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Abstract A ruthenium-catalyzed [5+1] annulation of 1-(2-aminophe-
nyl)pyrroles with -carbonyl sulfoxonium ylides is reported. This reac-
tion provides a one-step method for synthesizing pyrrolo[1,2-a]quinox-
aline derivatives under ambient conditions. The system proceeds with a
short reaction time and a high functional-group tolerance. Notably, this
divergent protocol tolerates -keto sulfoxonium ylides and can be ap-
plied to -ester sulfoxonium ylides. A preliminary study was made of
the mechanism of the reaction, and a reaction pathway is proposed.

Key words pyrroloquinoxalines, sulfoxonium ylides, aminophenylpyr-
roles, ruthenium catalysis, activation–cyclization, [5+1] annulation

Pyrrolo[1,2-a]quinoxalines are core structural scaffolds
in many natural products, synthetic pharmaceuticals, and
functional materials.1 Because of their unique structure,
pyrrolo[1,2-a]quinoxalines have garnered considerable at-
tention over the past century. As versatile building blocks,
functionalized pyrrolo[1,2-a]quinoxalines that possess an-
timalarial,2 antileishmania,3 or antitumor properties,4 or
which can behave as glucagon receptor antagonists5 or hu-
man protein kinase CK2 inhibitors6 have been synthesized
(Figure 1).

In view of the importance described above, the synthe-
sis of bioactive pyrrolo[1,2-a]quinoxaline derivatives has

attracted considerable attention. Hence, numerous ap-
proaches toward functionalized quinoxaline have been de-
veloped during recent decades. In 1965, Cheeseman and
Tuck7 reported a metal-free catalytic coupling reaction of 2-
(1H-pyrrol-1-yl)aniline with HCO2H under reflux as a key
contribution toward the synthesis of quinoxalines. Based on
this pioneering work, many similar strategies for the prepa-
ration of pyrrolo[1,2-a]quinoxalines have been successively
reported. It was found that the presence of a nitro or amino
group at the C-2 position in the phenyl ring and a carbonyl
group in the pyrrole are essential for successful cyclization
and aromatization. Preetam and Nath reported a cyclization

Figure 1  Examples of biologically active quinoxalines
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Scheme 1  Previous work and our approach to the synthesis of pyrro-
lo[1,2-a]quinoxalines; p-DBSA = 4-dodecylbenzenesulfonic acid
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reaction that uses 2-(1H-pyrrol-1-yl)anilines and aldehydes
as starting materials (Scheme 1a).8 In 2017, Jiang and co-
workers developed a novel and concise oxidative strategy
for the synthesis of pyrrolo[1,2-a]quinoxaline derivatives
from simple primary alcohols under a dioxygen atmo-
sphere.9 Ma and co-workers reported a simple, green, and
efficient method for the construction of pyrrolo[1,2-a]qui-
noxalines from 2-(1H-pyrrol-1-yl)anilines and dimethyl
sulfoxide under mild conditions (Scheme 1b).10 Yan and co-
workers have reported an FeCl3-catalyzed reaction between
1-(2-aminophenyl)pyrroles and cyclic ethers for the syn-
thesis of (hydroxyalkyl)pyrrolo[1,2-a]quinoxalines.11a

More-powerful synthetic methods involving [5+1]-annula-
tion reactions have been developed by the same group.11

Kundu and co-workers reported a diversity-oriented syn-
thesis of indoloquinoxalines from 1-(2-nitroaryl)-2-
alkynylindoles and NaN3 in hexamethylphosphoramide
(HMPA) with CuI as a catalyst.12 Although progress has been
made in this field, further development of more efficient
C1-synthons to access structurally diverse N-heterocycles is
still desirable.

Sulfur ylides were first introduced by Jessop in 1930,13

but it was only after the 1960s, with important contribu-
tions by Johnson and LaCount,14 Franzen et al.,15 and Corey
and Chaykovsky,16 that these compounds were widely used
as surrogates of the corresponding C2 or C1 synthons in or-
ganic reactions. More recently, the groups of Aïssa and Li
independently reported Cp*Rh(II)-catalyzed couplings of
arenes with sulfoxonium ylides to synthesize the corre-
sponding -aryl ketones.17 Chen and co-workers discovered
an efficient copper-mediated formal [4+1] cycloaddition of
N-sulfonylhydrazones with sulfoxonium ylides to give a va-
riety of highly substituted 4,5-dihydropyrazoles.18 The Ma
group demonstrated a Ru-catalyzed [5+1] annulation
through an NH2-directed highly selective alkenyl C–H acti-
vation process with sulfoxonium ylides as coupling part-
ners (Scheme 1c).19 Our group recently reported a strategy
for the synthesis of indoles by using easily accessible sulfur
ylides and N-aryl-2-aminopyridines as functional surro-
gates.20 Despite these developments, the use of sulfoxonium
ylides for the synthesis of quinoxalines remains underde-
veloped. In view of this, and as part of our ongoing research,
we studied the reactions of 2-(1H-pyrrol-1-yl)anilines with

Scheme 2  Reagents and conditions: 1a–u (0.2 mmol), 2a (0.3 mmol), [Ru(p-cymene)Cl2]2 (2.5 mol%), AgNTf2 (0.2 equiv), tAmOH (2.0 mL), 100 °C, 
12 h, under air.

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph

N

N

O

Ph
N N

N

O

Ph

N N

N

O

Ph

N N

N

O

Ph

N N

N

O

Ph

3aa (71%) 3ba (73%) 3ca (75%) 3da (78%)

3ea (80%) 3fa (81%)

OMe
MeO

3ga (72%) 3ha (85%)

F

F

3ia (55%) 3ja (58%)

Cl

Cl

3ka (61%) 3la (62%)

Br

3ma (54%)

F3C

3na (48%)

F

3oa (65%) 3pa (65%)

3qa (61%) 3ra (66%) 3sa (46%)

MeO

Br

X N

NH2
X = C, N

Ph

O
S
O

+

[Ru(p-cymene)Cl2]2 (2.5 mol%)
          AgNTf2 (20 mol%)

tAmOH, 100 °C, 12 h, air

1a–u 2a

N

N

O

Ph

3a–u

H

N

N

O

Ph

3ta (61%)
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F



C

X.-F. Cui et al. LetterSyn  lett

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f O

ta
go

, D
un

ed
in

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.
carbonyl sulfoxonium ylides (as stable carbene precursors
and bifunctional C1 synthons) with the aim of developing
an alternative approach to the synthesis of pyrrolo[1,2-
a]quinoxaline derivatives. The results of this study are re-
ported below.

We commenced our study by identifying the optimal
conditions for the reaction of 1-(2-aminophenyl)pyrrole
(1a) with the sulfoxonium ylide 2a (Table 1). The desired
product 3aa was obtained in 37% yield from the reaction at
100 °C for 12 hours in 1,2-dichloroethane (DCE) with [Ru(p-
cymene)Cl2]2 as the catalyst and AgSbF6 as an additive (Ta-
ble 1, entry 1). Encouraged by this observation, we investi-
gated the effects of the solvent and we found that tert-amyl
alcohol (tAmOH) gave the desired product 3aa in 59% yield
(entries 2–8). Other transition-metal catalysts, such as
[Cp*IrCl2]2, [Cp*RhCl2]2, and Cp*Co(CO)I2 were also tested
and were found to be less effective than [Ru(p-cymene)Cl2]2
(entries 9–11). An exploration of various silver salts re-
vealed that AgNTf2 gave the best yield of 71% (entries 12–

14), whereas an examination of various additives demon-
strated that the yield decreased when silver salts were ab-
sent (entries 15–17). Temperature was also found to influ-
ence the reaction significantly, as indicated by the low reac-
tivity of 1a at 80 °C or 120 °C (entries 18 and 19). A reaction
performed under an N2 atmosphere gave only 19% of prod-
uct 3aa (entry 20). We therefore concluded that for optimal
results, the reaction should be performed at 100 °C in
tAmOH with [Ru(p-cymene)Cl2]2 (2.5 mol %) as catalyst in
the presence of AgNTf2 (0.2 equiv).

Having determined the optimal reaction conditions, we
turned our attention to investigating the scope of the 1-(2-
aminophenyl)pyrrole for the present transformation
(Scheme 2). The position of the substituents did not signifi-
cantly affect the yield of the reaction and, as expected, a
wide variety of pyrrolo[1,2-a]quinoxaline derivatives, 3aa–
ta, were successfully obtained in moderate to good yields.
Additionally, all methyl- or methoxy-substituted 1-(2-
aminophenyl)pyrroles reacted readily to give the desired

Table 1  Optimization of the Reaction Conditionsa

Entry Catalyst Additive Solvent Temp (℃) Yieldb (%)

 1 [Ru(p-cymene)Cl2]2 AgSbF6 DCE 100 37

 2 [Ru(p-cymene)Cl2]2 AgSbF6
tAmOH 100 59

 3 [Ru(p-cymene)Cl2]2 AgSbF6 TFE 100 34

 4 [Ru(p-cymene)Cl2]2 AgSbF6 THF 100 37

 5 [Ru(p-cymene)Cl2]2 AgSbF6 1,4-dioxane 100 –

 6 [Ru(p-cymene)Cl2]2 AgSbF6 DME 100 32

 7 [Ru(p-cymene)Cl2]2 AgSbF6
iPrOH 100 29

 8 [Ru(p-cymene)Cl2]2 AgSbF6 EtOAc 100 39

 9 [Cp*IrCl2]2 AgSbF6
tAmOH 100 47

10 [Cp*RhCl2]2 AgSbF6
tAmOH 100 12

11 [Cp*Co(CO)I2]2 AgSbF6
tAmOH 100 –

12 [Ru(p-cymene)Cl2]2 AgNTf2
tAmOH 100 71

13 [Ru(p-cymene)Cl2]2 AgBF4
tAmOH 100 27

14 [Ru(p-cymene)Cl2]2 AgOTf tAmOH 100 29

15 [Ru(p-cymene)Cl2]2 Zn(OAc)2
tAmOH 100 62

16 [Ru(p-cymene)Cl2]2 PivOH tAmOH 100 64

17 [Ru(p-cymene)Cl2]2 K2CO3
tAmOH 100 17

18 [Ru(p-cymene)Cl2]2 AgNTf2
tAmOH  80 56

19 [Ru(p-cymene)Cl2]2 AgNTf2
tAmOH 120 51

20c [Ru(p-cymene)Cl2]2 AgNTf2
tAmOH 100 19

a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), catalyst (2.5 mol %), additive (0.2 equiv), solvent (2.0 mL), 12 h, under air.
b Isolated yield.
c N2 atmosphere.
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products 3aa–ha in good yields. Halogenated 1-(2-amino-
phenyl)pyrroles also performed well, providing the desired
products 3ia–ma in moderate yields. These products could
also significantly expand the utilization of the [5+1]-cy-
clization procedure. Substrate 1n with strongly electron-
deficient trifluoromethyl group afforded the desired prod-
uct 3na with excellent efficiency. When the disubstituted
substrate 1o was used, the corresponding product 3oa was
obtained in 65% yield. To our delight, heterocyclic group-
substituted 2-(1H-pyrrol-1-yl)pyridin-3-amines 1p–s re-
acted smoothly with 2a to give products 3pa–sa in yields of
46–66%. Note that substrate 1p, which contains other possi-
ble C–H functionalization sites, reacted well at the terminal
position to give the desired product 1pa, but the reaction
did not proceed to the acylmethylation stage.17 The chal-
lenging substrate 1t, which contains pyrrolyl group on the
phenyl ring, was also found to be suitable for this transfor-
mation, affording product 3ta in a moderate yield of 61%.

In an attempt to further expand the scope of the formal
[5+1]-cycloaddition reaction, various -ketosulfoxonium
ylides were tested (Scheme 3). A variety of sulfoxonium
ylides were subjected to the standard conditions, and mod-
erate to good yields of the corresponding products were ob-
tained. All benzoyl-substituted sulfoxonium ylides bearing
electron-donating or -withdrawing groups on the phenyl
ring reacted smoothly with 1-(2-aminophenyl)pyrrole (1a)
to afford the corresponding products 3ab–ai in moderate to
excellent yields. Moreover, substrates substituted with a 2-

thienyl (2j) or 2-furyl group (2k) gave the corresponding
products 3aj and 3ak, in yields of 75 and 73%, respectively.
In addition, a sulfoxonium ylides containing a 2-naphthyl
group was also investigated and it provided the correspond-
ing pyrrolo[1,2-a]quinoxaline 3al in 81% yield. The scope of
the reaction was further extended to a sulfoxonium ylide
that contained a substituent other than an aryl or alkyl
group, and the reaction gave product 3am in 75% yield.

By using the optimal conditions, we examined whether
the [5+1] cascade annulation reaction could be efficiently
extended to -ester sulfoxonium ylides 3a–c (Scheme 4),
which would be advantageous. To our delight, sulfoxonium
ylides bearing an alkyl group gave the expected products
4aa–ac in excellent yields, highlighting a potential applica-
tion of our transformation.

Scheme 4  Reagents and conditions: 1a (0.2 mmol), 3a–c (0.3 mmol), 
[Ru(p-cymene)Cl2]2 (2.5 mol%), AgNTf2 (0.2 equiv), tAmOH (2.0 mL), 
100 °C, 12 h, under air.

Scheme 3  Reagents and conditions: 1a (0.2 mmol), 2b–k (0.3 mmol), [Ru(p-cymene)Cl2]2 (2.5 mol%), AgNTf2 (0.2 equiv), tAmOH (2.0 mL), 100 °C, 
12 h, under air.
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Scheme 5  Mechanistic study experiments

To gain more insight into the mechanism of this trans-
formation, several further experiments were conducted.
Under Ru(II)-catalyzed conditions, a set of intermolecular
competitive reactions between 5-methyl-2-(1H-pyrrol-1-
yl)aniline (1d) and 2-(1H-pyrrol-1-yl)-5-(trifluorometh-
yl)aniline (1n) with 2a were performed in a one-pot fash-
ion. The NMR yield of 3da was higher than that of 3na, indi-
cating that the electron-rich substrate had a higher reactiv-
ity (Scheme 5a). An H/D exchange experiment was

subsequently performed in which 1-(2-aminophenyl)pyr-
role (1a) was subjected to the optimized reaction condi-
tions in the presence of D2O. NMR analysis of the resulting
1-(2-aminophenyl)pyrrole (obtained in 85% yield) revealed
that H/D exchange (50% D) had occurred at the ortho-posi-
tion of the pyrrole (Scheme 5b). These results indicate the
possible involvement of reversible C–H bond cleavage and
metal protonation in the transformation. A kinetic-isotope-
effect (KIE) experiment showed that competitive deuteria-
tion between substrates 1a and 1a-d2 occurred with a kH/kD
ratio of 1.5 (Scheme 5c). This result indicates that the ru-
thenium-mediated C–H cleavage might not be involved in
the turnover-determining step of the reaction.

Based on our previous work and results published in the
literature,19–21 a plausible catalytic cycle for the [5+1]-annu-
lation reaction of 1a with 2a was proposed (Scheme 6). Ini-
tially, the dimeric precursor [Ru(p-cymene)Cl2]2 is convert-
ed into a cationic species. 1-(2-Aminophenyl)pyrrole (1a) is
then coordinated with the Ru(II) catalyst and, following in-
termolecular attack on the pyrrole fragment, a five-mem-
bered ruthenacycle intermediate A is produced. Sulfoxoni-
um ylide 2a is then coordinated to generate the alkyl–Ru(II)
species B. A reactive ruthenium -oxo carbene species C is
then formed from B through -elimination of dimethyl sulf-
oxide (DMSO). Subsequent carbene migratory insertion of
the Ru-aryl bond gives the seven-membered ruthenacycle
D. The key intermediate D then undergoes reductive elimi-
nation to form the ring molecule E (rather than undergoing
protonation as previously reported by others), releasing
Ru(II) for the next catalytic cycle. Finally, the cyclic com-
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pound E is oxidized by molecular oxygen to generate the
target phenyl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone
(3aa).

In summary, we have successfully developed a rutheni-
um(II)-catalyzed coupling-cyclization of 1-(2-aminophe-
nyl)pyrroles with sulfoxonium ylides.22 This new annula-
tion process uses a commercially available ruthenium cata-
lyst together with a free amino group as a traceless
directing group to permit alkenyl C–H functionalization
and to provide an efficient access to pyrrolo[1,2-a]quinox-
aline skeletons. The protocol not only is expeditious and
operationally simple, but also permits the use of a wide
range of substrates and has excellent tolerance to various
functional groups.

Supporting Information

Supporting information for this article is available online at
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