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a b s t r a c t

Lithiation of 6-chloro-9-(tetrahydro-2H-pyran-2-yl)-9H-purine with LiTMP, gave access to 6-chloro-2,8-
dihalogenated purine derivatives. In particular, the 6-chloro-2,8-diiodopurine derivative is an interesting
new intermediate which gave regioselectively various 2-alkynylated compounds or 2,8-dialkynylated
purines by using an excess of alkyne.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Metallation reactions remain as very useful methods for the
regioselective functionalization of heterocycles. Thus, lithiation of
purine nucleosides with n-BuLi or lithium diisopropylamide
(LDA), followed by reaction with various electrophiles has led to
the synthesis of 8-substituted purine derivatives (methyl, ethyl,
formyl, etc).1,2 The 8-methoxycarbonyl derivative of adenosine or
inosine2 and 8-halogeno purine derivatives was also obtained by
this methodology.3–6 From these pioneering works, it can be stated
that lithiation of a 6-N,N-dimethylaminopurine derivative with n-
BuLi1 or of 6-chloropurine derivatives with LDA2,5 occurs exclu-
sively at the C-8 position, the reason being that the C-8 hydrogen
is more acidic than the C-2 hydrogen. Tanaka’s group was the first
to obtain 2-tributylstannyl-purine derivatives, using lithium tetra-
methyl piperidylamide (LiTMP) as a lithiation agent. The mecha-
nism involved an initial lithiation of the 6-chloropurine
nucleoside with LiTMP at the 8-position. However, reaction of
the 8-lithiated species with tin and silicon electrophiles furnished
2-functionalized products, which resulted from an anionic transfer
of the stannyl or silyl group from the 8- to the 2-position.5 In a later
study, the authors suggested that direct C-2 lithiation becomes a
feasible event once C-8 is substituted with a stable triisopropylsilyl
group, permitting thereby to skip the C-2 stannylation step.7 In
these examples, direct lithiation was achieved with the purpose
of obtaining C-2 or C-8-substituted purines. However, to the best
of our knowledge 2,6,8-trihalogenated purine derivatives have
ll rights reserved.
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not been synthesized from 6-chloropurine before, although Nolsoe
obtained a 6-chloro-2,8-dibromopurine derivative in very low
yield (<5%),8 whereas Hocek and Pohl,9 reported the preparation
of a 2,6,8-trichloropurine by 8-lithiation (LDA) followed by chlori-
nation (C2Cl6) of 2,6-dichloro-9-THP-purine. Following these
works, our interest was to synthesize in one step 2,8-disubstituted
purines as 6-chloro-2,8-dibromo- and 6-chloro-2,8-diiodo-purines.
These intermediates are attractive to synthesize variously func-
tionalized purine derivatives of potential biological interest.10 Fur-
thermore, our hypothesis was that cross-coupling reactions with 6-
chloro-2,8-diiodopurine intermediate would show selectivity for
alkynylation at C2, although the selectivity of previously described
Suzuki-Miyaura cross-coupling reaction with 2,6,8-trichloro-9-
THP-purine was quite low.9 In this context, we report in this com-
munication the synthesis of new 2,8-dibromo- and 2-8-diiodopu-
rine derivatives from 6-chloropurine and show that they can be
used in regioselective cross-coupling reactions.

2. Results and discussion

For the purpose of functionalizing the 2- and 8-positions in one
pot, 6-chloropurine derivative 111 was treated with 5 equiv of LiT-
MP, followed by addition of various electrophiles. This led to various
2,8-disubstituted purines 2 as outlined in Scheme 1. It should be no-
ticed that the yield decreased when using less than 5 equiv of LiTMP.
On the other hand, treatment of the 8-phenyl derivative 5 with
5 equiv of LiTMP, followed by an excess of I2, led to the 2-iodopurine
derivative 6 in 51% yield, confirming that lithiation occurred at po-
sition 2 (Scheme 2). Again, the yield of this reaction decreased with
less than 5 equiv of LiTMP as already observed.7 When DMF was
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8e: R = m-Me-Ph (74%)
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Scheme 3. Reagents and conditions: (i) alkyne, 1.05 equiv, CuI, 12 mol %,
Pd[(PPh)3]4, 25 mol %, Cs2CO3, 1 equiv, DMF, 24 h; (ii) alkyne, 3 equiv, CuI,
12 mol %; Pd[(PPh)3]4, 6 mol %, Cs2CO3, 3 equiv; DMF, 2–3 h.
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Scheme 4. Reagents and conditions: (i) alkyne, 1.05 equiv, CuI, 12 mol %,
Pd[(PPh)3]4, 6 mol %, Cs2CO3, 1 equiv, DMF, 2 h.

N

N N

N
Cl

O

N

N N

N
Cl

O

E
E

N

N N

N
N

O

CHO
OHC

31

i, ii

2a: E = I (80%)
2b: E = Br (45%)
2c: E = Cl (60%)
2d: E = CHOH-Ph (70%)
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Scheme 1. Reagents and conditions: (i) LiTMP, 5 equiv, �78 �C, THF, 2 h; (ii)
electrophile: (a) I2, (b) 1,3-dibromo-5,5-dimethyl-hydantoin, (c) CCl3CCl3, (d)
PhCHO, (e) (i-PrSi)3OTf, �78 �C?rt.
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Scheme 2. Reagents and conditions: (i) PhB(OH)2, K2CO3, anhydrous toluene,
Pd(PPh3)4, 100 �C, 24 h, under Argon; (ii) (a) LiTMP, �78 �C, THF, 30 min, (b) I2,
�78 �C?rt.
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used as an electrophile, 2,8-diformylated compound 3 was obtained
but the chlorine atom was substituted by a dimethylamino group
resulting from the reaction of organolithium species with DMF.
The synthesis of 8-iodopurine derivative 4 was performed from 1
with LDA/I2 at �78 �C, in 80% yield as described.7,8

Particularly interesting is the formation of diiodo purine 2a in
high yield (80%) which was never described before, to our best
knowledge. 2,8-Dibromo- and 2,8-dichloropurines 2b and 2c were
obtained in moderate yield with mild reagents such as 1,3-dibro-
mo-3,5-dimethylhydantoin and hexachloroethane, respectively.
Use of Br2 as a brominating agent did not lead to 2b but to the
decomposition of 1.

We next examined the regioselective Sonogashira alkynylation
of di-iodopurine 2a.

Using 1 equiv of alkyne under Sonogashira conditions gave the
monoalkynylated derivative 7a–e in 22–51% yield, whereas more
than 1 equiv of alkyne (2–3 equiv) led to the dialkynylated deriva-
tive 8 in 54–74% yield (Scheme 3). C2 and C8 resonances in 1 (13C
NMR signals at 151.9 ppm and 143 ppm respectively) are shifted
upfield in the bis-iodo derivative 2a to 116.8 ppm (C2-I) and
106.3 ppm (C8-I). In the monoalkynylated compounds 7, the C8-I
signal around 106 ppm remains present, whereas the C2-I signal
at 116.8 ppm11 is not observed. Further evidence of C2 monoalky-
nylation was given by the presence of a correlation between THP
H10 and C8-I. The moderate yield of the monoalkynylated com-
pounds 7b,d is due, in part, to some homocoupling of the alkyne
reactant. In addition to trace amounts of bis-alkynylated com-
pounds (8b,d) (<5%), unreacted starting compounds (<5%) as well
as some other minor unidentified compounds were observed in
these experiments. However, the regioselectivity of the alkynyla-
tion under controlled conditions is interesting since it allows a fur-
ther nucleophilic aromatic substitution or cross-coupling reaction
on the 8-position, resulting in different substituents on the 2 and
8 positions of 2a. Thus 7a was used in a supplementary Sonogash-
ira coupling at position 8, using meta-tolyl acetylene (Scheme 4).
The second cross-coupling leading to the bis-alkynylated purine
9 was faster (2 h, Scheme 4) than the first couplings at C2 (24 h,
Scheme 3, 2a ? 7).
3. Conclusions

In conclusion, we report in this communication a new method
for the synthesis of 2,6,8-trihalogenated purine derivatives. Preli-
minary results indicate that regioselective cross-coupling at posi-
tion 2 can be obtained with 6-chloro-2,8-diiodopurine. It should
also be noted that in all these experiments, the chlorine at position
6 remained unsubstituted and available for further functionaliza-
tion. Additional functionalization at position 9 is also possible after
acidic hydrolysis of the THP group.12,13
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