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Abstract A ruthenium-catalyzed [5+1] annulation of 1-(2-aminophe-
nyl)pyrroles with a-carbonyl sulfoxonium ylides is reported. This reac-
tion provides a one-step method for synthesizing pyrrolo[1,2-a]quinox-
aline derivatives under ambient conditions. The system proceeds with a
short reaction time and a high functional-group tolerance. Notably, this
divergent protocol tolerates B-keto sulfoxonium ylides and can be ap-
plied to a-ester sulfoxonium ylides. A preliminary study was made of
the mechanism of the reaction, and a reaction pathway is proposed.

Key words pyrroloquinoxalines, sulfoxonium ylides, aminophenylpyr-
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Pyrrolo[1,2-a]Jquinoxalines are core structural scaffolds
in many natural products, synthetic pharmaceuticals, and
functional materials.! Because of their unique structure,
pyrrolo[1,2-a]quinoxalines have garnered considerable at-
tention over the past century. As versatile building blocks,
functionalized pyrrolo[1,2-a]quinoxalines that possess an-
timalarial,> antileishmania,® or antitumor properties,* or
which can behave as glucagon receptor antagonists® or hu-
man protein kinase CK2 inhibitors® have been synthesized
(Figure 1).

In view of the importance described above, the synthe-
sis of bioactive pyrrolo[1,2-a]quinoxaline derivatives has
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attracted considerable attention. Hence, numerous ap-
proaches toward functionalized quinoxaline have been de-
veloped during recent decades. In 1965, Cheeseman and
Tuck’” reported a metal-free catalytic coupling reaction of 2-
(1H-pyrrol-1-yl)aniline with HCO,H under reflux as a key
contribution toward the synthesis of quinoxalines. Based on
this pioneering work, many similar strategies for the prepa-
ration of pyrrolo[1,2-a]Jquinoxalines have been successively
reported. It was found that the presence of a nitro or amino
group at the C-2 position in the phenyl ring and a carbonyl
group in the pyrrole are essential for successful cyclization
and aromatization. Preetam and Nath reported a cyclization
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Scheme 1 Previous work and our approach to the synthesis of pyrro-
lo[1,2-a]quinoxalines; p-DBSA = 4-dodecylbenzenesulfonic acid
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reaction that uses 2-(1H-pyrrol-1-yl)anilines and aldehydes
as starting materials (Scheme 1a).2 In 2017, Jiang and co-
workers developed a novel and concise oxidative strategy
for the synthesis of pyrrolo[1,2-a]quinoxaline derivatives
from simple primary alcohols under a dioxygen atmo-
sphere.® Ma and co-workers reported a simple, green, and
efficient method for the construction of pyrrolo[1,2-a]qui-
noxalines from 2-(1H-pyrrol-1-yl)anilines and dimethyl
sulfoxide under mild conditions (Scheme 1b).!° Yan and co-
workers have reported an FeCl;-catalyzed reaction between
1-(2-aminophenyl)pyrroles and cyclic ethers for the syn-
thesis of (hydroxyalkyl)pyrrolo[1,2-a]quinoxalines.!?
More-powerful synthetic methods involving [5+1]-annula-
tion reactions have been developed by the same group.!
Kundu and co-workers reported a diversity-oriented syn-
thesis of indoloquinoxalines from 1-(2-nitroaryl)-2-
alkynylindoles and NaN; in hexamethylphosphoramide
(HMPA) with Cul as a catalyst.'? Although progress has been
made in this field, further development of more efficient
C1-synthons to access structurally diverse N-heterocycles is
still desirable.

Sulfur ylides were first introduced by Jessop in 1930,
but it was only after the 1960s, with important contribu-
tions by Johnson and LaCount,' Franzen et al.,'> and Corey
and Chaykovsky,'® that these compounds were widely used
as surrogates of the corresponding C2 or C1 synthons in or-
ganic reactions. More recently, the groups of Aissa and Li
independently reported Cp*Rh(Il)-catalyzed couplings of
arenes with sulfoxonium ylides to synthesize the corre-
sponding a-aryl ketones.!” Chen and co-workers discovered
an efficient copper-mediated formal [4+1] cycloaddition of
N-sulfonylhydrazones with sulfoxonium ylides to give a va-
riety of highly substituted 4,5-dihydropyrazoles.'® The Ma
group demonstrated a Ru-catalyzed [5+1] annulation
through an NH,-directed highly selective alkenyl C-H acti-
vation process with sulfoxonium ylides as coupling part-
ners (Scheme 1c).'® Our group recently reported a strategy
for the synthesis of indoles by using easily accessible sulfur
ylides and N-aryl-2-aminopyridines as functional surro-
gates.?0 Despite these developments, the use of sulfoxonium
ylides for the synthesis of quinoxalines remains underde-
veloped. In view of this, and as part of our ongoing research,
we studied the reactions of 2-(1H-pyrrol-1-yl)anilines with
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Scheme 2 Reagents and conditions: 1a-u (0.2 mmol), 2a (0.3 mmol), [Ru(p-cymene)Cl,], (2.5 mol%), AgNTf, (0.2 equiv), ‘AmOH (2.0 mL), 100 °C,

12 h, under air.
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carbonyl sulfoxonium ylides (as stable carbene precursors
and bifunctional C1 synthons) with the aim of developing
an alternative approach to the synthesis of pyrrolo[1,2-
a]quinoxaline derivatives. The results of this study are re-
ported below.

We commenced our study by identifying the optimal
conditions for the reaction of 1-(2-aminophenyl)pyrrole
(1a) with the sulfoxonium ylide 2a (Table 1). The desired
product 3aa was obtained in 37% yield from the reaction at
100 °C for 12 hours in 1,2-dichloroethane (DCE) with [Ru(p-
cymene)Cl,], as the catalyst and AgSbFg as an additive (Ta-
ble 1, entry 1). Encouraged by this observation, we investi-
gated the effects of the solvent and we found that tert-amyl
alcohol (*fAmOH) gave the desired product 3aa in 59% yield
(entries 2-8). Other transition-metal catalysts, such as
[Cp*IrClL,],, [Cp*RhCL,],, and Cp*Co(CO)I, were also tested
and were found to be less effective than [Ru(p-cymene)Cl, |,
(entries 9-11). An exploration of various silver salts re-
vealed that AgNTf, gave the best yield of 71% (entries 12—

Table 1 Optimization of the Reaction Conditions?

o i
N/ /;T,\
¥

NH»>

14), whereas an examination of various additives demon-
strated that the yield decreased when silver salts were ab-
sent (entries 15-17). Temperature was also found to influ-
ence the reaction significantly, as indicated by the low reac-
tivity of 1a at 80 °C or 120 °C (entries 18 and 19). A reaction
performed under an N, atmosphere gave only 19% of prod-
uct 3aa (entry 20). We therefore concluded that for optimal
results, the reaction should be performed at 100 °C in
‘AmOH with [Ru(p-cymene)Cl,], (2.5 mol %) as catalyst in
the presence of AgNTf, (0.2 equiv).

Having determined the optimal reaction conditions, we
turned our attention to investigating the scope of the 1-(2-
aminophenyl)pyrrole for the present transformation
(Scheme 2). The position of the substituents did not signifi-
cantly affect the yield of the reaction and, as expected, a
wide variety of pyrrolo[1,2-a]quinoxaline derivatives, 3aa-
ta, were successfully obtained in moderate to good yields.
Additionally, all methyl- or methoxy-substituted 1-(2-
aminophenyl)pyrroles reacted readily to give the desired

—

[M] (2.5 mol%)

additive (0.2 equiv) N/
solvent (2.0 mL) @ P
100 °C, 12 h, air N

O
1a 2a 3aa
Entry Catalyst Additive Solvent Temp (°C) Yield® (%)
1 [Ru(p-cymene)Cl;], AgSbFg DCE 100 37
2 [Ru(p-cymene)Cl,], AgSbFg 'AmOH 100 59
3 [Ru(p-cymene)Cl,], AgSbFg TFE 100 34
4 [Ru(p-cymene)Cl,], AgSbFg THF 100 37
5 [Ru(p-cymene)Cls], AgSbFg 1,4-dioxane 100 -
6 [Ru(p-cymene)Cl,], AgSbFg DME 100 32
7 [Ru(p-cymene)Cl,], AgSbFg PrOH 100 29
8 [Ru(p-cymene)Cl,], AgSbFg EtOAC 100 39
9 [Cp*IrCl,], AgSbFg tAmOH 100 a7
10 [Cp*RhCl,], AgSbFg ‘AmOH 100 12
1 [Cp*Co(CO)L,], AgSbFg tAmOH 100 -
12 [Ru(p-cymene)Cl,], AgNTf, tAmOH 100 71
13 [Ru(p-cymene)Cl,], AgBF, tAmOH 100 27
14 [Ru(p-cymene)Cl,], AgOTf 'AmOH 100 29
15 [Ru(p-cymene)Cl,], Zn(OAc), tAmOH 100 62
16 [Ru(p-cymene)Cl,], PivOH tAmOH 100 64
17 [Ru(p-cymene)Cl,], K,CO4 tAmOH 100 17
18 [Ru(p-cymene)Cl,], AgNTf, 'AmOH 80 56
19 [Ru(p-cymene)Cl,], AgNTf, tAmOH 120 51
20¢ [Ru(p-cymene)Cl,], AgNTf, tAmOH 100 19

2 Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), catalyst (2.5 mol %), additive (0.2 equiv), solvent (2.0 mL), 12 h, under air.

bsolated yield.
¢N, atmosphere.
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products 3aa-ha in good yields. Halogenated 1-(2-amino-
phenyl)pyrroles also performed well, providing the desired
products 3ia-ma in moderate yields. These products could
also significantly expand the utilization of the [5+1]-cy-
clization procedure. Substrate 1n with strongly electron-
deficient trifluoromethyl group afforded the desired prod-
uct 3na with excellent efficiency. When the disubstituted
substrate 10 was used, the corresponding product 30a was
obtained in 65% yield. To our delight, heterocyclic group-
substituted 2-(1H-pyrrol-1-yl)pyridin-3-amines 1p-s re-
acted smoothly with 2a to give products 3pa-sa in yields of
46-66%. Note that substrate 1p, which contains other possi-
ble C-H functionalization sites, reacted well at the terminal
position to give the desired product 1pa, but the reaction
did not proceed to the acylmethylation stage.!” The chal-
lenging substrate 1t, which contains pyrrolyl group on the
phenyl ring, was also found to be suitable for this transfor-
mation, affording product 3ta in a moderate yield of 61%.
In an attempt to further expand the scope of the formal
[5+1]-cycloaddition reaction, various p-ketosulfoxonium
ylides were tested (Scheme 3). A variety of sulfoxonium
ylides were subjected to the standard conditions, and mod-
erate to good yields of the corresponding products were ob-
tained. All benzoyl-substituted sulfoxonium ylides bearing
electron-donating or -withdrawing groups on the phenyl
ring reacted smoothly with 1-(2-aminophenyl)pyrrole (1a)
to afford the corresponding products 3ab-ai in moderate to
excellent yields. Moreover, substrates substituted with a 2-

(0]
1

thienyl (2j) or 2-furyl group (2k) gave the corresponding
products 3aj and 3ak, in yields of 75 and 73%, respectively.
In addition, a sulfoxonium ylides containing a 2-naphthyl
group was also investigated and it provided the correspond-
ing pyrrolo[1,2-a]quinoxaline 3al in 81% yield. The scope of
the reaction was further extended to a sulfoxonium ylide
that contained a substituent other than an aryl or alkyl
group, and the reaction gave product 3am in 75% yield.

By using the optimal conditions, we examined whether
the [5+1] cascade annulation reaction could be efficiently
extended to a-ester sulfoxonium ylides 3a-c (Scheme 4),
which would be advantageous. To our delight, sulfoxonium
ylides bearing an alkyl group gave the expected products
4aa-ac in excellent yields, highlighting a potential applica-
tion of our transformation.
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Scheme 4 Reagents and conditions: 1a (0.2 mmol), 3a-c (0.3 mmol),
[Ru(p-cymene)Cl,], (2.5 mol%), AgNTf, (0.2 equiv), ‘AmOH (2.0 mL),
100 °C, 12 h, under air.
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Scheme 3 Reagents and conditions: 1a (0.2 mmol), 2b-k (0.3 mmol), [Ru(p-cymene)Cl,], (2.5 mol%), AgNTf, (0.2 equiv), ‘AmOH (2.0 mL), 100 °C,

12 h, under air.
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(a) competition experiment
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Scheme 5 Mechanistic study experiments

To gain more insight into the mechanism of this trans-
formation, several further experiments were conducted.
Under Ru(Il)-catalyzed conditions, a set of intermolecular
competitive reactions between 5-methyl-2-(1H-pyrrol-1-
ylaniline (1d) and 2-(1H-pyrrol-1-yl)-5-(trifluorometh-
ylaniline (1n) with 2a were performed in a one-pot fash-
ion. The NMR yield of 3da was higher than that of 3na, indi-
cating that the electron-rich substrate had a higher reactiv-
ity (Scheme 5a). An H/D exchange experiment was

1/2 [RuCly(p-cymene)]o [RuCl,L]
l AgNTf,
/[RU(Nng)QL]
N
\Q‘\'
/ X
= / N
Q& H
o

DMSO

Scheme 6 Proposed mechanism

subsequently performed in which 1-(2-aminophenyl)pyr-
role (1a) was subjected to the optimized reaction condi-
tions in the presence of D,0. NMR analysis of the resulting
1-(2-aminophenyl)pyrrole (obtained in 85% yield) revealed
that H/D exchange (50% D) had occurred at the ortho-posi-
tion of the pyrrole (Scheme 5b). These results indicate the
possible involvement of reversible C-H bond cleavage and
metal protonation in the transformation. A kinetic-isotope-
effect (KIE) experiment showed that competitive deuteria-
tion between substrates 1a and 1a-d, occurred with a ky/kp
ratio of 1.5 (Scheme 5c). This result indicates that the ru-
thenium-mediated C-H cleavage might not be involved in
the turnover-determining step of the reaction.

Based on our previous work and results published in the
literature,'®-?! a plausible catalytic cycle for the [5+1]-annu-
lation reaction of 1a with 2a was proposed (Scheme 6). Ini-
tially, the dimeric precursor [Ru(p-cymene)Cl,], is convert-
ed into a cationic species. 1-(2-Aminophenyl)pyrrole (1a) is
then coordinated with the Ru(lI) catalyst and, following in-
termolecular attack on the pyrrole fragment, a five-mem-
bered ruthenacycle intermediate A is produced. Sulfoxoni-
um ylide 2a is then coordinated to generate the alkyl-Ru(II)
species B. A reactive ruthenium a-oxo carbene species C is
then formed from B through a-elimination of dimethyl sulf-
oxide (DMSO). Subsequent carbene migratory insertion of
the Ru-aryl bond gives the seven-membered ruthenacycle
D. The key intermediate D then undergoes reductive elimi-
nation to form the ring molecule E (rather than undergoing
protonation as previously reported by others), releasing
Ru(ll) for the next catalytic cycle. Finally, the cyclic com-

-
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pound E is oxidized by molecular oxygen to generate the
target  phenyl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone
(3aa).

In summary, we have successfully developed a rutheni-
um(Il)-catalyzed coupling-cyclization of 1-(2-aminophe-
nyl)pyrroles with sulfoxonium ylides.?? This new annula-
tion process uses a commercially available ruthenium cata-
lyst together with a free amino group as a traceless
directing group to permit alkenyl C-H functionalization
and to provide an efficient access to pyrrolo[1,2-a]quinox-
aline skeletons. The protocol not only is expeditious and
operationally simple, but also permits the use of a wide
range of substrates and has excellent tolerance to various
functional groups.

Supporting Information

Supporting information for this article is available online at
https://doi.org/10.1055/s-0040-1707119.
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Typical Procedure
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with 1-(2-aminophenyl)pyrroles (1a; 0.2 mmol, 31.6 mg), sulf-

oxonium ylide 2a (0.3 mmol, 58.8 mg), [RuCl,(p-cymene)], (2.5
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atmosphere (1 atm). Anhyd ‘AmOH was added, and the mixture
was stirred at 100 °C for 12 h, then cooled to r.t. The mixture
was filtered through a short Celite pad, and the filtrate was con-
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[silica gel, PE-EtOAc-CHCl; (8:1:1)] to give a yellow solid; yield:
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TH NMR (300 MHz, CDCl5): 8 = 8.20-8.14 (m, 2 H), 8.04-7.99 (m,

2H),7.91(d,J=8.2Hz,1H),7.62 (m, 2 H), 7.49 (m, 3 H), 7.21 (d,

J=4.1Hz, 1 H), 696 (m, 1 H). 3C NMR (75 MHz, CDCl;): & =

192.36, 149.90, 135.79, 134.73, 133.55, 131.06, 131.00, 129.40,

128.30, 127.92, 125.43, 124.34, 114.87, 114.72, 113.85, 108.86.

HRMS (ESI): m/z [M + HJ* calcd for C;gH;5N,0: 273.1023; found:

273.0939.
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