Tetrahedron Letters 52 (2011) 305-307

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Regioselective Sonogashira cross-coupling reactions of 6-chloro-2,8-diiodo-9-THP-9*H*-purine with alkyne derivatives

Nada Ibrahim, Franciane Chevot, Michel Legraverend*

UMR176 CNRS/Institut Curie, Bât. 110, Centre Universitaire Paris XI, Orsay 91405, France

ARTICLE INFO

Article history: Received 15 September 2010 Revised 4 November 2010 Accepted 8 November 2010 Available online 29 November 2010

Keywords: Purine Metallation Lithiation Regioselective functionalization

1. Introduction

Metallation reactions remain as very useful methods for the regioselective functionalization of heterocycles. Thus, lithiation of purine nucleosides with *n*-BuLi or lithium diisopropylamide (LDA), followed by reaction with various electrophiles has led to the synthesis of 8-substituted purine derivatives (methyl, ethyl, formyl, etc).^{1,2} The 8-methoxycarbonyl derivative of adenosine or inosine² and 8-halogeno purine derivatives was also obtained by this methodology.^{3–6} From these pioneering works, it can be stated that lithiation of a 6-*N*,*N*-dimethylaminopurine derivative with *n*-BuLi¹ or of 6-chloropurine derivatives with LDA^{2,5} occurs exclusively at the C-8 position, the reason being that the C-8 hydrogen is more acidic than the C-2 hydrogen. Tanaka's group was the first to obtain 2-tributylstannyl-purine derivatives, using lithium tetramethyl piperidylamide (LiTMP) as a lithiation agent. The mechanism involved an initial lithiation of the 6-chloropurine nucleoside with LiTMP at the 8-position. However, reaction of the 8-lithiated species with tin and silicon electrophiles furnished 2-functionalized products, which resulted from an anionic transfer of the stannyl or silyl group from the 8- to the 2-position.⁵ In a later study, the authors suggested that direct C-2 lithiation becomes a feasible event once C-8 is substituted with a stable triisopropylsilyl group, permitting thereby to skip the C-2 stannylation step.⁷ In these examples, direct lithiation was achieved with the purpose of obtaining C-2 or C-8-substituted purines. However, to the best of our knowledge 2,6,8-trihalogenated purine derivatives have

ABSTRACT

Lithiation of 6-chloro-9-(tetrahydro-2*H*-pyran-2-yl)-9*H*-purine with LiTMP, gave access to 6-chloro-2,8-dihalogenated purine derivatives. In particular, the 6-chloro-2,8-diiodopurine derivative is an interesting new intermediate which gave regioselectively various 2-alkynylated compounds or 2,8-dialkynylated purines by using an excess of alkyne.

© 2010 Elsevier Ltd. All rights reserved.

not been synthesized from 6-chloropurine before, although Nolsoe obtained a 6-chloro-2,8-dibromopurine derivative in very low yield (<5%),⁸ whereas Hocek and Pohl,⁹ reported the preparation of a 2,6,8-trichloropurine by 8-lithiation (LDA) followed by chlorination (C₂Cl₆) of 2,6-dichloro-9-THP-purine. Following these works, our interest was to synthesize in one step 2,8-disubstituted purines as 6-chloro-2,8-dibromo- and 6-chloro-2,8-diiodo-purines. These intermediates are attractive to synthesize variously functionalized purine derivatives of potential biological interest.¹⁰ Furthermore, our hypothesis was that cross-coupling reactions with 6chloro-2,8-diiodopurine intermediate would show selectivity for alkynylation at C2, although the selectivity of previously described Suzuki-Miyaura cross-coupling reaction with 2,6,8-trichloro-9-THP-purine was quite low.⁹ In this context, we report in this communication the synthesis of new 2,8-dibromo- and 2-8-diiodopurine derivatives from 6-chloropurine and show that they can be used in regioselective cross-coupling reactions.

2. Results and discussion

For the purpose of functionalizing the 2- and 8-positions in one pot, 6-chloropurine derivative $\mathbf{1}^{11}$ was treated with 5 equiv of LiT-MP, followed by addition of various electrophiles. This led to various 2,8-disubstituted purines **2** as outlined in Scheme 1. It should be noticed that the yield decreased when using less than 5 equiv of LiTMP. On the other hand, treatment of the 8-phenyl derivative **5** with 5 equiv of LiTMP, followed by an excess of I₂, led to the 2-iodopurine derivative **6** in 51% yield, confirming that lithiation occurred at position 2 (Scheme 2). Again, the yield of this reaction decreased with less than 5 equiv of LiTMP as already observed.⁷ When DMF was

^{*} Corresponding author. Tel.: +33 169 86 30 85; fax: +33 169 07 53 81. *E-mail address*: Michel.legraverend@curie.u-psud.fr (M. Legraverend).

^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.11.033

Scheme 1. Reagents and conditions: (i) LiTMP, 5 equiv, -78 °C, THF, 2 h; (ii) electrophile: (a) I₂, (b) 1,3-dibromo-5,5-dimethyl-hydantoin, (c) CCI₃CCI₃, (d) PhCHO, (e) (*i*-PrSi)₃OTf, -78 °C \rightarrow rt.

Scheme 2. Reagents and conditions: (i) PhB(OH)₂, K₂CO₃, anhydrous toluene, Pd(PPh₃)₄, 100 °C, 24 h, under Argon; (ii) (a) LiTMP, -78 °C, THF, 30 min, (b) I₂, -78 °C \rightarrow rt.

used as an electrophile, 2,8-diformylated compound **3** was obtained but the chlorine atom was substituted by a dimethylamino group resulting from the reaction of organolithium species with DMF. The synthesis of 8-iodopurine derivative **4** was performed from **1** with LDA/I₂ at -78 °C, in 80% yield as described.^{7,8}

Particularly interesting is the formation of diiodo purine **2a** in high yield (80%) which was never described before, to our best knowledge. 2,8-Dibromo- and 2,8-dichloropurines **2b** and **2c** were obtained in moderate yield with mild reagents such as 1,3-dibromo-3,5-dimethylhydantoin and hexachloroethane, respectively. Use of Br_2 as a brominating agent did not lead to **2b** but to the decomposition of **1**.

We next examined the regioselective Sonogashira alkynylation of di-iodopurine **2a**.

Using 1 equiv of alkyne under Sonogashira conditions gave the monoalkynylated derivative 7a-e in 22-51% yield, whereas more than 1 equiv of alkyne (2-3 equiv) led to the dialkynylated derivative **8** in 54–74% yield (Scheme 3). C2 and C8 resonances in **1** (¹³C NMR signals at 151.9 ppm and 143 ppm respectively) are shifted upfield in the bis-iodo derivative 2a to 116.8 ppm (C2-I) and 106.3 ppm (C8-I). In the monoalkynylated compounds 7, the C8-I signal around 106 ppm remains present, whereas the C2-I signal at 116.8 ppm¹¹ is not observed. Further evidence of C2 monoalkynylation was given by the presence of a correlation between THP H1' and C8-I. The moderate yield of the monoalkynylated compounds **7b,d** is due, in part, to some homocoupling of the alkyne reactant. In addition to trace amounts of bis-alkynylated compounds (8b,d) (<5%), unreacted starting compounds (<5%) as well as some other minor unidentified compounds were observed in these experiments. However, the regioselectivity of the alkynylation under controlled conditions is interesting since it allows a further nucleophilic aromatic substitution or cross-coupling reaction on the 8-position, resulting in different substituents on the 2 and 8 positions of 2a. Thus 7a was used in a supplementary Sonogashira coupling at position 8, using meta-tolyl acetylene (Scheme 4). The second cross-coupling leading to the bis-alkynylated purine **9** was faster (2 h, Scheme 4) than the first couplings at C2 (24 h, Scheme 3, $2a \rightarrow 7$).

Scheme 3. Reagents and conditions: (i) alkyne, 1.05 equiv, Cul, 12 mol %, Pd[(PPh)₃]₄, 25 mol %, Cs₂CO₃, 1 equiv, DMF, 24 h; (ii) alkyne, 3 equiv, Cul, 12 mol %; Pd[(PPh)₃]₄, 6 mol %, Cs₂CO₃, 3 equiv; DMF, 2–3 h.

Scheme 4. Reagents and conditions: (i) alkyne, 1.05 equiv, Cul, 12 mol %, Pd[(PPh)₃]₄, 6 mol %, Cs₂CO₃, 1 equiv, DMF, 2 h.

3. Conclusions

In conclusion, we report in this communication a new method for the synthesis of 2,6,8-trihalogenated purine derivatives. Preliminary results indicate that regioselective cross-coupling at position 2 can be obtained with 6-chloro-2,8-diiodopurine. It should also be noted that in all these experiments, the chlorine at position 6 remained unsubstituted and available for further functionalization. Additional functionalization at position 9 is also possible after acidic hydrolysis of the THP group.^{12,13}

Acknowledgments

The authors would like to thank Institut Curie (IC fellowship for NI) and the French Ministry of Research (MENRT fellowship for FC).

Supplementary data

Supplementary data associated with (detailed experimental procedures, and compound characterization data for all new compounds) this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.11.033.

References and notes

- 1. Barton, H. R.; Hedgecock, C. J. R.; Lederer, E.; Motherwell, W. B. *Tetrahedron Lett.* **1979**, *20*, 279–280.
- Hayakawa, H.; Haraguchi, K.; Tanaka, H.; Miyasaka, T. Chem. Pharm. Bull. 1987, 35, 72–79.
- Moriarty, R. M.; Epa, W. R.; Awasthi, A. K. Tetrahedron Lett. 1990, 31, 5877– 5880.

- 4. Liu, F.; Dalhus, B.; Gundersen, L.-L.; Rise, F. Acta Chem. Scand. 1999, 53, 269–279.
- Kato, K.; Hayakawa, H.; Tanaka, H.; Kumamoto, H.; Shindoh, S.; Shuto, S.; Miyasaka, T. J. Org. Chem. **1997**, 62, 6833–6841. 5.
 - Ghosh, A. K.; Lagisetty, P.; Zajc, B. J. Org. Chem. 2007, 72, 8222-8226.
- 6. Kumamoto, H.; Tanaka, H.; Tsukioka, R.; Ishida, Y.; Nakamura, A.; Kimura, S.; 7. Hayakawa, H.; Kato, K.; Miyasaka, T. J. Org. Chem. 1999, 64, 7773-7780.
- 8. Nolsoe, J. M. J.; Gundersen, L.-L.; Rise, F. Synth. Commun. 1998, 28, 4303-4315.
- 9. Hocek, M.; Pohl, R. Synthesis 2004, 2869-2876.
- Legraverend, M.; Grierson, D. S. *Biolog. Med. Chem.* **2006**, *14*, 3987–4006.
 Brun, V.; Legraverend, M.; Grierson, D. S. *Tetrahedron* **2002**, *58*, 7911–7923.
- 12. Brun, V.; Legraverend, M.; Grierson, D. S. Tetrahedron Lett. 2001, 42, 8165-8167.
- 13. Brun, V.; Legraverend, M.; Grierson, D. S. Tetrahedron Lett. 2001, 42, 8169-8171.