This article was downloaded by: [171.67.34.205] On: 01 March 2013, At: 06:06 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

Enantiodivergent Syntheses of (R)- and (S)-3,5-Dimethylcyclohex-2-en-1-ones from (R)-Pulegone

A. Nangia ^a & G. Prasuna ^a ^a School of Chemistry, University of Hyderabad, Hyderabad, 500 134, INDIA Version of record first published: 23 Sep 2006.

To cite this article: A. Nangia & G. Prasuna (1994): Enantiodivergent Syntheses of (R)- and (S)-3,5-Dimethylcyclohex-2-en-1-ones from (R)-Pulegone, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 24:14, 1989-1998

To link to this article: http://dx.doi.org/10.1080/00397919408010206

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

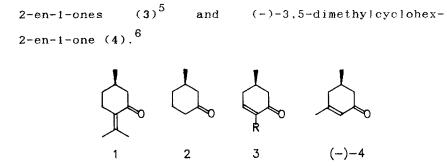
SYNTHETIC COMMUNICATIONS, 24(14), 1989-1998 (1994)

ENANTIODIVERGENT SYNTHESES OF (R)- AND (S)-

3,5-DIMETHYLCYCLOHEX-2-EN-1-ONES FROM (R)-PULEGONE

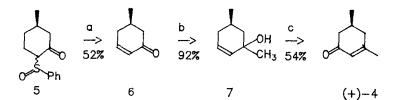
A. Nangia^{*} and G. Prasuna

School of Chemistry, University of Hyderabad Hyderabad 500 134, INDIA


ABSTRACT: R-(+)-pulegone (1)is transformed to (R)-5-methyl-2-(phenylsulfinyl)cyclohexanone (5) (65%, steps). Sulfoxide 5 is converted to R-(-)-3,5-3 dimethylcyclohex-2-en-1-one (4) (53%, 4 steps) and S-(+)-4 (26%, 3 steps).

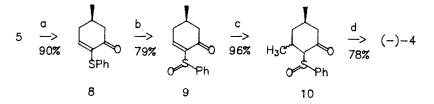
Monoterpenes of known absolute configuration are particularly attractive chiral starting materials for the synthesis of more complex natural products. Ιn this respect the readily available and inexpensive (R)-(+)-pulegone (1) i s а popular choice among synthetic organic chemists. In recent years. (+)-pulegone has been utilised in the synthesis of optically active (+)-artemisinin, $\frac{1}{(+)}$ -jatrophone² and (+) - 1233 A.³ other possible synthetic Among transformations. (+) - 1can be converted to (2), 4(-)-5-methylcyclohex-(+)-3-methylcyclohexanone

1989


Copyright © 1994 by Marcel Dekker, Inc.

NANGIA AND PRASUNA

The synthesis of R-(-)-4 from R-(+)-1 via R-(+)-2as an intermediate was reported by Allinger et al. in 1975.⁶ Although this preparation affords the requisite enone 4 in good optical purity $([\alpha]_{D}^{25} -138.4^{\circ}, c 0.8,$ CHCl₂), the large number of steps (~10), purification at each stage, and the low overall yield (<1%) make this procedure somewhat tedious. Moreover, the pseudo-symmetric ketone 2 is devoid of a convenient chemical handle for selective α -functionalisation remote from the chiral centre. Subsequent efforts of Agami⁷ on the S-proline catalysed cyclisation of prochiral diketones and of Koga⁸ on the enantioselective deprotonation of cyclohexanones were also unsuccessful. Racemic 4 has been employed as a starting material a number of synthetic in transformations.⁹ The use of (+)- or (-)-4 is infrequent, presumably due to the unavailability of a convenient method for their preparation. We report in this <u>Communication</u> the synthesis of (+)- and (-)-4starting from the same precursor, (+)-1.


1990

SCHEME 1: a) $CaCO_3$ (cat.), CCI_4 , 70 °C; b) MeLi, Et_2O ; c) PCC, CH_2CI_2 , rt.

Commercially available (R)-(+)-pulegone (1) was transformed to a mixture of diastereomeric yield.^{1,5,10} ketosulfoxides 5 65% overall in Keto-sulfoxide 5 employed as was the common intermediate for the synthesis of (+)- and (-)-4. The epimeric mixture at the sulfoxide moiety was of little consequence because the adjacent carbon is eventually converted into sp^2 -centre.

The thermal elimination of phenylsulfinic acid from sulfoxide 5 under conditions reported by Caine and co-workers⁵ provided isomerically and optically pure (R)-(-)-5-methylcyclohex-2-en-1-one (6) in 52% yield. Addition of MeLi at -78 °C gave a mixture of pyranols 7 (92%, crude) which were smoothly rearranged to the transposed enone (+)-4 (54%) under the aegis of PCC¹¹ at rt (Scheme-1) ($[\alpha]_{D}^{25}$ +132.2°, c 1.4, CHCl₃, lit. +138.4°, optical purity 96%).⁶ This constitutes a significant improvement over Koga's procedure⁸ which affords (+)-4 in an optical purity of 60%.

SCHEME 2: a) Ac_2O , MsOH (cat.), CH_2Cl_2 ; b) $NaIO_4$, aq. MeOH; c) Me_2CuLi , Et_2O/THF ; d) $CaCO_3$ (cat.), CCl_4 , 70 ^{O}C .

The synthesis of enone (-)-4 from keto-sulfoxide 5 was carried out by a different route. Thus, Pummerer rearrangement¹² (Ac₂O, MsOH, CH_2Cl_2) of diastereomeric sulfoxides 5 provided enone sulfide 8 in 90% yield chromatography. Customary periodate after column oxidation and smooth conjugate addition with lithium dimethylcuprate provided a mixture of stereoisomers 10. Smooth elimination of PhS(O)H under conditions optimised earlier yielded enone (-)-4 ($[\alpha]^{25}_{D}$ -132.8°, c 1.25, CHCl₃, optical purity 96%)⁶ (Scheme-2). The alternative sequence of subjecting enone sulfide 8 to i) (CH₃)₂CuLi ii) NaIO₄ and iii) CaCO₃, did not produce satisfactory results.

In conclusion, we have synthesised (R)-(-)- and (S)-(+)-3,5-dimethylcyclohex-2-en-1-ones (4) from the common precursor sulfoxide (+)-5 in overall yields of 53% and 26%, respectively. The sequence is amenable to

scale-up and short enough to access both enantiomers (+)- and (-)-4 from (+)-pulegone (1) in about a week.

EXPERIMENTAL SECTION¹³

 1 H NMR (200 MHz) and 13 C NMR (25 MHz) were recorded on Bruker and Joel-Fx-100 spectrometers, respectively. Optical rotations at Na-D line were obtained at 25 $^{\circ}$ C on Rudolph Autopol II polarimeter.

R-(+)-PULEGONE (tech, 85%) was purchased from Aldrich and used as such $([\alpha]_D + 22^\circ (neat), Lit.^{14} [\alpha]_D + 23.0-23.5^\circ (neat);$ optical purity 94-96%). R-(-)-5-METHYLCYCLOHEX-2-EN-1-ONE (6)

A solution of sulfoxide 5 (1.180 g, 5 mmol) in anhyd CCl₄ (750 mL) was heated in the presence of CaCO₃ (25 mg, 0.25 mmol) at 70 °C for 20 h. The solution was filtered and solvent evoporated. Silica gel chromatography (SGC) (hexane ---> 10% Et₂O/hexane) yielded 290 mg (52%) of optically pure enone 6. $[\alpha]_{D}^{25}$: -87.1° (c 2.0, CHCl₃). (Lit.⁴ $[\alpha]_{D}^{25}$ -90.2° (c 2.55, CHCl₃). IR: (Neat, cm⁻¹) 700, 740, 880, 1030, 1270, 1390, 1440, 1670, 2900, 3050. ¹H NMR: δ 1.08 (d, J=6Hz, 3H); 1.95-2.58 (m, 5H); 5.96-6.08 (m, 1H); 6.90-7.04 (m, 1H). ¹³C NMR: δ 21.06, 30.24, 33.94, 48.18, 129.66, 150.01, 200.25..

(R)-1,5-DIMETHYLCYCLOHEX-2-EN-1-OL (7)

To a stirred solution of enone 6 (165 mg, 1.5 mmol) in 10 mL of anhyd Et_2 0 at -78 $^{\text{O}}$ C was added dropwise an ethereal solution of MeLi (1.2 mL, 3 mmol, 2.5 M soln in Et_2 O). The resulting solution was allowed to warm to rt over 1 h and stirred at rt for 2 h. The reaction mixture was quenched with saturated NH₄Cl solution (5 mL) and diluted with brine (10 mL). Extraction with Et_2 O (3 x 30 mL), brine wash and work-up afforded 175 mg (92%) of somewhat unstable

allylic alcohol 7 which was transposed as such in the next step. IR: (Neat, cm^{-1}) 720, 900, 1060, 1110, 1370, 1450, 2900, 3350. ¹H NMR: δ 0.98 (d, J=6Hz, 3H); 1.30 (s, 3H); 1.20-2.15 (m, 6H); 5.50-5.85 (m, 2H). ¹³C NMR: δ 22.06, 28.29, 28.30, 29.70, 33.88, 47.53, 127.07, 134.54.

S-(+)-3, 5-DIMETHYLCYCLOHEX-2-EN-1-ONE (4)

To a magnetically stirred slurry of PCC (645 mg, 3 mmol) in dry CH_2Cl_2 (5 mL) was added a solution of alcohol 7 (175 mg, 1.4 mmol) in dry CH₂Cl₂ (5 mL) in one porton at rt. The resulting dark red-black mixture was allowed to stir at rt for 1 h and then diluted with equal volume of Et_2O (10 mL). Filtration through celite, work-up and SGC (hexane ---> 10% Et₂O/hexane) afforded 94 mg (54%) of optically pure (+)-3,5-dimethyl cyclohex-2-en-1-one (4). MS: (70 ev) m/z 124 (M⁺), 82 (100). bp: 100 °C (oil bath)/12 Torr. $[\alpha]_{D}^{25}$: +132° (c 1.4, CHCl₃). IR: $(Neat, cm^{-1})$ 690, 730, 1250, 1370, 1440, 1650, 2900. ¹H NMR: 8 1.06 (d, J=6Hz, 3H); 1.95 (s, 3H); 2.00-2.50 (m, 5H); 5.88 (s, 1H). 13 C δ 21.06, 24.29, 30.06, 39.41, 45.24, 126.48, NMR : 162.06, 200.18.

(R)-5-METHYL-2-(PHENYLTHIO)CYCLOHEX-2-EN-1-ONE (8)

To a solution of sulfoxide 5 (590 mg, 2.5 mmol) in CH_2Cl_2 (10 mL) was added Ac_2O (510 mg, 475 μ L, 5 mmol) and MsOH (180 mg, 125 μ L, 1.875 mmol) at 0 ^{O}C . The resulting solution was stirred at the same temperature for 1 h, allowed to warm to rt and stirred for 15 h. H_2O (5 mL) was added and the stirring continued for 30 min. The reaction mixture was extracted with CH_2Cl_2 (3 x 30 mL) and the combined organic layers were washed successively with saturatrd NaHCO₃ solution and brine. Work-up afforded 535 mg (98%) of crude enone sulfide which was purified by SGC (hexane ---> 5% EtOAc/hexane) to afford 490 mg (90%) of pure 8. $[\alpha]^{25}$ -93.5° (c

2.0, $CHCl_3$). IR: (Neat, cm^{-1}) 690, 740, 900, 980. 1020, 1070, 1130, 1220, 1260, 1330, 1440, 1480. 1600, 1680, 2900, 3050. ¹H NMR: δ 1.05 (d, J=6Hz, 3H); 1.98-2.75 (m, 5H); 6.46 (dd, J=6,4Hz, 1H); 7.20-7.50 (m, 5H). ¹³C NMR: δ 20.65, 30.12, 35.06, 46.36, 128.06, 129.30, 132.07, 133.48, 136.96, 144.69, 195.24.

(R)-5-METHYL-2-(PHENYLSULFINYL)CYCLOHEX-2-EN-1-ONE (9)

To a solution of enone sulfide 8 (218 mg, 1 mmol) in MeOH (2.5 mL) was added a solution of $NaIO_A$ (214 mg, 1 mmol) in H_2O (1 mL) at 0 ^{O}C . The mixture was stirred at rt for 6 h. The precipitated NaIO₃ was removed by filtration and the filtrate was extracted with CH₂Cl₂ (3 x 30 mL), washed with 10% Na_2SO_3 solution twice and then with brine. Work-up afforded 230 mg (98%) of crude sulfoxide which was purified by SGC (10% ---> 30% EtOAc/hexane) to afford 185 mg (79%) of pure sulfoxide 9 as a 1:1 mixture of epimers at the sulfer centre. $[\alpha]_{n}^{25}$: -34.4° (c 5.0, CHCl₃). IR: (Neat.cm⁻¹) 680, 740, 920, 1010, 1040, 1070, 1120. 1200, 1260, 1330, 1440, 1600, 1660, 3050. ¹H NMR: δ 1.05 (m, 3H); 1.98-2.88 (m, 5H); 7.40-7.50 (m, 3H); 7.65-7.82 (m, ¹³C NMR: δ 20.35, 20.54, 29.47, 30.35, 34.13, 3H). 46.18, 46.53, 125.30, 129.07, 131.24, 144.13, 148.54, 149.83, 194.84, 195.02.

(R)-3,5-DIMETHYL-2-(PHENYLSULFINYL)CYCLOHEXANONE (10)

An oven dried 50 mL flask with N_2 inlet and rubber septum containing CuI (285 mg, 1.5 mmol) and 10 mL of anhyd Et_2O was cooled to 0 $^{\rm O}$ C. MeLi (3.0 mL, 3 mmol, 1.0 M soln in Et_2O) was added dropwise via syringe and stirred for 15 min. The $(CH_3)_2$ CuLi reagent was cooled to -78 $^{\rm O}$ C and to it was added a solution of enone sulfoxide 9 (234 mg, 1 mmol) in 10 mL of anhyd THF. Stirring was continued at -78 $^{\rm O}$ C for 30 min, followed by warming to 0 $^{\rm O}$ C over 1 h. The reaction mixture was quenched at $0^{\circ}C$ with saturated NH₄Cl solution (10 mL) and diluted with brine (10 mL). Extraction with Et_2O (3 x 30mL), brine wash and work-up afforded 240 mg (96%) of crude dimethyl sulfoxide 10 which was used in $[\alpha]^{25}$ the next step without further purification. $+77.5^{\circ}$ (c 4.0, CHCl₃). IR: (Neat, cm⁻¹) 610, 680, 740, 1040, 1080, 1140, 1210, 1300, 1440, 1700, 2900. ¹H NMR: δ 0.95-1.12 (m, 3H); 1.18-1.30 (m, 3H); 1.50-2.70 (m, 6H); 2.94-3.79 (m, 1H); 7.40-7.70 (m, ¹³C NMR: δ 13.94, 19.06, 20.24, 21.06, 21.94, 5H). 25.29, 28.24, 29.06, 29.36, 29.50, 29.88, 30.65, 32.59, 33.77, 35.41, 35.83, 40.13, 50.18, 50.42, 51.36, 67.65, 76.89, 77.30, 79.30, 79.43, 88.06, 124.09, 124.38, 125.07, 125.59, 128.88, 129.24, 131.14, 131.42, 131.59, 131.83, 141.79, 141.89, 203.43, 204.25, 206.60. R-(-)3,5-DIMETHYLCYCLOHEX-2-EN-1-ONE (4)

A solution of dimethylketosulfoxide 10 (240 mg, 0.96 mmol) in anhyd CCl₄ (150 mL) was heated in the presence of CaCO₃ (5 mg, 0.05 mmol) at 70°C for 24 h. The solution was filtered and solvent evoperated. SGC (hexane ---> 10% Et₂O/hexane) provided 93 mg (78%) of optically pure (-)-3,5-dimethylcyclohex-2-en-1-one (4). MS: (70 ev) m/z 124 (M⁺), 82 (100). [α]²⁵_D: -132.8° (c 1.25, CHCl₃) (Lit.⁶ [α]²⁵_D -138.4° (c 0.8, CHCl₃)). IR: (Neat, cm⁻¹) 880, 1010, 1140, 1240, 1370, 1390, 1430, 1640, 2900. ¹H NMR: δ 1.06 (d, J=6Hz, 3H); 1.95 (s, 3H); 2.00-2.50 (m, 5H); 5.88 (s,1H). ¹³C NMR: δ 21.12, 24.35, 30.06. 39.41, 45.24, 126.48, 162.13, 200.25.

ACKNOWLEDGEMENTS

We thank Department of Science and Technology (DST), New Delhi for funding this research project and SAP/COSIST programmes of University Grants Commission (UGC), New Delhi for financial support in School of Chemistry. GP thanks UGC for a research followship.

(R)-PULEGONE

REFERENCES

- Avery, M.A.; Chong, W.K.M.; Jennings-White, C. J. <u>Am. Chem. Soc.</u> 1992, <u>114</u>, 974.
- Han, Q.; Wiemer, D.F. <u>J. Am. Chem. Soc.</u> 1992. <u>114</u>, 7692.
- Wovkulich, P.M.; Shankaran, K.; Kiegiel, J.;
 Uskokovic, M.R. <u>J. Org. Chem.</u> 1993, <u>58</u>, 832.
- Opplzer, W.; Petrzilka, M. <u>Helv. Chim. Acta.</u> 1978, <u>61</u>, 2755.
- Cain, D.; Procter, K.; Cassel, R.A. <u>J. Org. Chem.</u> 1984, <u>49</u>, 2647.
- Allinger, N.L.; Riew, C.K. <u>J. Org. Chem.</u> 1975, <u>40</u>, 1316.
- 7. (a) Agami, C.; Sevestre, H. <u>J. Chem. Soc.</u>, <u>Chem.</u>
 <u>Commun.</u> 1984, 1385. (b) Agami, C.; Nicol, P. <u>Bull.</u>
 <u>Soc. Chim. Fr.</u> 1987, 358.
- Kim, H.D.; Shirai, R.; Kawasaki, H.; Nikajima, M.; Koga, K. <u>Heterocycles</u> 1990, <u>30</u>, 307.
- 9. For some recent examples see: (a) Maruoka, K.; Itoh, T.; Sakurai, M.; Nonoshita. K.; Yamamoto, H. J. <u>Am. Chem. Soc.</u> 1988, <u>110</u>, 3588. (b) Barner, B.A.; Liu, Y.; Abdur Rahman, Md. <u>Tetrahedron</u> 1989, <u>45</u>, 6101. (c) Sato, T.; Waeanabe, T.; Hayata, T.; Tsukui, T. <u>Tetrahedron</u> 1989, <u>45</u>, 6401. (d) Mahoney, W.S.; Stryker, J.M. <u>J. Am. Chem. Soc.</u> 1989, <u>111</u>, 8818.
- NaIO₄ was used instead of m-CPBA for oxidation of sulfide to sulfoxide: Leonard, N.J.; Johnson, C.R. <u>J. Org. Chem.</u> 1962, <u>27</u>, 282.
- Dauben, W.g.; Michno, D.M. <u>J. Org. Chem.</u> 1977, <u>42</u>, 682.
- Kato, M.; Watanabe, M.; Vogler, B.; Awen, B.Z.;
 Masuda, Y.; Tooyama, Y.; Yoshikoshi, A. <u>J.</u> <u>Org.</u> <u>Chem.</u> 1991, <u>56</u>, 7071.

- For general introduction, see: Nangia, A.; Rao, B.M.; Prasuna, G. <u>Synth. Commun.</u> 1992, <u>22</u>, 593.
- 14. Houlihan, W.J. <u>J. Org. Chem.</u> 1962, <u>27</u>. 4096.

(Received in the UK 22 December 1993)