Glasgow, U.K.) for providing us with the cDNA for $G\alpha_{o1}$ and $G\alpha_{i2}$ proteins, and we thank Dr. Nuska Tschammer and Tamara Schellhorn for the construction of the ARMS2-PK2-tagged D_{2S} receptor cDNA.

ABBREVIATIONS USED

aripiprazole, 7-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butoxy]-3,4-dihydroquinolin-2(1H)-one; D_x , dopamine D_x receptor; GTP_γS, guanosine 5'-O-(thiotriphosphate); spiperone, 8-[4-(4-fluorophenyl)-4-oxobutyl]-1-phenyl-1,3,8triazaspiro[4.5]decan-4-one; CHO, chinese hamster ovary; CNS, central nervous system; SEM, standard error of the mean; ketanserin, 3-[2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl]quinazoline-2,4(1H,3H)-dione; prazosin, 2-[4-(2-furoyl)piperazin-1-yl]-6,7-dimethoxyquinazolin-4-amine; PTX, pertussis toxin; quinpirole, (4aR-trans)-4,4a,5,6,7,8,8a,9-octahydro-5propyl-1H-pyrazolo[3,4-g]quinoline; APCI, atmospheric pressure chemical ionization; ESI, electrospray ionization; haloperidol, 4-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-1-(4fluorophenyl)butan-1-one; HEK, human embryonic kindney; bifeprunox, 7-[4-(biphenyl-3-ylmethyl)piperazin-1-yl]-1,3-benzoxazol-2(3H)-one; EPS, extrapyramidal side effects; 1,4-DAP, 1,4-disubstituted-aromatic piperazine; EL, extracellular loop; TM, transmembrane helix.

REFERENCES

(1) Freedman, R. Schizophrenia. New Engl. J. Med. 2003, 349, 1738–1749.

(2) Mailman, R. B.; Murthy, V. Third Generation Antipsychotic Drugs: Partial Agonism or Receptor Functional Selectivity? *Curr. Pharm. Des.* **2010**, *16*, 488–501.

(3) DeLeon, A.; Patel, N. C.; Crismon, M. L. Aripiprazole: A Comprehensive Review of Its Pharmacology, Clinical Efficacy, and Tolerability. *Clin. Ther.* **2004**, *26*, 649–666.

(4) Tadori, Y.; Kitagawa, H.; Forbes, R. A.; McQuade, R. D.; Stark, A.; Kikuchi, T. Differences in Agonist/Antagonist Properties at Human Dopamine D(2) Receptors between Aripiprazole, Bifeprunox and Sdz 208–912. *Eur. J. Pharmacol.* **2007**, *574*, 103–111.

(5) Tadori, Y.; Forbes, R. A.; McQuade, R. D.; Kikuchi, T. Characterization of Aripiprazole Partial Agonist Activity at Human Dopamine D3 Receptors. *Eur. J. Pharmacol.* **2008**, *597*, 27–33.

(6) Tadori, Y.; Miwa, T.; Tottori, K.; Burris, K. D.; Stark, A.; Mori, T.; Kikuchi, T. Aripiprazole's Low Intrinsic Activities at Human Dopamine D2L and D2S Receptors Render It a Unique Antipsychotic. *Eur. J. Pharmacol.* **2005**, *515*, 10–19.

(7) Kiss, B.; Horvath, A.; Nemethy, Z.; Schmidt, E.; Laszlovszky, I.; Bugovics, G.; Fazekas, K.; Hornok, K.; Orosz, S.; Gyertyan, I.; Agai-Csongor, E.; Domany, G.; Tihanyi, K.; Adham, N.; Szombathelyi, Z. Cariprazine (Rgh-188), a Dopamine D(3) Receptor-Preferring, D(3)/ D(2) Dopamine Receptor Antagonist-Partial Agonist Antipsychotic Candidate: In Vitro and Neurochemical Profile. *J. Pharmacol. Exp. Ther.* **2010**, 333, 328–340.

(8) Urban, J. D.; Clarke, W. P.; von Zastrow, M.; Nichols, D. E.; Kobilka, B.; Weinstein, H.; Javitch, J. A.; Roth, B. L.; Christopoulos, A.; Sexton, P. M.; Miller, K. J.; Spedding, M.; Mailman, R. B. Functional Selectivity and Classical Concepts of Quantitative Pharmacology. *J. Pharmacol. Exp. Ther.* **2007**, *320*, 1–13.

(9) Rajagopal, K.; Lefkowitz, R. J.; Rockman, H. A. When 7 Transmembrane Receptors Are Not G Protein-Coupled Receptors. *J. Clin. Invest.* **2005**, *115*, 2971–2974.

(10) Neve, K. A. Functional Selectivity of G Protein-Coupled Receptor Ligands—New Opportunities for Drug Discovery, 1st ed.; Humana Press: Totowa, NJ, 2009; pp 25–40.

(11) Lefkowitz, R. J.; Shenoy, S. K. Transduction of Receptor Signals by Beta-Arrestins. *Science* **2005**, 308, 512–517.

(12) Wei, H.; Ahn, S.; Shenoy, S. K.; Karnik, S. S.; Hunyady, L.; Luttrell, L. M.; Lefkowitz, R. J. Independent Beta-Arrestin 2 and G Protein-Mediated Pathways for Angiotensin II Activation of Extracellular Signal-Regulated Kinases 1 and 2. *Proc. Natl. Acad. Sci.* U. S. A. 2003, 100, 10782–10787.

(13) Shonberg, J.; Herenbrink, C. K.; Lopez, L.; Christopoulos, A.; Scammells, P. J.; Capuano, B.; Lane, J. R. A Structure–Activity Analysis of Biased Agonism at the Dopamine D2 Receptor. *J. Med. Chem.* **2013**, *56*, 9199–9221.

(14) Allen, J. A.; Yost, J. M.; Setola, V.; Chen, X.; Sassano, M. F.; Chen, M.; Peterson, S.; Yadav, P. N.; Huang, X. P.; Feng, B.; Jensen, N. H.; Che, X.; Bai, X.; Frye, S. V.; Wetsel, W. C.; Caron, M. G.; Javitch, J. A.; Roth, B. L.; Jin, J. Discovery of Beta-Arrestin-Biased Dopamine D2 Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 18488–18493.

(15) Urban, J. D.; Vargas, G. A.; von Zastrow, M.; Mailman, R. B. Aripiprazole Has Functionally Selective Actions at Dopamine D2 Receptor-Mediated Signaling Pathways. *Neuropsychopharmacology* **2007**, *32*, 67–77.

(16) Masri, B.; Salahpour, A.; Didriksen, M.; Ghisi, V.; Beaulieu, J. M.; Gainetdinov, R. R.; Caron, M. G. Antagonism of Dopamine D2 Receptor/Beta-Arrestin 2 Interaction Is a Common Property of Clinically Effective Antipsychotics. *Proc. Natl. Acad. Sci. U. S. A.* **2008**, *105*, 13656–13661.

(17) Hiller, C.; Kling, R. C.; Heinemann, F. W.; Meyer, K.; Hubner, H.; Gmeiner, P. Functionally Selective Dopamine D2/D3 Receptor Agonists Comprising an Enyne Moiety. *J. Med. Chem.* **2013**, *56*, 5130–5141.

(18) Bromberg, K. D.; Iyengar, R.; Cijiang He, J. Regulation of Neurite Outgrowth by $G_{i/o}$ Signaling Pathways. *Front. Biosci.* 2008, 13, 4544–4557.

(19) Strittmatter, S. M.; Fishman, M. C.; Zhu, X. P. Activated Mutants of the Alpha Subunit of G(O) Promote an Increased Number of Neurites Per Cell. *J. Neurosci.* **1994**, *14*, 2327–2338.

(20) Hwangpo, T. A.; Jordan, J. D.; Premsrirut, P. K.; Jayamaran, G.; Licht, J. D.; Iyengar, R.; Neves, S. R. G Protein-Regulated Inducer of Neurite Outgrowth (GRIN) Modulates Sprouty Protein Repression of Mitogen-Activated Protein Kinase (MAPK) Activation by Growth Factor Stimulation. J. Biol. Chem. **2012**, 287, 13674–13685.

(21) Nakata, H.; Kozasa, T. Functional Characterization of $G\alpha$ o Signaling through G Protein-Regulated Inducer of Neurite Outgrowth 1. *Mol. Pharmacol.* **2005**, *67*, 695–702.

(22) Zimnisky, R.; Chang, G.; Gyertyan, I.; Kiss, B.; Adham, N.; Schmauss, C. Cariprazine, a Dopamine D(3)-Receptor-Preferring Partial Agonist, Blocks Phencyclidine-Induced Impairments of Working Memory, Attention Set-Shifting, and Recognition Memory in the Mouse. *Psychopharmacology* **2013**, *226*, 91–100.

(23) Chen, X.; Sassano, M. F.; Zheng, L.; Setola, V.; Chen, M.; Bai, X.; Frye, S. V.; Wetsel, W. C.; Roth, B. L.; Jin, J. Structure-Functional Selectivity Relationship Studies of Beta-Arrestin-Biased Dopamine D(2) Receptor Agonists. J. Med. Chem. **2012**, *55*, 7141–7153.

(24) Bettinetti, L.; Schlotter, K.; Hubner, H.; Gmeiner, P. Interactive SAR Studies: Rational Discovery of Super-Potent and Highly Selective Dopamine D3 Receptor Antagonists and Partial Agonists. *J. Med. Chem.* **2002**, *45*, 4594–4597.

(25) Löber, S.; Hübner, H.; Utz, W.; Gmeiner, P. Rationally Based Efficacy Tuining of Selective Dopamine D4 Receptor Ligands Leading to the Complete Antagonist 2-[4-(4-Chlorophenyl)piperazin-1-ylmethyl]pyrazolo[1,5-*a*]pyridine (FAUC213). *J. Med. Chem.* **2001**, *44*, 2691–2694.

(26) Ehrlich, K.; Gotz, A.; Bollinger, S.; Tschammer, N.; Bettinetti, L.; Harterich, S.; Hubner, H.; Lanig, H.; Gmeiner, P. Dopamine D2, D3, and D4 Selective Phenylpiperazines as Molecular Probes To Explore the Origins of Subtype Specific Receptor Binding. *J. Med. Chem.* **2009**, *52*, 4923–4935.

(27) Gmeiner, P.; Sommer, J.; Mierau, J.; Hofner, G. Dopamine Autoreceptor Agonists—Computational Studies, Synthesis and Biological Investigations. *Biorg. Med. Chem. Lett.* **1993**, *3*, 1477–1483.

(28) Lober, S.; Aboul-Fadl, T.; Hubner, H.; Gmeiner, P. Di- and Trisubstituted Pyrazolo[1,5-*a*]pyridine Derivatives: Synthesis, Dopamine Receptor Binding and Ligand Efficacy. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 633–636.

(29) Gmeiner, P.; Huebner, H.; Skultety, M. Preparation of Indolizines and Aza-Analog Derivatives Thereof as CNS Active Compounds. WO 2008113559A2, 2008.

(30) Huisgen, R.; Grashey, R.; Krischke, R. 1.3-Additionen Mit Pyridin-Imin, Chinolin-Imin, Isochinolin-Imin Und Phenanthridin-Imin. *Tetrahedron Lett.* **1962**, *3*, 387–391.

(31) Kendall, J. D. Synthesis and Reactions of Pyrazolo[1,5-*a*]pyridines and Related Heterocycles. *Curr. Org. Chem.* 2011, 15, 2481–2518.

(32) Loaiza, P. R.; Lober, S.; Hubner, H.; Gmeiner, P. Click Chemistry on Solid Phase: Parallel Synthesis of *N*-Benzyltriazole Carboxamides as Super-Potent G-Protein Coupled Receptor Ligands. *J. Comb. Chem.* **2006**, *8*, 252–261.

(33) Lober, S.; Hubner, H.; Tschammer, N.; Gmeiner, P. Recent Advances in the Search for D3- and D4-Selective Drugs: Probes, Models and Candidates. *Trends Pharmacol. Sci.* **2011**, *32*, 148–157.

(34) Oshiro, Y.; Sato, S.; Kurahashi, N.; Tanaka, T.; Kikuchi, T.; Tottori, K.; Uwahodo, Y.; Nishi, T. Novel Antipsychotic Agents with Dopamine Autoreceptor Agonist Properties: Synthesis and Pharmacology of 7-[4-(4-Phenyl-1-piperazinyl)butoxy]-3,4-dihydro-2(1*H*)quinolinone Derivatives. *J. Med. Chem.* **1998**, *41*, 658–667. (35) Johnson, D. S.; Choi, C.; Fay, L. K.; Favor, D. A.; Repine, J. T.; White, A. D.; Akunne, H. C.; Fitzgerald, L.; Nicholls, K.; Snyder, B. J.; Whetzel, S. Z.; Zhang, L.; Serpa, K. A. Discovery of PF-00217830: Aryl Piperazine Napthyridinones as D2 Partial Agonists for Schizophrenia and Bipolar Disorder. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 2621–2625.

(36) Vangveravong, S.; Zhang, Z.; Taylor, M.; Bearden, M.; Xu, J.; Cui, J.; Wang, W.; Luedtke, R. R.; Mach, R. H. Synthesis and Characterization of Selective Dopamine D(2) Receptor Ligands Using Aripiprazole as the Lead Compound. *Bioorg. Med. Chem.* **2011**, *19*, 3502–3511.

(37) Ochi, H.; Miyasaka, T.; Kanada, K.; Arakawa, K. Studies of Heterocyclic Compounds. VIII. Synthesis and Tautomerism of 2-Hydroxypyrazolo[1,5-*a*]pyridine. *Bull. Chem. Soc. Jpn.* **1976**, *49*, 1980–1984.

(38) Elsner, J.; Boeckler, F.; Davidson, K.; Sugden, D.; Gmeiner, P. Bicyclic Melatonin Receptor Agonists Containing a Ring-Junction Nitrogen: Synthesis, Biological Evaluation, and Molecular Modeling of the Putative Bioactive Conformation. *Bioorg. Med. Chem.* **2006**, *14*, 1949–1958.

(39) Brown, R. F. C.; Eastwood, F. W.; Fallon, G. D.; Lee, S. C.; Mcgeary, R. P. The Pyrolytic Rearrangement of 1-Alkynoyl-3-methylpyrazoles—Synthesis of Pyrazolo[1,5-*a*]pyridin-5-ols and Related-Compounds. *Aust. J. Chem.* **1994**, *47*, 991–1007.

(40) Elsner, J.; Boeckler, F.; Heinemann, F. W.; Hubner, H.; Gmeiner, P. Pharmacophore-Guided Drug Discovery Investigations Leading to Bioactive 5-Aminotetrahydropyrazolopyridines. Implications for the Binding Mode of Heterocyclic Dopamine D3 Receptor Agonists. J. Med. Chem. 2005, 48, 5771–5779.

(41) Boeckler, F.; Ohnmacht, U.; Lehmann, T.; Utz, W.; Hübner, H.; Gmeiner, P. CoMFA and CoMSIA Investigations Revealing Novel Insights into the Binding Modes of Dopamine D3 Receptor Agonists. *J. Med. Chem.* **2005**, *48*, 2493–2508.

(42) Tanji, K.; Sasahara, T.; Suzuki, J.; Higashino, T. Pyrazolopyridines. 1. Formylation and Acylation of Pyrazolo[1,5-*a*]pyridines. *Heterocycles* **1993**, 35, 915–924.

(43) Moffett, R. B.; Hanze, A. R.; Seay, P. H. Central Nervous System Depressants. V. Polyhydroxy and Methoxyphenyl Ketones, Carbinols, and Derivatives. *J. Med. Chem.* **1964**, *7*, 178–186.

(44) De Luca, L.; Giacomelli, G.; Porcheddu, A. Beckmann Rearrangement of Oximes under Very Mild Conditions. *J. Org. Chem.* **2002**, *67*, 6272–6274.

(45) Dulcere, J. P. Vilsmeier Reagent for a High-Yield Conversion of Aldoximes to Nitriles. *Tetrahedron Lett.* **1981**, *22*, 1599–1600.

(46) Sternweis, P. C.; Robishaw, J. D. Isolation of Two Proteins with High Affinity for Guanine Nucleotides from Membranes of Bovine Brain. *J. Biol. Chem.* **1984**, *259*, 13806–13813.

(47) Lane, J. R.; Powney, B.; Wise, A.; Rees, S.; Milligan, G. G Protein Coupling and Ligand Selectivity of the D2l and D3 Dopamine Receptors. *J. Pharmacol. Exp. Ther.* **2008**, *325*, 319–330.

(48) Cordeaux, Y.; Nickolls, S. A.; Flood, L. A.; Graber, S. G.; Strange, P. G. Agonist Regulation of D2 Dopamine Receptor/G Protein Interaction: Evidence for Agonist Selection of G Protein Subtype. J. Biol. Chem. 2001, 276, 28667–28675.

(49) Gazi, L.; Nickolls, S. A.; Strange, P. G. Functional Coupling of the Human Dopamine D2 Receptor with $G_{\alpha_{u'}}$, $G_{\alpha_{\alpha'}}$, $G_{\alpha_{\alpha'}}$, and G_{α_o} G Proteins: Evidence for Agonist Regulation of G Protein Selectivity. *Br. J. Pharmacol.* **2003**, *138*, 775–786.

(50) Ahlgren-Beckendorf, J. A.; Levant, B. Signaling Mechanisms of the D3 Dopamine Receptor. *J. Recept. Signal Transduction* **2004**, *24*, 117–130.

(51) Jiang, M.; Spicher, K.; Boulay, G.; Wang, Y.; Birnbaumer, L. Most Central Nervous System D2 Dopamine Receptors Are Coupled to Their Effectors by Go. *Proc. Natl. Acad. Sci. U.S.A.* **2001**, *98*, 3577–3582.

(52) Garey, L. J.; Ong, W. Y.; Patel, T. S.; Kanani, M.; Davis, A.; Mortimer, A. M.; Barnes, T. R.; Hirsch, S. R. Reduced Dendritic Spine Density on Cerebral Cortical Pyramidal Neurons in Schizophrenia. *J. Neurol. Neurosurg. Psychiatry* **1998**, *65*, 446–453. (53) Glantz, L. A.; Lewis, D. A. Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia. *Arch. Gen. Psychiatry* **2000**, *57*, 65–73.

(54) Hill, J. J.; Hashimoto, T.; Lewis, D. A. Molecular Mechanisms Contributing to Dendritic Spine Alterations in the Prefrontal Cortex of Subjects with Schizophrenia. *Mol. Psychiatry* **2006**, *11*, 557–566.

(55) Pauwels, P. J.; Tardif, S.; Wurch, T.; Colpaert, F. C. Facilitation of Constitutive A2a-Adrenoceptor Activity by Both Single Amino Acid Mutation (Thr373Lys) and G α o Protein Coexpression: Evidence for Inverse Agonism. J. Pharmacol. Exp. Ther. **2000**, 292, 654–663.

(56) Asano, T.; Morishita, R.; Semba, R.; Itoh, H.; Kaziro, Y.; Kato, K. Identification of Lung Major Gtp-Binding Protein as Gi2 and Its Distribution in Various Rat-Tissues Determined by Immunoassay. *Biochemistry* **1989**, *28*, 4749–4754.

(57) Valenzuela, D.; Han, X.; Mende, U.; Fankhauser, C.; Mashimo, H.; Huang, P.; Pfeffer, J.; Neer, E. J.; Fishman, M. C. G α o Is Necessary for Muscarinic Regulation of Ca²⁺ Channels in Mouse Heart. *Proc. Natl. Acad. Sci. U. S. A.* **1997**, *94*, 1727–1732.

(58) Jiang, M.; Bajpayee, N. S. Molecular Mechanisms of Go Signaling. *Neurosignals* **2009**, *17*, 23–41.

(59) Gardner, B. R.; Hall, D. A.; Strange, P. G. Agonist Action at D2(Short) Dopamine Receptors Determined in Ligand Binding and Functional Assays. J. Neurochem. 2002, 69, 2589–2598.

(60) Black, J. W.; Leff, P. Operational Models of Pharmacological Agonism. *Proc. R. Soc. London, Ser. B* **1983**, 220, 141–162.

(61) Rajagopal, S.; Ahn, S.; Rominger, D. H.; Gowen-MacDonald, W.; Lam, C. M.; DeWire, S. M.; Violin, J. D.; Lefkowitz, R. J. Quantifying Ligand Bias at Seven-Transmembrane Receptors. *Mol. Pharmacol.* **2011**, *80*, 367–377.

(62) Kenakin, T.; Watson, C.; Muniz-Medina, V.; Christopoulos, A.; Novick, S. A Simple Method for Quantifying Functional Selectivity and Agonist Bias. ACS Chem. Neurosci. **2012**, *3*, 193–203.

(63) Tschammer, N.; Bollinger, S.; Kenakin, T.; Gmeiner, P. Histidine 6.55 Is a Major Determinant of Ligand-Biased Signaling in Dopamine D2L Receptor. *Mol. Pharmacol.* **2011**, *79*, 575–585.

(64) Kenakin, T.; Miller, L. J. Seven Transmembrane Receptors as Shapeshifting Proteins: The Impact of Allosteric Modulation and Functional Selectivity on New Drug Discovery. *Pharmacol. Rev.* **2010**, *62*, 265–304.

(65) Christopoulos, A.; Kenakin, T. G Protein-Coupled Receptor Allosterism and Complexing. *Pharmacol. Rev.* **2002**, *54*, 323–374.

(66) Caccia, S.; Invernizzi, R. W.; Nobili, A.; Pasina, L. A New Generation of Antipsychotics: Pharmacology and Clinical Utility of Cariprazine in Schizophrenia. *Ther. Clin. Risk Manage.* **2013**, *9*, 319–328.

(67) Boeckler, F.; Leng, A.; Mura, A.; Bettinetti, L.; Feldon, J.; Gmeiner, P.; Ferger, B. Attenuation of 1-Methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP) Neurotoxicity by the Novel Selective Dopamine D3-Receptor Partial Agonist Fauc 329 Predominantly in the Nucleus Accumbens of Mice. *Biochem. Pharmacol.* 2003, 66, 1025–1032.

(68) Chien, E. Y.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G. W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. *Science* **2010**, *330*, 1091–1095.

(69) Luedtke, R. R.; Mishra, Y.; Wang, Q.; Griffin, S. A.; Bell-Horner, C.; Taylor, M.; Vangveravong, S.; Dillon, G. H.; Huang, R. Q.; Reichert, D. E.; Mach, R. H. Comparison of the Binding and Functional Properties of Two Structurally Different D2 Dopamine Receptor Subtype Selective Compounds. *ACS Chem. Neurosci.* **2012**, *3*, 1050–1062.

(70) Newman, A. H.; Beuming, T.; Banala, A. K.; Donthamsetti, P.; Pongetti, K.; LaBounty, A.; Levy, B.; Cao, J.; Michino, M.; Luedtke, R. R.; Javitch, J. A.; Shi, L. Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. *J. Med. Chem.* **2012**, *55*, 6689– 6699.

(71) Michino, M.; Donthamsetti, P.; Beuming, T.; Banala, A.; Duan, L.; Roux, T.; Han, Y.; Trinquet, E.; Newman, A. H.; Javitch, J. A.; Shi,

L. A Single Glycine in Extracellular Loop 1 Is the Critical Determinant for Pharmacological Specificity of Dopamine D2 and D3 Receptors. *Mol. Pharmacol.* **2013**, *84*, 854–864.

(72) Rosenkilde, M. M.; Benned-Jensen, T.; Frimurer, T. M.; Schwartz, T. W. The Minor Binding Pocket: A Major Player in 7TM Receptor Activation. *Trends Pharmacol. Sci.* **2010**, *31*, 567–574.

(73) Park, S. W.; Lee, C. H.; Cho, H. Y.; Seo, M. K.; Lee, J. G.; Lee, B. J.; Seol, W.; Kee, B. S.; Kim, Y. H. Effects of Antipsychotic Drugs on the Expression of Synaptic Proteins and Dendritic Outgrowth in Hippocampal Neuronal Cultures. *Synapse* **2013**, *67*, 224–234.

(74) Pereira, A.; Zhang, B.; Malcolm, P.; Sugiharto-Winarno, A.; Sundram, S. Quetiapine and Aripiprazole Signal Differently to ERK, p90RSK and C-Fos in Mouse Frontal Cortex and Striatum: Role of the Egf Receptor. *BMC Neurosci.* **2014**, *15*, 30.

(75) Ishima, T.; Iyo, M.; Hashimoto, K. Neurite Outgrowth Mediated by the Heat Shock Protein Hsp90alpha: A Novel Target for the Antipsychotic Drug Aripiprazole. *Trans. Psychiatry* **2012**, *2*, e170.

(76) Hübner, H.; Haubmann, C.; Utz, W.; Gmeiner, P. Conjugated Enynes as Nonaromatic Catechol Bioisosteres: Synthesis, Binding Experiments, and Computational Studies of Novel Dopamine Receptor Agonists Recognizing Preferentially the D3 subtype. *J. Med. Chem.* **2000**, *43*, 756–762.

(77) Hayes, G.; Biden, T. J.; Selbie, L. A.; Shine, J. Structural Subtypes of the Dopamine D2 Receptor Are Functionally Distinct: Expression of the Cloned D2A and D2B Subtypes in a Heterologous Cell Line. *Mol. Endocrinol.* **1992**, *6*, 920–926.

(78) Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. Molecular-Cloning and Characterization of a Novel Dopamine Receptor (D3) as a Target for Neuroleptics. *Nature* **1990**, 347, 146–151.

(79) Asghari, V.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; Jovanovic, V.; Van Tol, H. H. Modulation of Intracellular Cyclic Amp Levels by Different Human Dopamine D4 Receptor Variants. *J. Neurochem.* **1995**, *65*, 1157–1165.

(80) Kebabian, J. W.; Calne, D. B. Multiple Receptors for Dopamine. *Nature* **1979**, 277, 93–96.

(81) McKenna, D. J.; Peroutka, S. J. Differentiation of 5-Hydroxytryptamine2 Receptor Subtypes Using ¹²⁵I-R-(-)2,5-Dimethoxy-4-iodophenylisopropylamine and ³H-Ketanserin. *J. Neurosci.* **1989**, *9*, 3482–3490.

(82) Pierce, P. A.; Peroutka, S. J. Evidence for Distinct 5-Hydroxytryptamine2 Binding Site Subtypes in Cortical Membrane Preparations. J. Neurochem. **1989**, *52*, 656–658.

(83) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. *J. Biol. Chem.* **1951**, *193*, 265–275.

(84) Tschammer, N.; Elsner, J.; Goetz, A.; Ehrlich, K.; Schuster, S.; Ruberg, M.; Kuhhorn, J.; Thompson, D.; Whistler, J.; Hubner, H.; Gmeiner, P. Highly Potent 5-Aminotetrahydropyrazolopyridines: Enantioselective Dopamine D3 Receptor Binding, Functional Selectivity, and Analysis of Receptor–Ligand Interactions. *J. Med. Chem.* **2011**, *54*, 2477–2491.

(85) Cohen, F. R.; Lazareno, S.; Birdsall, N. J. The Effects of Saponin on the Binding and Functional Properties of the Human Adenosine A1 Receptor. *Br. J. Pharmacol.* **1996**, *117*, 1521–1529.

(86) Lin, H.; Saisch, S. G.; Strange, P. G. Assays for Enhanced Activity of Low Efficacy Partial Agonists at the D(2) Dopamine Receptor. Br. J. Pharmacol. **2006**, 149, 291–299.

(87) Koener, B.; Focant, M. C.; Bosier, B.; Maloteaux, J. M.; Hermans, E. Increasing the Density of the D2l Receptor and Manipulating the Receptor Environment Are Required To Evidence the Partial Agonist Properties of Aripiprazole. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* **2012**, *36*, 60–70.

(88) Yung-Chi, C.; Prusoff, W. H. Relationship between the Inhibition Constant (Ki) and the Concentration of Inhibitor Which Causes 50 Per Cent Inhibition (IS0) of an Enzymatic Reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099–3108.

Journal of Medicinal Chemistry

(89) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Hevd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01; Gaussian: Wallingford, CT, 2009.

(90) Trott, O.; Olson, A. J. Autodock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. *J. Comput. Chem.* **2010**, *31*, 455–461.

(91) Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W.; Merz, K. M.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Kollman, P. A. *Amber10*; University of California: San Francisco, 2008.

(92) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. *Proteins* **2006**, *65*, 712–725.

(93) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. *J. Comput. Chem.* **2004**, *25*, 1157–1174.

(94) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. *J. Phys. Chem.* **1993**, *97*, 10269–10280.

(95) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. *J. Chem. Phys.* **1983**, *79*, 926–935.

(96) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of *n*-Alkanes. *J. Comput. Phys.* **1977**, 23, 327–341.

(97) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N-Log(N) Method for Ewald Sums in Large Systems. *J. Chem. Phys.* **1993**, *98*, 10089.

(98) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. **1984**, *81*, 3684–3690.

(99) Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. Mmpbsa.Py: An Efficient Program for End-State Free Energy Calculations. *J. Chem. Theory Comput.* **2012**, *8*, 3314–3321.

(100) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. Gromacs: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718.

(101) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. Gromacs 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. **2008**, *4*, 435–447.

(102) Wolf, M. G.; Hoefling, M.; Aponte-Santamaria, C.; Grubmuller, H.; Groenhof, G. G_Membed: Efficient Insertion of a Membrane Protein into an Equilibrated Lipid Bilayer with Minimal Perturbation. J. Comput. Chem. 2010, 31, 2169–2174.

(103) Goetz, A.; Lanig, H.; Gmeiner, P.; Clark, T. Molecular Dynamics Simulations of the Effect of the G-Protein and Diffusible

Ligands on the Beta2-Adrenergic Receptor. J. Mol. Biol. 2011, 414, 611-623.

(104) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271.

(105) The Pymol Molecular Graphics System, Version 1.3r1; Schrodinger, LLC, 2010.