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Abstract: A novel palladium-catalyzed [2+2+1] annulation of alkyne-tethered aryl iodides with 
diaziridinone was developed, leading to the formation of 3,4-fused tricyclic indoles. From a 
mechanistic standpoint, the formation of fused tricyclic indole scaffolds involved 
C,C-palladacycles, which were synthesized through intramolecular reaction of aryl halides and 
alkynes. The cascade reaction described herein could be carried out with a broad range of 
substrate and provided various 3,4-fused tricyclic indoles with yields up to 98%.

Introduction 

Indole derivatives represent one of the most widely distributed class of compounds that may be 
found in various natural products and pharmaceuticals.1 In particular, 3,4-fused tricyclic indoles 
have attracted significant interest in the scientific community with wide ranging applications.2 As 
shown in Figure 1, lysergic acid,3 produced in the fungus species Claviceps purpurea, features 
broad biological and pharmacological activities. (-)-Indolactam V4 and dragmacidin E,5 isolated 
from Streptoverticillium blastmyceticum NA39-17 and Spongosortes, possessing tumor promoting 
and  serine-threonine protein phosphatase inhibitory activities. Rucaparib,6 a novel PARP 
inhibitor, may be used to treat breast and ovarian cancers. Therefore, the development of both 
practical and efficient synthetic methods to produce 3,4-fused tricyclic indoles remains a critical 
goal in organic synthetic chemistry.
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Figure 1. Selected natural products and drug compounds containing 3,4-fused tricyclic indoles.
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Scheme 1. Application of diaziridinone and synthesis of 3,4-fused indoles.
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Over the past few decades, transition-metal-catalyzed C−H bond activation and 
functionalization have been utilized for the efficient synthesis of diverse complex compounds 
through synchronous C−C, C−N, or C−O bond formation.7 Specifically, C,C-palladacycles, an 
important class of metallacycles, may be prepared from aryl halides via Pd-enabled C(sp2)−H 
activation exhibiting unique characteristics resulting in the discovery of novel reactions.8 In 2013, 
Shi et al. first reported diaziridinones could be used as a new amine source to react with 
C,C-palladacycles to form indolines9 via various amination reactions.10 Moreover, Shi et al. 
also demonstrated the preparation of various indoline and indole derivatives by using important 
intramolecular design motifs (Scheme 1a).11 Subsequently, the synthetic use of diaziridinone was 
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further expanded by Zhang and co-workers using C−H amination reactions to synthesize 
heterocycles, such as carbazoles,12 benzimidazoles,13 and indole derivatives, including substituted 
indoles,14 indolines,15 and 3,4-fused tricyclic indoles16 (Scheme 1b).

Various synthetic methods have been developed thereafter for the construction of indoles 
through transition-metal-catalysis.17 However, efficient synthetic methods for the production of 
the 3,4-fused indole scaffold are still limited.18 In 2013, Jia and co-workers reported a 
palladium-catalyzed protocol for the construction of 3,4-fused tricyclic indoles via intramolecular 
Larock indolization.19 Subsequently, in 2014 Jia et al. reported the rhodium-catalyzed 
intramolecular annulation of alkyne-tethered acetanilides for the construction of such scaffolds 
(Scheme 1c).20 In 2020, Luan et al. developed a palladium-catalyzed synthesis of 3,4-fused 
tricyclic indoles with alkyne-tethered aryl iodides and a secondary hydroxylamine (Scheme 1d).21 
Based on Luan’s work22 and our preliminary research on metal catalyzed functionalization23 and 
indole chemistry,24 in this paper we report a highly efficient palladium-catalyzed one-pot [2+2+1] 
annulation reaction of alkyne-tethered aryl iodides with diaziridinone to generate 3,4-fused 
tricyclic indoles (Scheme 1e).

Results and Discussion

Initially, we commenced our study with 1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene 1a and 
1,2-di-tert-butyldiaziridin-3-one 2a in an effort to achieve optimized reaction conditions (Table 1). 
The substrates were treated with Pd(OAc)2 (10 mol %), Cs2CO3 (1 equiv.), and KOAc (1 equiv.) 
in DMF (2 mL) at 130 oC under Ar for 4 h. The desired product 3a was obtained in 61% yield 
(entry 1). Among the various screened catalysts (entries 1-3), Pd(OAc)2 proved to be the most 
suitable. Different bases such as CsOAc and KOPiv were then investigated, however, no outcome 
benefits could be observed (entries 4-5). The reaction proceeded with reasonable efficiency when 
Cs2CO3 was used as a base (entry 6). The total yield of 3a could be improved to 83% when a 
series of phosphine ligands were added, with PPh3 demonstrating to be the most effective ligand 
(entries 7-13). After screening the different solvents such as toluene, N,N-dimethylacetamide 
(DMA), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and MeCN, DMF was found to be 
still the most efficient solvent, providing compound 3a in 83% yield (entries 14−18). When the 
amount of Cs2CO3 was increased to 2 equiv., the yield of 3a did not change (entry 19). Control 
experiments confirmed that the yield of 3a could be decreased upon lowering the reaction 
temperature (entry 20) and reducing amount of PPh3 (entries 21 and 22). Finally, the optimized 
reaction conditions were determined as follows: 1a (0.2 mmol), 2a (2 equiv.), Pd(OAc)2 (10 
mol %), Cs2CO3 (1 equiv.), and PPh3 (1 equiv.) in DMF (2.0 mL) at 130 °C for 4 h under Ar 
atmosphere.
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Table 1. Optimization of reaction conditionsa.

[Pd] (10 mol %)
base, ligand

solvent (2 mL), 130 oC, 4 h, Ar
+

1a 2a 3a

N
N N

O
I

Entry Catalyst Base (equiv.) Ligand Solvent Yieldb (%)
1 Pd(OAc)2 KOAc (1)/Cs2CO3 (1) - DMF 61
2 Pd(PPh3)4 KOAc (1)/Cs2CO3 (1) - DMF 53
3 Pd(dba)3 KOAc (1)/Cs2CO3 (1) - DMF 46
4 Pd(OAc)2 CsOAc (1)/Cs2CO3 (1) - DMF 55
5 Pd(OAc)2 KOPiv (1)/Cs2CO3 (1) - DMF 60
6 Pd(OAc)2 Cs2CO3 (1) - DMF 63
7 Pd(OAc)2 Cs2CO3 (1) PCy3 DMF 69
8 Pd(OAc)2 Cs2CO3 (1) PPh3 DMF 83
9 Pd(OAc)2 Cs2CO3 (1) DPPBz DMF 0
10 Pd(OAc)2 Cs2CO3 (1) BINAP DMF 20
11 Pd(OAc)2 Cs2CO3 (1) DPPF DMF 15
12 Pd(OAc)2 Cs2CO3 (1) DPPP DMF 0
13 Pd(OAc)2 Cs2CO3 (1) DPPE DMF 0
14 Pd(OAc)2 Cs2CO3 (1) PPh3 toluene trace
15 Pd(OAc)2 Cs2CO3 (1) PPh3 DMA 43
16 Pd(OAc)2 Cs2CO3 (1) PPh3 DMSO 45
17 Pd(OAc)2 Cs2CO3 (1) PPh3 THF trace
18 Pd(OAc)2 Cs2CO3 (1) PPh3 MeCN trace
19c Pd(OAc)2 Cs2CO3 (2) PPh3 DMF 83%
20d Pd(OAc)2 Cs2CO3 (1) PPh3 DMF 80%
21e Pd(OAc)2 Cs2CO3 (1) PPh3 DMF 53%
22f Pd(OAc)2 Cs2CO3 (1) PPh3 DMF 70%

aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), catalyst (10 mol %), base, ligand (1 equiv.), 
DMF (2 mL), 130 oC, for 4 h, under Ar. bIsolated yield. cCs2CO3 (2 equiv.). dThe reaction 
temperature was 100 °C. ePPh3 (20 mol % ). fPPh3 (50 mol % ). DMF = N,N-dimethylformamide, 
DMA = N,N-dimethylacetamide, DMSO = dimethyl sulfoxide, THF = tetrahydrofuran.
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With these optimized reaction conditions in hand, the scope and limitations of 
alkyne-tethered aryl iodides 1 were examined as shown in Scheme 2. First, the electronic 
effects of phenyl substituents on the alkynes were examined, including Me-, Cl-, and CF3- 
functional groups (3a–3g). Substrates containing both electron-donating and 
electron-withdrawing groups in para (3b−3d), meta (3e−3f) and ortho (3g) positions of the 
aryl groups on the internal alkyne all displayed high reactivity, providing the desired products in 
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71-96% yields. Moreover, disubstituted alkynes were found to be well tolerated in this 
transformation, providing the corresponding products 3h and 3i in 93% and 70% yields, 
respectively. Furthermore, this reaction was not limited to phenyl substrates, giving athiophene 
ring containing product 3j in 53% yield. Alkenyl substituents, however, did not provide the 
desired product 3k under optimized conditions.

N N N
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N

Cl

N
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N
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1 2a 3

Scheme 2. Substrate scope of phenyl substituents on the alkyne species a,b. a Reaction conditions: 1 (0.2 
mmol), 2a (0.4 mmol), Pd(OAc)2 (10 mol %), Cs2CO3 (1 equiv.) and PPh3 (1 equiv.) in DMF (2.0 mL) 
at 130 oC for 4 h under Ar atmosphere. b Isolated yield.

Next, the electronic effects of the aryl iodide moiety were examined (Scheme 3, 3l–3o). 
Surprisingly, substrates bearing electron-rich (Me and OMe) and electron-deficient (F and Cl) 
functional groups provided the desired products in good to excellent yields (78-98%). 
Subsequently, substrates containing a carbon- and oxygen-tether were studied, and the desired 
3,4-fused indoles 3p-3u could be obtained in 69-96% yields. However, alkyl-substituted and 
unsubstituted alkyne 1v-1z failed to form the desired product. To demonstrate the synthetic utility 
of this protocol, a scaled-up reaction of 1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene 1a and 
diaziridinone ylide 2a was carried out under optimized reaction conditions, providing the 
corresponding product 3a in 85% yield (Scheme 4).

Furthermore, the tert-butyl group could be easily removed to form the unprotected 3,4- fused 
tricyclic indole product 3a, in 75% yield under acidic conditions (Scheme 5).25 Various indole 
derivatives could then be formed thereafter. Moreover, a competitive experiment was carried out 
between two alkyne-tethered aryl iodides with differing electronic effects. The ratio of two 
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corresponding products (3c/3b = 1.3 and 3o/3l = 1.3) suggested that the 
electron-withdrawing alkyne-tethered aryl iodides exhibited a slightly higher reactivity 
(Scheme 6).
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Scheme 3. Substrate scope of alkyne-tethered aryl iodidesa,b. a Reaction conditions: 1 (0.2 mmol), 2a 
(0.4 mmol), Pd(OAc)2 (10 mol %), Cs2CO3 (1 equiv.) and PPh3 (1 equiv.) in DMF (2.0 mL) at 130 oC 
for 4 h under Ar atmosphere. b Isolated yield.
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Scheme 5. Removal of the tert-butyl group from compound 3a.
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Scheme 6. Competition experiments.

On the basis of various reports found in the literature,11, 21-22, 26 a plausible reaction mechanism 
could be proposed (Scheme 7). Initially, via oxidative addition of the carbon-halogen bond in 
1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene 1a to Pd(0) forms intermediate A, which undergoes an 
intramolecular migratoy insertion, generating a primary vinylpalladium complex species B. Then, 
intermediate B undergoes intramolecular C−H activation to generate C,C-pallada-cycle C. Next, 
the pallada(IV)cycle D is obtained due to B insertion into the N-N bond of diaziridinone 2a via 
oxidative addition. Subsequently, intermediate D to G may undergo two possible pathways, one is 
the reductive elimination of D to afford intermediate E. Species G may be formed by β-N 
elimination (pathway a) or via a Pd(IV)-nitrene pathway (pathway b). The final product 3a is 
formed by reductive elimination and regeneration of the Pd(0)-catalytic species, completing this 
catalytic cycle.

Conclusions

In conclusion, we have developed a cascade reaction to generate various functionalized 
3,4-fused tricyclic indoles via palladium-catalyzed [2+2+1] annulation between alkyne-tethered 
aryl iodides and diaziridinone, in which C,C-palladacycles may act as key intermediates. The 
protocol proved to be useful for the preparation of diverse 3,4-fused tricyclic indole species due to 
high atom economy, good to excellent yields, and suitable functional group tolerance. Moreover, 
further chemical transformations of the desired products enhance the overall synthetic value. 
Further studies on the applicability of 3,4-fused tricyclic indoles for the synthesis of natural 
products are currently ongoing in our laboratory.
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Scheme 7. Plausible reaction mechanism.

Experimental Section

General methods. All commercials obtained from commercial sources were used as received unless 
otherwise noted. The progress of the reactions was monitored by TLC with silica gel plates, and the 
visualization was carried out under UV light (254 nm). Melting points were determined using a Büchi 
B-540 capillary melting point apparatus. NMR spectra were recorded on 400 MHz and 600 MHz 
spectrometers in the solvent indicated. Chemical shifts are reported downfield from TMS (= 0) for 1H 
NMR. For 13C NMR, chemical shifts are reported in the scale relative to CDCl3 (= 77.0), DMSO-d6 (= 
40.0) and Benzene-d6 (= 128.0). Mass spectra were measured with a low-resolution MS instrument 
using ESI ionization. HRMS spectra were recorded on an electrospray ionization quadrupole 
time-of-flight (ESI-Q-TOF) mass spectrometer.
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Preparation of Substrates.The substrates (1a−1o, 1v-1w),26d, 27 1p,26d, 28 (1q-1u),26d, 29 1x,27a 
1y-1z,30 2a31 were prepared using the literature procedures, and the NMR data of all these compounds 
were compared with the corresponding reported data.

1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene (1a). Eluent in chromatography: petroleum ether, 1a was 
isolated as a colorless oil (1.30 g, 75%); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 7.6 Hz, 1H), 7.44 – 
7.39 (m, 2H), 7.33 – 7.22 (m, 5H), 6.94 – 6.84 (m, 1H), 2.98 – 2.83 (m, 2H), 2.48 (t, J = 6.8 Hz, 2H), 
1.95 – 1.86 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 144.2, 139.5, 131.6, 129.6, 128.3, 128.2, 
127.8, 127.6, 123.9, 100.5, 89.6, 81.3, 39.8, 29.0, 19.0. HRMS (EI) m/z calcd for C17H15I [M]+ 
346.0218, found 346.0197.

1-iodo-2-(5-(p-tolyl)pent-4-yn-1-yl)benzene (1b). Eluent in chromatography: petroleum ether, 1b 
was isolated as a light yellow liquid (1.40 g, 78%); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.0 Hz, 
1H), 7.31 (d, J = 8.2 Hz, 2H), 7.29 – 7.19 (m, 2H), 7.09 (d, J = 7.8 Hz, 2H), 6.90 – 6.84 (m, 1H), 2.93 – 
2.83 (m, 2H), 2.46 (t, J = 6.8 Hz, 2H), 2.33 (s, 3H), 1.94 – 1.85 (m, 2H). 13C{1H} NMR (100 MHz, 
CDCl3) δ 144.2, 139.5, 137.5, 131.4, 129.6, 128.9, 128.3, 127.8, 120.8, 100.5, 88.8, 81.3, 39.8, 29.1, 
21.4, 19.0. HRMS (EI) m/z calcd for C18H17I [M]+ 360.0375, found 360.0388. 

1-(5-(4-chlorophenyl)pent-4-yn-1-yl)-2-iodobenzene (1c). Eluent in chromatography: petroleum 
ether, 1c was isolated as a yellow liquid (1.52 g, 80%); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 7.8 
Hz, 1H), 7.38 – 7.32 (m, 2H), 7.30 – 7.20 (m, 4H), 6.92 – 6.85 (m, 1H), 2.94 – 2.82 (m, 2H), 2.46 (t, J 
= 7.0 Hz, 2H), 1.94 – 1.85 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 144.1, 139.6, 133.5, 132.8, 
129.5, 128.5, 128.3, 127.9, 122.4, 100.5, 90.7, 80.3, 39.8, 28.9, 19.0. HRMS (EI) m/z calcd for 
C17H14ClI [M]+ 379.9829, found 379.9820. 

1-iodo-2-(5-(4-(trifluoromethyl)phenyl)pent-4-yn-1-yl)benzene (1d). Eluent in chromatography: 
petroleum ether, 1d was isolated as a yellow liquid (1.45 g, 70%); 1H NMR (400 MHz, DMSO-d6) δ 
7.85 (d, J = 7.6 Hz, 1H), 7.75 – 7.60 (m, 4H), 7.39 – 7.33 (m, 2H), 7.01 – 6.95 (m, 1H), 2.86 – 2.82 (m, 
2H), 2.57 – 2.50 (m, , 2H), 1.90 – 1.77 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 144.0, 139.6, 
131.8, 129.5, 129.2, 128.3, 127.9, 127.8, 125.1 (q, JC-F = 3.8 Hz), 122.6, 100.5, 92.5, 80.2, 39.8, 28.9, 
19.0. 19F NMR (376 MHz, CDCl3) δ -62.72. HRMS (EI) m/z calcd for C18H14F3I [M]+ 414.0092, found 
414.0088. 

1-iodo-2-(5-(m-tolyl)pent-4-yn-1-yl)benzene (1e). Eluent in chromatography: petroleum ether, 1e 
was isolated as a yellow liquid (1.48 g, 82%); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.6 Hz, 1H), 
7.31 – 7.21 (m, 4H), 7.17 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.4 Hz, 1H), 6.92 – 6.82 (m, 1H), 2.94 – 2.83 
(m, 2H), 2.47 (t, J = 6.8 Hz, 2H), 2.31 (s, 3H), 1.95 –1.85 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 
144.2, 139.5, 137.8, 132.2, 129.6, 128.6, 128.5, 128.3, 128.1, 127.8, 123.7, 100.5, 89.2, 81.4, 39.8, 29.0, 
21.2, 18.9. HRMS (EI) m/z calcd for C18H17I [M]+ 360.0375, found 360.0364. 

1-(5-(3-chlorophenyl)pent-4-yn-1-yl)-2-iodobenzene (1f). Eluent in chromatography: petroleum ether, 
1f was isolated as a colorless oil (1.44 g, 76%); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.8 Hz, 1H), 
7.41 – 7.38 (m, 1H), 7.32 – 7.23 (m, 4H), 7.23 – 7.17 (m, 1H), 6.97 – 6.79 (m, 1H), 2.98 – 2.82 (m, 
2H), 2.47 (t, J = 8.0 Hz, 2H), 1.96 – 1.82 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 144.0, 139.6, 
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134.0, 131.5, 129.7, 129.6, 129.4, 128.3, 127.9, 127.9, 125.6, 100.5, 91.1, 80.1, 39.8, 28.9, 18.9. 
HRMS (EI) m/z calcd for C17H14ClI [M]+ 379.9829, found 379.9809. 

1-chloro-2-(5-(2-iodophenyl)pent-1-yn-1-yl)benzene (1g). Eluent in chromatography: petroleum 
ether, 1g was isolated as a light yellow liquid (1.37 g, 72%); 1H NMR (400 MHz, CDCl3) δ 7.8 (d, J = 
8.6 Hz, 1H), 7.5 – 7.4 (m, 1H), 7.4 – 7.3 (m, 1H), 7.31 – 7.25 (m, 2H), 7.2 – 7.1 (m, 2H), 6.91 – 6.85 
(m, 1H), 3.0 – 2.9 (m, 2H), 2.5 (t, J = 6.8 Hz, 2H), 1.98 – 1.88 (m, 2H). 13C{1H} NMR (100 MHz, 
CDCl3) δ 144.1, 139.5, 135.8, 133.3, 129.7, 129.1, 128.6, 128.3, 127.8, 126.3, 123.7, 100.5, 95.3, 78.3, 
39.6, 28.8, 19.1. HRMS (EI) m/z calcd for C17H14ClI [M]+ 379.9829, found 379.9849. 

1-(5-(2-iodophenyl)pent-1-yn-1-yl)-3,5-dimethoxybenzene (1h). Eluent in chromatography: 
petroleum ether, 1h was isolated as a light yellow liquid (1.14 g, 56%); 1H NMR (400 MHz, CDCl3) δ 
7.82 (d, J = 8.2 Hz, 1H), 7.32 – 7.18 (m, 2H), 6.94 – 6.82 (m, 1H), 6.60 – 6.53 (d, J = 2.2 Hz, 2H), 6.41 
(t, J = 2.4 Hz, 1H), 3.77 (s, 6H), 2.96 – 2.82 (m, 2H), 2.47 (t, J = 6.8 Hz, 2H), 1.92 – 1.86 (m, 2H). 
13C{1H} NMR (100 MHz, CDCl3) δ 160.5, 144.2, 139.5, 129.6, 128.3, 127.8, 125.2, 109.4, 101.1, 
100.5, 89.3, 81.3, 55.4, 39.8, 29.0, 18.9. HRMS (EI) m/z calcd for C19H19IO2 [M]+ 406.0430, found 
406.0412. 

1,3-difluoro-5-(5-(2-iodophenyl)pent-1-yn-1-yl)benzene (1i). Eluent in chromatography: petroleum 
ether, 1i was isolated as a colorless oil (0.96 g, 50%); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 7.6 
Hz, 1H), 7.32 – 7.25 (m, 1H), 7.24 – 7.17 (m, 1H), 6.95 – 6.83 (m, 3H), 6.79 – 6.67 (m, 1H), 2.91 – 
2.83 (m, 2H), 2.46 (t, J = 6.8 Hz, 2H), 1.96 – 1.85 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 162.6 
(dd, J = 248.2, 13.6 Hz), 143.9, 139.6, 129.5, 128.3, 127.9, 114.6 (d, JC-F = 7.4 Hz), 114.4 (d, JC-F = 7.4 
Hz), 103.8 (t, JC-F = 25.4 Hz), 100.5, 92.1, 79.4, 39.8, 28.7, 18.9. 19F NMR (376 MHz, CDCl3) δ -105.5 
– -113.3 (m). HRMS (EI) m/z calcd for C17H13F2I [M]+ 382.0030, found 382.0048. 

2-(5-(2-iodophenyl)pent-1-yn-1-yl)thiophene (1j). Eluent in chromatography: petroleum ether, 1j 
was isolated as a light yellow liquid (1.14 g, 65%); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.2 Hz, 
1H), 7.30 – 7.21 (m, 2H), 7.19 – 7.11 (m, 2H), 6.96 – 6.92 (m, 1H), 6.91 – 6.85 (m, 1H), 2.94 – 2.81 
(m, 2H), 2.49 (t, J = 7.0 Hz, 2H), 1.94 – 1.85 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 144.1, 
139.5, 131.0, 129.6, 128.3, 127.9, 126.8, 126.0, 124.0, 100.5, 93.7, 74.4, 39.8, 28.9, 19.2. HRMS (ESI) 
m/z calcd for C15H14IS [M + H]+ 352.9855, found 352.9851. 

1-iodo-2-(6-methylhept-6-en-4-yn-1-yl)benzene (1k). Eluent in chromatography: petroleum ether, 1k 
was isolated as a light yellow liquid (1.05 g, 68%); 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.8 Hz, 
1H), 7.30 – 7.26 (m, 1H), 7.24 – 7.21 (m, 1H), 6.91 – 6.85 (m, 1H), 5.24 (s, 1H), 5.16 (s, 1H), 2.89 – 
2.77 (m, 2H), 2.37 (t, J = 7.0 Hz, 2H), 1.90 (s, 3H), 1.88 – 1.79 (m, 2H). 13C{1H} NMR (100 MHz, 
CDCl3) δ 144.2, 139.5, 129.5, 128.3, 127.8, 127.2, 120.5, 100.5, 88.6, 82.6, 39.7, 29.0, 23.9, 18.8. 
HRMS (EI) m/z calcd for C14H15I [M]+ 310.0218, found 310.0209. 

1-iodo-4-methyl-2-(5-phenylpent-4-yn-1-yl)benzene (1l). Eluent in chromatography: petroleum ether, 
1l was isolated as a yellow liquid (1.53 g, 85%); 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.0 Hz, 
1H), 7.45 –7.40 (m, 2H), 7.33 – 7.27 (m, 3H), 7.07 (s, 1H), 6.73 – 6.69 (m, 1H), 2.90 – 2.77 (m, 2H), 
2.47 (t, J = 6.8 Hz, 2H), 2.27 (s, 3H), 1.93 – 1.83 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 143.9, 
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139.2, 138.2, 131.6, 130.5, 128.8, 128.2, 127.5, 124.0, 96.4, 89.7, 81.3, 39.7, 29.2, 20.9, 19.0. HRMS 
(EI) m/z calcd for C18H17I [M]+ 360.0375, found 360.0366. 

1-iodo-4-methoxy-2-(5-phenylpent-4-yn-1-yl)benzene (1m). Eluent in chromatography: petroleum 
ether/ethyl acetate 100:1, 1m was isolated as a yellow liquid (1.65 g, 88%); 1H NMR (400 MHz, 
CDCl3) δ 7.67 (d, J = 8.6 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.32 – 7.25 (m, 3H), 6.84 (d, J = 3.0 Hz, 1H), 
6.50 (dd, J = 8.6, 3.06 Hz, 1H), 3.76 (s, 3H), 2.90 – 2.79 (m, 2H), 2.48 (t, J = 6.8 Hz, 2H), 1.95 – 1.85 
(m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 159.9, 145.2, 139.9, 131.5, 128.2, 127.6, 123.9, 115.7, 
113.8, 89.6, 89.0, 81.3, 55.3, 39.8, 28.9, 18.9. HRMS (ESI) m/z calcd for C18H17INaO[M + Na]+ 
399.0216, found 399.0193. 

4-fluoro-1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene (1n). Eluent in chromatography: petroleum ether, 
1n was isolated as a yellow liquid (1.46 g, 80%); 1H NMR (400 MHz, CDCl3) δ 7.74 (dd, J = 8.6, 5.6 
Hz, 1H), 7.44 – 7.40 (m, 2H), 7.33 – 7.25 (m, 3H), 7.00 (dd, J = 9.6, 2.98 Hz, 1H), 6.66 (td, J = 8.4, 2.8 
Hz, 1H), 2.91 – 2.84 (m, 2H), 2.48 (t, J = 6.8 Hz, 2H), 1.94 – 1.83 (m, 2H). 13C{1H} NMR (100 MHz, 
CDCl3) δ 163.0 (d, JC-F = 247.2 Hz), 146.4 (d, JC-F = 7.2 Hz), 140.5 (d, JC-F = 7.8 Hz), 131.5, 128.2, 
127.6, 123.8, 116.6 (d, JC-F = 21.8 Hz), 115.2 (d, JC-F = 21.6 Hz), 93.2, 89.2, 81.5, 39.8, 28.7, 18.9. 19F 
NMR (376 MHz, CDCl3) δ -114.35. HRMS (EI) m/z calcd for C17H14FI [M]+ 364.0124, found 
364.0107. 

4-chloro-1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene (1o). Eluent in chromatography: petroleum ether, 
1o was isolated as a yellow liquid (1.42 g, 75%); 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.4 Hz, 
1H), 7.45 – 7.40 (dd, J = 6.4, 3.2 Hz, 2H), 7.33 – 7.21 (m, 4H), 6.89 (dd, J = 8.4, 2.6 Hz, 1H), 2.98 – 
2.74 (m, 2H), 2.48 (t, J = 6.8 Hz, 2H), 1.94 –1.84 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 146.1, 
140.4, 134.5, 131.6, 129.5, 128.2, 128.0, 127.6, 123.8, 97.5, 89.2, 81.5, 39.7, 28.7, 19.0. HRMS (EI) 
m/z calcd for C17H14ClI [M]+ 379.9829, found 379.9833. 

1-iodo-2-((5-phenylpent-4-yn-1-yl)oxy)benzene (1p). Eluent in chromatography: petroleum 
ether/ethyl acetate 100:1, 1p was isolated as a light yellow liquid (1.23 g, 70%); 1H NMR (400 MHz, 
CDCl3) δ 7.76 (dd, J = 7.8, 1.6 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.31 – 7.18 (m, 4H), 6.83 (dd, J = 8.2, 1.2 
Hz, 1H), 6.70 (td, J = 7.6, 1.2 Hz, 1H), 4.15 (t, J = 5.8 Hz, 2H), 2.71 (t, J = 6.8 Hz, 2H), 2.17 – 2.08 (m, 
2H). 13C{1H} NMR (100 MHz, CDCl3) δ 157.3, 139.4, 131.5, 129.4, 128.2, 127.6, 123.7, 122.5, 112.1, 
89.1, 86.7, 81.2, 67.5, 28.5, 16.3. HRMS (ESI) m/z calcd for C17H15INaO [M + Na]+ 385.0060, found 
385.0061. 

diethyl 2-(2-iodobenzyl)-2-(4-phenylbut-3-yn-1-yl)malonate (1q). Eluent in chromatography: 
petroleum ether/ethyl acetate 20:1, 1q was isolated as a colorless oil (1.69 g, 67%); 1H NMR (400 MHz, 
Benzene-d6) δ 7.64 (dd, J = 7.6, 1.2 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.34 (dd, J = 7.8, 1.6 Hz, 1H), 7.08 – 
6.80 (m, 4H), 6.46 (td, J = 7.6, 1.60 Hz, 1H), 3.94 (q, J = 7.0 Hz, 4H), 3.73 (s, 2H), 2.71 – 2.62 (m, 2H), 
2.62 – 2.51 (m, 2H), 0.85 (t, J = 7.2 Hz, 6H). 13C{1H} NMR (100 MHz, Benzene-d6) δ 170.6, 140.3, 
140.2, 131.9, 130.5, 128.7, 128.4, 124.5, 103.4, 89.5, 81.8, 61.4, 58.8, 43.3, 33.4, 16.2, 13.8. HRMS 
(ESI) m/z calcd for C24H26IO4 [M + H]+ 505.0870, found 505.0866. 
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diethyl 2-(2-iodobenzyl)-2-(3-phenylprop-2-yn-1-yl)malonate (1r). Eluent in chromatography: 
petroleum ether/ethyl acetate 20:1, 1r was isolated as a colorless oil (2.08 g, 85%); 1H NMR (400 MHz, 
Benzene-d6) δ 7.68 (dd, J = 7.8, 1.22 Hz, 1H), 7.54 (dd, J = 7.6, 1.6 Hz, 1H), 7.47 – 7.44 (m, 2H), 7.04 
– 6.96 (m, 3H), 6.91 (td, J = 7.6, 1.2 Hz, 1H), 6.48 (td, J = 7.6, 1.6 Hz, 1H), 4.09 – 4.01 (m, 4H), 4.00 – 
3.92 (m, 2H), 3.31 (s, 2H), 0.92 (t, J = 7.2 Hz, 6H). 13C{1H} NMR (100 MHz, Benzene-d6) δ 169.8, 
140.4, 140.1, 132.0, 131.1, 128.8, 128.5, 128.2, 123.9, 102.8, 85.9, 85.0, 61.7, 58.7, 42.1, 25.0, 13.9. 
HRMS (ESI) m/z calcd for C23H23INaO4 [M + Na]+ 513.0533, found 513.0514. 

diethyl 2-(2-iodo-5-methoxybenzyl)-2-(3-phenylprop-2-yn-1-yl)malonate (1s). Eluent in 
chromatography: petroleum ether/ethyl acetate 30:1, 1s was isolated as a light yellow liquid (1.98 g, 
76%); 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.6 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.31 – 7.26 (m, 3H), 
7.06 (d, J = 3.0 Hz, 1H), 6.53 (dd, J = 7.8, 1.6 Hz, 1H), 4.32 – 4.13 (m, 4H), 3.74 (s, 3H), 3.64 (s, 2H), 
3.03 (s, 2H), 1.3 (t, J = 7.2 Hz, 1H). 13C{1H} NMR (100 MHz, CDCl3) δ 169.7, 159.6, 140.3, 140.3, 
131.6, 128.2, 128.0, 123.2, 116.6, 115.2, 90.6, 85.1, 84.4, 61.8, 58.1, 55.2, 41.4, 24.3, 13.9. HRMS 
(ESI) m/z calcd for C24H25INaO5 [M + Na]+ 543.0639, found 543.0631. 

diethyl 2-(5-chloro-2-iodobenzyl)-2-(3-phenylprop-2-yn-1-yl)malonate (1t). Eluent in 
chromatography: petroleum ether/ethyl acetate 20:1, 1t was isolated as a yellow liquid (2.02 g, 77%); 
1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.6 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H), 7.42 – 7.38 (m, 2H), 
7.32 – 7.28 (m, 3H), 6.91 (dd, J = 8.4, 2.54 Hz, 1H), 4.37 – 4.09 (m, 4H), 3.64 (s, 2H), 3.03 (s, 2H), 
1.28 – 1.22 (m, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 169.5, 141.4, 140.8, 134.3, 131.6, 130.8, 
128.9, 128.2, 128.1, 123.1, 99.3, 84.7, 84.6, 62.0, 58.2, 41.4, 24.5, 13.9. HRMS (ESI) m/z calcd for 
C23H22ClINaO4 [M + Na]+ 547.0144, found 547.0131. 

diethyl 2-(4-chloro-2-iodobenzyl)-2-(3-phenylprop-2-yn-1-yl)malonate (1u). Eluent in 
chromatography: petroleum ether/ethyl acetate 20:1, 1u was isolated as a light yellow liquid (2.17 g, 
83%); 1H NMR (400 MHz, Benzene-d6) δ 7.70 (d, J = 2.2 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.31 (d, J = 
8.4 Hz, 1H), 7.02 – 6.91 (m, 3H), 6.84 (dd, J = 8.2, 2.2 Hz, 1H), 4.04 – 3.89 (m, 4H), 3.87 (s, 2H), 3.24 
(s, 2H), 0.95 – 0.86 (m, 6H). 13C{1H} NMR (100 MHz, Benzene-d6) δ 169.3, 139.0, 138.4, 133.2, 131.7, 
131.3, 128.3, 127.7, 127.5, 123.4, 102.3, 85.3, 84.8, 61.5, 58.3, 41.1, 24.7, 13.6. HRMS (ESI) m/z calcd 
for C23H22ClINaO4 [M + Na]+ 547.0144, found 547.0138. 

1-iodo-2-(oct-4-yn-1-yl)benzene (1v). Eluent in chromatography: petroleum ether, 1v was isolated as 
a colorless oil (1.09 g, 70%); 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 7.6 Hz, 1H), 7.30 – 7.17 (m, 
2H), 6.90 – 6.82 (m, 1H), 2.87 – 2.72 (m, 2H), 2.27 – 2.19 (m, 2H), 2.19 – 2.09 (m, 2H), 1.82 – 1.73 
(m, 2H), 1.58 – 1.46 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 144.4, 
139.5, 129.5, 128.2, 127.7, 100.5, 80.9, 79.6, 39.7, 29.4, 22.5, 20.8, 18.3, 13.6. HRMS (EI) m/z calcd 
for C14H17I [M]+ 312.0375, found 312.0381. 

1-iodo-2-(tridec-4-yn-1-yl)benzene (1w). Eluent in chromatography: petroleum ether, 1w was 
isolated as a colorless oil (1.18 g, 62%); 1H NMR (400 MHz, CDCl3) δ 7.82 –7.78 (m, 1H), 7.30 – 7.17 
(m, 2H), 6.90 – 6.84 (m, 1H), 2.92 – 2.74 (m, 2H), 2.31 – 2.11 (m, 4H), 1.88 – 1.70 (m, 2H), 1.55 – 
1.46 (m, 2H), 1.42 – 1.35 (m, , 2H), 1.27 (s, 8H), 0.90 – 0.84 (m, 3H). 13C{1H} NMR (100 MHz, 
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CDCl3) δ 144.4, 139.5, 129.5, 128.2, 127.7, 100.5, 81.1, 79.4, 39.7, 31.9, 30.3, 29.4, 29.2, 29.2, 28.9, 
22.7, 18.8, 18.3, 14.1. HRMS (EI) m/z calcd for C19H27I [M]+ 382.1157, found 382.1165. 

4-chloro-1-iodo-2-(pent-4-yn-1-yl)benzene (1x). Eluent in chromatography: petroleum ether/ethyl 
acetate 100:1, 1x was isolated as a yellow liquid (1.67 g, 55%); 1H NMR (400 MHz, CDCl3) δ 7.71 (dd, 
J = 8.4, 2.2 Hz, 1H), 7.23 – 7.15 (m, 1H), 6.92 – 6.86 (m, 1H), 2.90 – 2.69 (m, 2H), 2.26 (td, J = 6.8, 
2.6 Hz, 2H), 2.05 – 2.00 (m, 1H), 1.86 – 1.76 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 145.9, 
140.4, 134.5, 129.4, 128.0, 97.5, 83.6, 69.2, 39.4, 28.4, 18.0. HRMS (EI) m/z calcd for C11H10ClI [M]+ 
303.9516, found 303.9525. 

1-(but-3-yn-1-yloxy)-2-iodobenzene (1y). Eluent in chromatography: petroleum ether/ethyl acetate 
100:1, 1y was isolated as a colorless oil (1.77 g, 65%); 1H NMR (400 MHz, CDCl3) δ 7.77 (dd, J = 7.8, 
1.6 Hz, 1H), 7.31 – 7.26 (m, 1H), 6.82 (dd, J = 8.2, 1.2 Hz, 1H), 6.72 (td, J = 7.6, 1.2 Hz, 1H), 4.14 (t, 
J = 7.2 Hz, 2H), 2.75 (td, J = 7.2, 2.6 Hz, 2H), 2.08 – 2.04 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3) 
δ 157.0, 139.6, 129.4, 123.0, 112.6, 86.8, 80.1, 70.1, 67.3, 19.5. HRMS (EI) m/z calcd for C9H10IO 

[M]+ 271.9698, found 271.9707. 

1-iodo-2-(pent-4-yn-1-yloxy)benzene (1z). Eluent in chromatography: petroleum ether/ethyl acetate 
100:1, 1z was isolated as a colorless oil (1.94 g, 68%); 1H NMR (400 MHz, CDCl3) δ 7.76 (dd, J = 7.8, 
1.6 Hz, 1H), 7.31 – 7.26 (m, 1H), 6.82 (dd, J = 8.2, 1.2 Hz, 1H), 6.70 (td, J = 7.6, 1.2 Hz, 1H), 4.11 (t, 
J = 5.8 Hz, 2H), 2.51 (td, J = 6.8, 2.6 Hz, 2H), 2.12 – 2.01 (m, 2H), 2.00 – 1.95 (m, 1H). 13C{1H} NMR 
(100 MHz, CDCl3) δ 157.3, 139.4, 129.4, 122.5, 112.1, 86.7, 83.5, 68.9, 67.2, 28.1, 15.3. HRMS (ESI) 
m/z calcd for C11H11INaO [M + Na]+ 308.9747, found 308.9735. 

1,2-di-tert-butyldiaziridin-3-one (2a). Distilled under reduced pressure (56 ºC/ 4 mmHg) to give 2a 
as a colorless liquid (4.40 g, 75% yield). 1H NMR (400 MHz, CDCl3) δ 1.22 (s, 18H). 13C{1H} NMR 
(100 MHz, CDCl3) δ 159.3, 59.2, 26.9. 

General procedure for the synthesis of compounds 3,4-Fused tricyclic indoles. Synthesis of 3a is 
representative. 1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene 1a (0.2 mmol), diaziridinone 2a (0.4 mmol), 
Pd(OAc)2 (0.02 mmol), Cs2CO3 (0.2 mmol) and PPh3 (0.2 mmol) were dissolved in DMF (2.0 mL). The 
mixture was placed in a preheated metal block and stirred at 130 °C (temperature of the metal block) 
under argon atmosphere for 4 hours. Then the resulting mixture was cooled to room temperature and 
then diluted with ethyl acetate. The combined organic layer was washed with brine, dried over 
anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by flash 
chromatography (petroleum ether/ethyl acetate = 100 : 1) to give 3a (48 mg, 83% yield) as a white 
solid.

Gram-scale synthesis of 3a. To a three-neck flask was added 
1-iodo-2-(5-phenylpent-4-yn-1-yl)benzene 1a (1.500 g，4.34 mmol), diaziridinone 2a (1.480 g，8.68 
mmol), Pd(OAc)2 (0.098 g，10 mol %), Cs2CO3 (1.415 g，1 equiv.), PPh3 (1.142 g，1 equiv.) and 
DMF (40.0 mL). After stirring at 130 °C (temperature of the oil bath) under argon atmosphere for 4 
hours, the resulting mixture was cooled to room temperature and then diluted with ethyl acetate. The 
combined organic layer was washed with brine, dried over anhydrous Na2SO4, filtered, and 
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concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum 
ether/ ethyl acetate = 100 : 1) to give 3a as a white solid (1.067 g，85% yield).

1-(tert-butyl)-2-phenyl-1,3,4,5-tetrahydrobenzo[cd]indole (3a). Following the general procedure 
(eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3a was isolated as a white solid (48 
mg, 83%); m.p. 157 – 159 °C; 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz, 1H), 7.38 – 7.31 (m, 
5H), 7.12 – 7.04 (m, 1H), 6.82 (d, J = 7.0 Hz, 1H), 2.95 – 2.87 (m, 2H), 2.51 – 2.43 (m, 2H), 1.98 – 
1.92 (m, 2H), 1.57 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 137.2, 135.2, 134.6, 132.2, 130.6, 
127.7, 127.6, 127.2, 121.4, 115.7, 114.4, 112.2, 58.6, 32.0, 28.0, 24.2, 21.7. HRMS (ESI) m/z calcd for 
C21H24N [M + H]+ 290.1903, found 290.1889. 

1-(tert-butyl)-2-(p-tolyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3b). Following the general procedure 
(eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3b was isolated as a white solid (51 
mg, 84%); m.p. 144 – 146 °C; 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz, 1H), 7.24 – 7.19 (m, 
2H), 7.19 – 7.14 (m, 2H), 7.11 – 7.04 (m, 1H), 6.82 (d, J = 7.0 Hz, 1H), 2.95 – 2.86 (m, 2H), 2.51 – 
2.43 (m, 2H), 2.41 (s, 3H), 1.99 – 1.89 (m, 2H), 1.59 –1.56 (m, 9H). 13C{1H} NMR (100 MHz, CDCl3) 
δ 136.8, 135.1, 134.7, 134.1, 132.1, 130.5, 128.3, 127.7, 121.2, 115.6, 114.1, 112.2, 58.5, 32.0, 28.0, 
24.2, 21.8, 21.3. HRMS (ESI) m/z calcd for C22H26N [M + H]+ 304.2060, found 304.2065. 

1-(tert-butyl)-2-(4-chlorophenyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3c). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3c was isolated as a white 
solid (50 mg, 77%); m.p. 205 – 207 °C; 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.4 Hz, 1H), 7.38 – 
7.32 (m, 2H), 7.30 – 7.25 (m, 2H), 7.10 (t, J = 7.8 Hz, 1H), 6.83 (d, J = 7.0 Hz, 1H), 2.95 – 2.88 (m, 
2H), 2.52 – 2.43 (m, 2H), 2.00 – 1.89 (m, 2H), 1.57 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 135.7, 
135.4, 133.2, 133.1, 132.3, 131.8, 127.9, 127.6, 121.7, 115.9, 114.9, 112.3, 58.6, 32.1, 27.9, 24.2, 21.7. 
HRMS (ESI) m/z calcd for C21H23ClN [M + H]+ 324.1514, found 324.1496. 

1-(tert-butyl)-2-(4-(trifluoromethyl)phenyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3d). Following the 
general procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3d was isolated as 
a white solid (51 mg, 71%); m.p. 160 – 162 °C; 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.0 Hz, 2H), 
7.51 – 7.43 (m, 3H), 7.15 – 7.08 (m, 1H), 6.85 (d, J = 6.8 Hz, 1H), 2.95 – 2.86 (m, 2H), 2.53 – 2.38 (m, 
2H), 2.00 – 1.88 (m, 2H), 1.57 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 141.0, 135.8, 132.9, 132.5, 
130.6, 129.1 (q, JC-F = 32.6 Hz), 127.7, 125.6, 124.6 (q, JC-F = 3.8 Hz), 122.0, 116.0, 115.5, 112.4, 58.7, 
32.1, 27.9, 24.2, 21.7. 19F NMR (376 MHz, CDCl3) δ -62.34. HRMS (ESI) m/z calcd for C22H23F3N [M 
+ H]+ 358.1777, found 358.1774. 

1-(tert-butyl)-2-(m-tolyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3e). Following the general procedure 
(eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3e was isolated as a white solid (52 
mg, 86%); m.p. 118 – 120 °C; 1H NMR (400 MHz, Benzene-d6) δ 7.45 (d, J = 8.4 Hz, 1H), 7.27 – 7.20 
(m, 1H), 7.19 – 7.16 (m, 2H), 7.14 – 7.07 (m, 1H), 7.01 – 6.93 (m, 2H), 2.90 – 2.80 (m, 2H), 2.58 – 
2.50 (m, 2H), 2.15 (s, 3H), 1.90 – 1.79 (m, 2H), 1.44 (s, 9H). 13C{1H} NMR (100 MHz, Benzene-d6) δ 
137.9, 137.2, 136.2, 134.8, 132.5, 131.6, 128.7, 128.1, 128.2, 127.8, 122.0, 116.3, 114.8, 112.8, 58.4, 
32.1, 28.5, 24.8, 22.4, 21.3. HRMS (ESI) m/z calcd for C22H26N [M + H]+ 304.2060, found 304.2049. 
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1-(tert-butyl)-2-(3-chlorophenyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3f). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3f was isolated as a white 
solid (60 mg, 93%); m.p. 139 – 141 °C; 1H NMR (400 MHz, Benzene-d6) δ 7.40 – 7.35 (m, 2H), 7.25 – 
7.18 (m, 1H), 7.11 – 7.05 (m, 1H), 7.04 – 6.97 (m, 1H), 6.95 (d, J = 6.8 Hz, 1H), 6.82 (t, J = 7.8 Hz, 
1H), 2.84 – 2.76 (m, 2H), 2.46 – 2.33 (m, 2H), 1.83 – 1.73 (m, 2H), 1.33 (s, 9H). 13C{1H} NMR (100 
MHz, Benzene-d6) δ 139.8, 136.5, 133.9, 132.8, 132.7, 130.8, 129.0, 129.0, 128.5, 127.4, 122.5, 116.5, 
115.7, 112.8, 58.4, 32.0, 28.3, 24.7, 22.2. HRMS (ESI) m/z calcd for C21H23ClN [M + H]+ 324.1514, 
found 324.1495. 

1-(tert-butyl)-2-(2-chlorophenyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3g). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3g was isolated as a white 
solid (62 mg, 96%); m.p. 168 – 170 °C; 1H NMR (400 MHz, CDCl3) δ 7.45 (t, J = 8.6 Hz, 2H), 7.36 – 
7.25 (m, 3H), 7.15 – 7.07 (m, 1H), 6.83 (d, J = 7.0 Hz, 1H), 2.98 – 2.88 (m, 2H), 2.49 – 2.29 (m, 2H), 
2.06 – 1.88 (m, 2H), 1.57 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 136.4, 135.2, 134.6, 132.8, 
132.4, 130.8, 129.1, 129.1, 127.6, 126.0, 121.6, 115.5, 114.3, 112.1, 58.5, 31.0, 27.9, 24.2, 21.3. 
HRMS (ESI) m/z calcd for C21H23ClN [M + H]+ 324.1514, found 324.1511. 

1-(tert-butyl)-2-(3,5-dimethoxyphenyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3h). Following the 
general procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3h was isolated as 
a white solid (65 mg, 93%); m.p. 104 – 106 °C; 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.4 Hz, 1H), 
7.08 (t, J = 7.8 Hz, 1H), 6.82 (d, J = 7.0 Hz, 1H), 6.55 – 6.49 (m, 2H), 6.48 – 6.40 (m, 1H), 3.81 (s, 6H), 
2.95 – 2.87 (m, 2H), 2.58 – 2.48 (m, 2H), 2.00 – 1.90 (m, 2H), 1.62 (s, 9H). 13C{1H} NMR (100 MHz, 
CDCl3) δ 160.0, 139.0, 135.3, 134.5, 132.3, 127.6, 121.5, 115.7, 114.2, 112.3, 109.1, 99.2, 58.6, 55.4, 
31.8, 28.0, 24.2, 21.8. HRMS (ESI) m/z calcd for C23H28NO2 [M + H]+ 350.2115, found 350.2099. 

1-(tert-butyl)-2-(3,5-difluorophenyl)-1,3,4,5-tetrahydrobenzo[cd]indole (3i). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3i was isolated as a white 
solid (46 mg, 70%); m.p. 113 – 115 °C; 1H NMR (400 MHz, Benzene-d6) δ 7.35 (d, J = 8.2 Hz, 1H), 
7.25 – 7.17 (m, 1H), 6.94 (d, J = 7.0 Hz, 1H), 6.79 – 6.67 (m, 2H), 6.54 – 6.43 (m, 1H), 2.85 – 2.75 (m, 
2H), 2.38 – 2.30 (m, 2H), 1.82 – 1.70 (m, 2H), 1.29 (s, 9H). 13C{1H} NMR (100 MHz, Benzene-d6) δ 
162.7 (dd, J = 248.8, 13.2 Hz), 141.1 (t, J = 10.0 Hz), 136.8, 132.8, 131.8 (t, J = 2.2 Hz), 122.8, 116.7, 
116.0, 113.8 (d, J = 6.8 Hz), 113.6 (d, J = 6.8 Hz), 112.9, 102.6 (t, J = 25.2 Hz), 58.4, 31.8, 28.3, 24.7, 
22.1. 19F NMR (376 MHz, Benzene-d6) δ -110.45. HRMS (ESI) m/z calcd for C21H22F2N [M + H]+ 
326.1715, found 326.1712. 

1-(tert-butyl)-2-(thiophen-2-yl)-1,3,4,5-tetrahydrobenzo[cd]indole (3j). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3j was isolated as a white 
solid (31 mg, 53%); m.p. 140 – 142 °C; 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.6 Hz, 1H), 7.43 (d, 
J = 5.2 Hz, 1H), 7.17 – 7.07 (m, 2H), 7.06 – 7.02 (m, 1H), 6.86 (d, J = 7.0 Hz, 1H), 3.00 – 2.90 (m, 
2H), 2.63 – 2.55 (m, 2H), 2.07 – 1.95 (m, 2H), 1.70 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 137.4, 
135.4, 132.5, 129.2, 127.1, 126.4, 126.4, 125.7, 122.1, 117.4, 115.6, 112.2, 58.9, 31.5, 27.9, 24.1, 21.8. 
HRMS (ESI) m/z calcd for C19H22NS [M + H]+ 296.1467, found 296.1454. 
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1-(tert-butyl)-7-methyl-2-phenyl-1,3,4,5-tetrahydrobenzo[cd]indole (3l). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3l was isolated as a yellow 
solid (53 mg, 87%); m.p. 124 – 126 °C; 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.30 (m, 5H), 7.29 – 7.25 
(m, 1H), 6.85 – 6.50 (m, 1H), 3.06 – 2.75 (m, 2H), 2.65 – 2.34 (m, 5H), 2.12 – 1.80 (m, 2H), 1.57 (s, 
9H). 13C{1H} NMR (100 MHz, CDCl3) δ 137.4, 135.7, 134.0, 131.9, 131.1, 130.6, 127.5, 127.0, 125.7, 
117.4, 114.3, 112.3, 58.4, 32.0, 27.9, 24.4, 22.6, 21.8. HRMS (ESI) m/z calcd for C22H26N [M + H]+ 
304.2060, found 304.2048. 

1-(tert-butyl)-7-methoxy-2-phenyl-1,3,4,5-tetrahydrobenzo[cd]indole (3m). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3m was isolated as a light 
yellow solid (50 mg, 78%); m.p. 130 – 132 °C; 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.32 (m, 5H), 
7.05 – 7.03 (m, 1H), 6.61 – 6.59 (m, 1H), 3.92 (s, 3H), 2.95 – 2.87 (m, 2H), 2.63 – 2.40 (m, 2H), 2.07 – 
1.82 (m, 2H), 1.60 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 156.1, 137.3, 135.6, 133.6, 132.6, 
130.6, 127.5, 127.0, 122.5, 114.2, 105.1, 97.7, 58.4, 56.3, 31.8, 28.0, 24.3, 21.6. HRMS (ESI) m/z calcd 
for C22H26NO [M + H]+ 320.2009, found 320.2005. 

1-(tert-butyl)-7-fluoro-2-phenyl-1,3,4,5-tetrahydrobenzo[cd]indole (3n). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3n was isolated as a white 
solid (59 mg, 96%); m.p. 137 – 139 °C; 1H NMR (400 MHz, CDCl3) δ 7.53 – 7.32 (m, 5H), 7.20 (dd, J 
= 12.2, 1.8 Hz, 1H), 6.67 (d, J = 11.4 Hz, 1H), 2.95 – 2.87 (m, 2H), 2.58 – 2.40 (m, 2H), 2.02 – 1.90 
(m, 2H), 1.59 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 159.7 (d, JC-F = 234.6 Hz), 136.8, 134.7 (d, 
JC-F = 3.8 Hz), 134.5 (d, JC-F = 12.8 Hz), 133.0 (d, JC-F = 10.2 Hz), 130.6, 127.6, 127.3, 123.9, 114.2 (d, 
JC-F = 1.4 Hz), 104.7 (d, JC-F = 25.0 Hz), 98.8 (d, JC-F = 28.8 Hz), 58.7, 31.9, 27.9, 24.1, 21.5. 19F NMR 
(376 MHz, CDCl3) δ -120.71. HRMS (ESI) m/z calcd for C21H23FN [M + H]+ 308.1809, found 
308.1801. 

1-(tert-butyl)-7-chloro-2-phenyl-1,3,4,5-tetrahydrobenzo[cd]indole (3o). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 100:1), 3o was isolated as a white 
solid (63 mg, 98%); m.p. 142 – 144 °C; 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.44 (m, 1H), 7.41 – 7.29 
(m, 5H), 6.86 – 6.80 (m, 1H), 2.90 – 2.83 (m, 2H), 2.48 – 2.40 (m, 2H), 1.97 – 1.87 (m, 2H), 1.55 (s, 
9H). 13C{1H} NMR (100 MHz, CDCl3) δ 136.6, 135.2, 135.2, 133.1, 130.5, 127.7, 127.4, 127.1, 126.1, 
116.5, 114.3, 112.1, 58.8, 32.0, 27.8, 24.1, 21.5. HRMS (ESI) m/z calcd for C21H23ClN [M + H]+ 
324.1514, found 324.1503. 

6-(tert-butyl)-5-phenyl-2,3,4,6-tetrahydrooxepino[4,3,2-cd]indole (3p). Following the general 
procedure (eluent in chromatography: petroleum ether/ethyl acetate 30:1), 3p was isolated as a white 
solid (46 mg, 75%); m.p. 170 – 172 °C; 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.35 (m, 3H), 7.35 – 7.28 
(m, 3H), 7.07 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 4.34 – 4.24 (m, 2H), 2.53 – 2.41 (m, 2H), 
2.11 – 2.01 (m, 2H), 1.57 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3) δ 153.0, 138.6, 137.6, 136.0, 
130.9, 127.9, 127.6, 121.2, 118.1, 113.2, 107.7, 106.1, 72.5, 58.8, 31.9, 30.3, 27.3. HRMS (ESI) m/z 
calcd for C21H24NO [M + H]+ 306.1852, found 306.1843. 

diethyl 2-(tert-butyl)-1-phenyl-2,6,8,9-tetrahydro-7H-cyclohepta[cd]indole-7,7-dicarboxylate (3q). 
Following the general procedure (eluent in chromatography: petroleum ether/ethyl acetate 50:1), 3q 
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was isolated as a white solid (81 mg, 91%); m.p. 135 – 137 °C; 1H NMR (400 MHz, CDCl3) δ 7.54 (d, 
J = 8.6 Hz, 1H), 7.43 – 7.36 (m, 3H), 7.35 – 7.30 (m, 2H), 7.10 – 7.02 (m, 1H), 6.89 (d, J = 7.2 Hz, 
1H), 4.23 – 4.11 (m, 4H), 3.67 (s, 2H), 2.64 – 2.54 (m, 2H), 2.41 – 2.27 (m, 2H), 1.56 (s, 9H), 1.24 (t, J 
= 7.2 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 172.1, 136.8, 136.5, 136.2, 131.1, 130.3, 128.9, 
127.6, 127.5, 120.9, 119.6, 117.8, 113.4, 61.2, 58.9, 58.5, 37.2, 34.2, 31.9, 21.3, 14.0. HRMS (ESI) m/z 
calcd for C28H34NO4 [M + H]+ 448.2482, found 448.2479. 

diethyl 1-(tert-butyl)-2-phenyl-1,5-dihydrobenzo[cd]indole-4,4(3H)-dicarboxylate (3r). Following 
the general procedure (eluent in chromatography: petroleum ether/ethyl acetate 50:1), 3r was isolated 
as a white solid (82 mg, 95%); m.p. 85 – 87 °C; 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.4 Hz, 1H), 
7.42 – 7.30 (m, 5H), 7.12 – 7.05 (m, 1H), 6.88 (d, J = 7.8 Hz, 1H), 4.06 (q, J = 7.2 Hz, 4H), 3.49 (s, 
2H), 3.06 (s, 2H), 1.55 (s, 9H), 1.10 (t, J = 7.2 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 171.2, 
136.5, 135.5, 134.8, 130.6, 128.0, 127.7, 127.4, 126.2, 121.8, 116.1, 112.7, 110.7, 61.3, 58.8, 56.0, 34.3, 
32.0, 28.4, 13.9. HRMS (ESI) m/z calcd for C27H32NO4 [M + H]+ 434.2326, found 434.2325. 

diethyl 1-(tert-butyl)-7-methoxy-2-phenyl-1,5-dihydrobenzo[cd]indole-4,4(3H)-dicarboxylate (3s). 
Following the general procedure (eluent in chromatography: petroleum ether/ethyl acetate 50:1), 3s 
was isolated as a light yellow liquid (89 mg, 96%); 1H NMR (400 MHz, CDCl3) δ 7.40 – 7.30 (m, 5H), 
6.97 (s, 1H), 6.61 (s, 1H), 4.07 (q, J = 7.2 Hz, 4H), 3.87 (s, 3H), 3.44 (s, 2H), 3.04 (s, 2H), 1.53 (s, 9H), 
1.11 (t, J = 7.2 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 171.1, 156.4, 136.7, 135.4, 134.5, 130.6, 
128.4, 127.7, 127.3, 121.2, 110.6, 105.4, 98.3, 61.3, 58.6, 56.2, 56.2, 34.4, 31.9, 28.4, 13.9. HRMS 
(ESI) m/z calcd for C28H34NO5 [M + H]+ 464.2431, found 464.2417. 

diethyl 1-(tert-butyl)-7-chloro-2-phenyl-1,5-dihydrobenzo[cd]indole-4,4(3H)-dicarboxylate (3t). 
Following the general procedure (eluent in chromatography: petroleum ether/ethyl acetate 50:1), 3t was 
isolated as a light yellow solid (70 mg, 75%); m.p. 80 – 82 °C; 1H NMR (400 MHz, CDCl3) δ 7.45 (s, 
1H), 7.41 – 7.29 (m, 5H), 6.89 (s, 1H), 4.07 (q, J = 7.2 Hz, 4H), 3.44 (s, 2H), 3.03 (s, 2H), 1.53 (s, 9H), 
1.10 (t, J = 6.8 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 170.9, 136.2, 136.0, 134.9, 130.5, 129.0, 
127.8, 127.7, 127.5, 124.8, 116.9, 112.7, 110.8, 61.4, 59.1, 55.9, 34.0, 32.0, 28.2, 13.9. HRMS (ESI) 
m/z calcd for C27H31ClNO4 [M + H]+ 468.1936, found 468.1939. 

diethyl 1-(tert-butyl)-8-chloro-2-phenyl-1,5-dihydrobenzo[cd]indole-4,4(3H)-dicarboxylate (3u). 
Following the general procedure (eluent in chromatography: petroleum ether/ethyl acetate 50:1), 3u 
was isolated as a light yellow liquid (64 mg, 69%); 1H NMR (400 MHz, DMSO-d6) δ 7.54 – 7.33 (m, 
5H), 7.13 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 3.99 – 3.93 (m, 4H), 3.36 (s, 2H), 3.04 (s, 2H), 
1.54 (s, 9H), 1.02 – 0.94 (m, 6H). 13C{1H} NMR (100 MHz, DMSO-d6) δ 170.4, 140.3, 136.4, 135.4, 
130.4, 129.4, 128.8, 127.9, 127.6, 125.7, 119.8, 116.1, 112.8, 61.6, 59.5, 55.3, 33.9, 33.9, 28.7, 14.2. 
HRMS (ESI) m/z calcd for C27H31ClNO4 [M + H]+ 468.1936, found 468.1926.

Removal of the tert-butyl group of product 3a. To an oven-dried 10 mL pressure tube was added 
1-(tert-butyl)-2-phenyl-1,3,4,5-tetrahydrobenzo[cd]indole 1a (0.2 mmol) , 1 M HCl (0.3 mL) and 
MeCN (0.7 mL). After stirring at room temperature for overnight, the resulting mixture was diluted 
with ethyl acetate. The combined organic layer was washed with brine, dried over anhydrous Na2SO4, 
filtered and concentrated under reduced pressure. The residue was purified by flash chromatography 
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(petroleum ether/ethyl acetate = 10 : 1) to give 3a, (35 mg, 75% yield) as a white solid, m.p. 117 – 
119 °C; 1H NMR (400 MHz, DMSO-d6) δ 11.00 (s, 1H), 7.72 – 7.70 (m, 2H), 7.47 (t, J = 7.8 Hz, 2H), 
7.28 (t, J = 7.4 Hz, 1H), 7.13 – 7.11 (m, 1H), 7.04 – 6.94 (m, 1H), 6.71 (d, J = 6.8 Hz, 1H), 3.01 (t, J = 
6.0 Hz, 2H), 2.87 (t, J = 5.8 Hz, 2H), 2.00 (p, J = 6.4 Hz, 2H). 13C{1H} NMR (100 MHz, DMSO-d6) δ 
134.7, 133.7, 131.9, 130.5, 129.3, 128.6, 126.8, 126.3, 122.8, 115.7, 110.5, 108.6, 27.4, 24.9, 23.5. 
HRMS (ESI) m/z calcd for C17H16N [M + H]+ 234.1277, found 234.1274. 

Competition experiments. (a) To an oven-dried 10 mL pressure tube was added substrate 1b (36 
mg, 0.1 mmol), substrate 1c (38 mg, 0.1 mmol), Pd(OAc)2 (5 mg, 10 mol %), PPh3 (0.2 mmol), Cs2CO3 

(0.2 mmol), diaziridinone 2a (68 mg, 0.4 mmol) and DMF (2.0 mL) under Ar. After stirring at 130 °C 
(temperature of the metal block) under argon atmosphere for 4 hours, the resulting mixture was diluted 
with ethyl acetate. The combined organic layer was washed with brine, dried over anhydrous Na2SO4, 
filtered and concentrated under reduced pressure. The residue was purified by flash chromatography 
(petroleum ether/ethyl acetate = 100 : 1). The ratio of product 3c/3b was analyzed by 1H NMR. 

(b) To an oven-dried 10 mL pressure tube was added substrate 1l (36 mg, 0.1 mmol), substrate 1o 
(38 mg, 0.1 mmol), Pd(OAc)2 (5 mg, 10 mol %), PPh3 (0.2 mmol), Cs2CO3 (0.2 mmol), diaziridinone 
2a (68 mg, 0.4 mmol) and DMF (2.0 mL) under Ar. After stirring at 130 °C (temperature of the metal 
block) under argon atmosphere for 4 hours, the resulting mixture was diluted with ethyl acetate. The 
combined organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and 
concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum 
ether/ethyl acetate = 100 : 1). The ratio of product 3o/3l was analyzed by 1H NMR. 
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