Journal of Organo metallic Chemistry Journal of Organometallic Chemistry 679 (2003) 32-42 www.elsevier.com/locate/jorganchem # Novel catalytic hydrogenolysis of silyl enol ethers by the use of acidic ruthenium dihydrogen complexes Izuru Takei ^{a,b}, Yoshiaki Nishibayashi ^c, Youichi Ishii ^{d,1}, Yasushi Mizobe ^a, Sakae Uemura ^c, Masanobu Hidai ^{b,*} Received 9 April 2003; received in revised form 20 May 2003; accepted 22 May 2003 #### Abstract Treatment of 1-trimethylsilyloxy-1-cyclohexene (1a) in the presence of a catalytic amount of the acidic dihydrogen complex $[RuCl(\eta^2-H_2)(dppe)_2]OTf$ (4a) $[dppe=1,2-bis(diphenylphosphino)ethane, OTf=OSO_2CF_3]$ (10 mol.%) under 1 atm of H_2 in anhydrous ClCD₂CD₂Cl at 50 °C for 8 h afforded cyclohexanone (3a) and Me₃SiH in quantitative NMR yields. Silyl enol ethers such as 1-triethylsilyloxy-1-cyclohexene (1b), 1-t-butyldimethylsilyloxy-1-cyclohexene (1c), and other trimethylsilylethers (1d, 1e, and 1f) reacted similarly with H₂ to afford the corresponding ketones and trialkylsilanes. The direct proton transfer from H₂ to the trimethylsilyl enol ethers (1a and 1d-1f) was confirmed by the experiments employing D_2 gas, where α -monodeuterated ketones (3a' and 3d'-3f') were obtained in high yields. The enantioselective protonation of prochiral silyl enol ethers with 1 atm of H₂ by employing $[RuCl(\eta^2-H_2)((S)-BINAP)_2]OTf$ (4e) [BINAP=2,2'-bis(diphenylphosphino)-1,1'-binaphthyl] and $[RuCl(\eta^2-H_2)((R,R)-diphenylphosphino)-1,1'-binaphthyl]$ CHIRAPHOS)₂[OTf (4f) [CHIRAPHOS = 2,3-bis(diphenylphosphino)butane] showed that no enantioselectivity was observed in either catalytic or stoichiometric protonation reactions under various reaction conditions. The reaction of [RuHCl(dppe)₂] (5a) with one equivalent of Me₃SiOTf under 1 atm of H₂ produced rapidly 4a, concurrent with the formation of Me₃SiH. Based on these studies, the mechanism for this novel hydrogenolysis of silyl enol ethers is proposed which involves heterolytic cleavage of the coordinated H₂ on the ruthenium atom caused by the nucleophilic attack of the oxygen atom of enol ethers to give ketones and Me₃SiOTf, and the subsequent reaction of the resultant complex 5a with Me₃SiOTf under 1 atm of H₂ to regenerate the original dihydrogen complex 4a. On the other hand, the stoichiometric reaction of a lithium enolate 6e with one equivalent of 4e at -78 °C in CH₂Cl₂ under 1 atm of H₂ afforded 2-methyl-1-tetralone (3e) with 75% ee (S) in >95% yield, together with the formation of $[RuHCl((S)-BINAP)_2]$ (5e). © 2003 Elsevier Science B.V. All rights reserved. Keywords: Hydrogenolysis; Dihydrogen complexes; Silyl enol ethers; Asymmetric protonation #### 1. Introduction Extensive studies on dihydrogen complexes have been performed to reveal their bonding and structures as well as their reactivities [1–4]. In the bonding between a metal (M) and dihydrogen (H₂), σ donation from the σ bonding orbital of H₂ to the d-orbital of metal depletes the electron density on the H₂, while back-bonding from the metal to the antibonding σ^* orbital of H₂ increases the electron density on the H₂. The contribution of the former bonding is believed to be higher than the latter in most of dihydrogen complexes, so that the coordinated H₂ is expected to be more acidic than free H₂. Actually, treatment of some dihydrogen complexes with a variety of bases gives rise to the heterolytic cleavage of ^a Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan ^b Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan ^c Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan ^d Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ^{*} Corresponding author. Tel.: +81-47-124-1501; fax: +81-47-124-1699. E-mail address: hidai@rs.noda.tus.ac.jp (M. Hidai). ¹ Present address: Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan. coordinated H_2 [2]. The systematic research of ligand effects on the reactivity of coordinated H_2 has led to the synthesis of a series of acidic dihydrogen complexes. However, development of catalytic hydrogenation reactions by using the unique properties of coordinated H_2 has been still limited [5–7]. During the long-standing studies on the reactivities of dinitrogen complexes of the type $M(N_2)_2(L)_4$ (M = Mo or W; L = phosphine) [8], we have recently succeeded in the transformation of coordinated N2 on tungsten into NH₃ by treatment with H₂ mediated by [RuCl(diphosphine)₂|X complexes or sulfido-bridged dinuclear molybdenum complexes [9]. In these reactions, only one of the two hydrogen atoms of H₂ activated by the complexes is used for the N-H bond formation, while the other is not employed for the product formation. Thus, the reactions are stoichiometric and the activated H₂ only behaves as a proton. However, this finding has led us to find novel hydrogenolysis of silyl enol ethers to form ketones and silanes by employing acidic η^2 -H₂ complexes $[RuCl(\eta^2-H_2)(diphosphine)_2]X$ as catalysts [10]. It is to be noted that treatment of silyl enol ethers with H₂ in the presence of the Wilkinson catalyst [RhCl(PPh₃)₃] results in the hydrogenation of the C=C bond [11]. Preliminary results on the hydrogenolysis have already been reported in a communication form [12]. In the present contribution we describe the more detailed results of a conceptually new type of the hydrogenolysis reactions. #### 2. Results and discussion ## 2.1. Novel catalytic hydrogenolysis of trialkylsilyl enol ethers by using acidic $Ru(\eta^2-H_2)$ complexes When 1-trimethylsilyloxy-1-cyclohexene (1a) was treated with 1 atm of H_2 in the presence of a catalytic amount of [RuCl(dppe)₂]OTf (2a) (10 mol.%) in anhydrous ClCD₂CD₂Cl at 50 °C for 8 h in an NMR tube, 1H and $^{29}Si\{^1H\}$ -NMR analysis of the reaction mixture clearly showed the quantitative formation of cyclohexanone (3a) and Me₃SiH ($^{29}Si\{^1H\}$ -NMR δ -16.4) (Scheme 1). However, the reaction was very slow at room temperature. Under 1 atm of H_2 at room OSiMe₃ + H₂ 10 mol % 2a + Me₃SiH + Me₃SiH $$\frac{^{29}\text{Si NMR}}{514.6}$$ δ 14.6 Scheme 1. temperature, complex **2a** is known to be quantitatively transformed into $[RuCl(\eta^2-H_2)(dppe)_2]OTf$ **(4a)** with relatively high acidity (p $K_a = 6.0$) [9,13,14]. In contrast, the 1H and $^{31}P\{^1H\}$ -NMR analysis of the reaction mixture of complex **2a** with **1a** or **3a** in $ClCD_2CD_2Cl$ indicated that both **1a** and **3a** are not coordinated to the metal at ambient temperature or even 50 $^{\circ}C$, probably due to the steric effect of the phosphine ligands around the metal. Several acidic $Ru(\eta^2-H_2)$ complexes were employed as catalyst for the hydrogenolysis of 1a. Typical results are shown in Table 1. In all cases, the reaction of 1a (0.60 mmol) with 1 atm of H₂ was carried out in the presence of a catalytic amount of 2 (5 or 10 mol.%) in anhydrous 1,2-dichloroethane at 50 °C. Although the hydrogenolysis of **1a** took place smoothly at 50 °C with the aid of complex 2a (10 mol.%), the reaction did not proceed in the absence of either complex 2a or H₂ (Table 1; runs 1– 3). The reaction of **1a** with H₂ proceeded in the presence of 5 mol.% of 2a at 50 °C for 18 h to afford 3a in 88% yield, and a longer reaction time (48 h) improved the yield of 3a up to >95% (Table 1; runs 4 and 5). When $Ru(\eta^2-H_2)$ analogous complex $[RuCl(\eta^2 -$ H₂)(dppe)₂]PF₆ (**4b**) [13] was used in place of complex 4a, the yield of 3a did not significantly change (Table 1; runs 4 and 6). Employment of a dihydrogen complex $[RuH(\eta^2-H_2)(dppe)_2]OTf$ (4c) with much lower acidity $(pK_a = 15.0)$ [15] did not induce the hydrogenolysis effectively (Table 1; run 7). On the other hand, when nylphosphino)propane] with higher acidity (p $K_a = 4.3$) [9b,16] derived from [RuCl(dppp)₂]OTf (2d) and H₂ was used as catalyst, the yield of 3a was slightly lower compared with that from 4a (Table 1; runs 4 and 8). This is compatible with the previous findings that treatment of 2d with 1 atm of H₂ in solution at ambient temperature gives a mixture of complexes 2d and 4d in a ratio of about 9:1 [9b,16], whereas complex 2a is completely transformed into complex 4a under the same conditions [9b,13]. New dihydrogen complexes $[RuCl(\eta^2-H_2)(diphosphine)_2]OTf$ containing typical chiral diphosphine ligands such as BINAP [17] and CHIRAPHOS [18] prepared here (vide infra) were also found to be effective for this catalytic reaction (Table 1; runs 9 and 10). Noteworthy is the remarkable catalytic activity of the dihydrogen complex (4e) containing BINAP (Table 1; run 9), although we could not determine the p K_a [19]. Hydrogenolysis of 1-triethylsilyloxy-1-cyclohexene (1b) and 1-t-butyldimethylsilyloxy-1-cyclohexene (1c) also occurred in the presence of 4a or 4e under the same conditions, but the reactions were slower than that of **1a** probably due to the steric factors of the bulky substrates (Table 1; runs 11–16) [20]. Table 1 Hydrogenolysis of silyl enol ethers catalysed by $Ru(\eta^2-H_2)$ complexes under 1 atm of H_2^a | run | silyl enol
ether | $Ru(\eta^2-H_2)$ complex | GLC yield
of 3a (%) | |-----------------|---------------------|-----------------------------------------------------------------------------------|------------------------| | 1 ^b | 1a | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(\mathbf{4a})$ | >95 | | 2^{c} | 1a | | <3 | | $3^{b,d}$ | 1a | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(4a)$ | 11^f | | 4 | 1a | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(4a)$ | 88 | | 5 ^e | 1a | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(4a)$ | >95 | | 6 | 1a | $[RuCl(\eta^2-H_2)(dppe)_2]PF_6$ (4b) | 83 | | 7 | 1a | $[RuH(\eta^2-H_2)(dppe)_2]OTf(4c)$ | 16 | | 8 | 1a | $[RuCl(\eta^2-H_2)(dppp)_2]OTf(\mathbf{4d})$ | 56 | | 9 | 1a | $[RuCl(\eta^2-H_2)(BINAP)_2]OTf(\mathbf{4e})$ | >95 | | 10 | 1a | [RuCl(η ² -H ₂)(CHIRAPHOS) ₂]OTf (4g) | 70 | | 11 | 1b | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(4a)$ | 55 | | 12^{b} | 1b | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(4a)$ | 64 | | 13 | 1b | $[RuCl(\eta^2-H_2)(BINAP)_2]OTf(4e)$ | 75 | | 14 | 1c | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(4a)$ | 30 | | 15 ^b | 1c | $[RuCl(\eta^2-H_2)(dppe)_2]OTf(4a)$ | 44 | | 16 | 1c | $[RuCl(\eta^2-H_2)(BINAP)_2]OTf(\mathbf{4e})$ | 48 | $[^]a$ All the reactions were carried out in the presence of catalyst (5 mol %) and silyl enol ether (0.60 mmol) in anhydrous 1,2-dichloroethane (5 mL) at 50 °C for 18 h under 1 atm of H₂. #### 2.2. The hydrogenolysis of silyl enol ethers with D_2 gas The experiment employing D_2 gas in the hydrogenolysis unequivocally demonstrated the proton transfer from H₂ to silyl enol ethers. Thus, treatment of 1a with 5 mol.% of 2a under 1 atm of D2 at 50 °C for 48 h in anhydrous 1,2-dichloroethane resulted in the formation of α-monodeuterated 3a' in very high GLC yield (Table 2; run 1). The same procedure was applied for other trialkylsilyl enol ethers (1b and 1c), 1,1-disubstituted trimethylsilyl enol ether (1d), and 1,1,2,2-tetrasubstituted trimethylsilyl enol ethers (1e and 1f). Reactions of bulky trialkylsilyl enol ethers (1b and 1c) were sluggish under the same conditions, but α-monodeuterated ketone 3a' being obtained with high selectivities (Table 2; runs 2 and 3). Similar treatment of other trimethylsilyl enol ethers (1d, 1e, and 1f) with D₂ afforded the corresponding α -monodeuterated ketones 3d', 3e', and **3f**' (Table 2; runs 4–6). Incorporation of deuterium at the α -position of 3a' and 3d'-3f' was fully characterized by ${}^{1}H$ -NMR and GC-MS analysis (see Section 3). 2.3. Synthesis of chiral dihydrogen complexes $[RuCl(\eta^2-H_2)((S)-BINAP)_2]OTf$ (4e) and $[RuCl(\eta^2-H_2)((R,R)-CHIRAPHOS)_2]OTf$ (4g) toward asymmetric protonation of prochiral silyl enol ethers We intended to extend the novel catalytic reaction to the asymmetric protonation of prochiral silyl enol ethers with H_2 assisted by new acidic $Ru(\eta^2-H_2)$ complexes containing chiral diphosphines. Protonation of $[RuHCl((S)-BINAP)_2]$ (**5e**) [21] with trifluoromethanesulfonic acid (HOTf) gave the dihydrogen complex $[RuCl(\eta^2-H_2)((S)-BINAP)_2]$ OTf (**4e**) in high yield. This complex was also prepared from the reaction of $[RuHCl((S)-BINAP)_2]$ (**5e**) with a hydride acceptor acce ^b Reaction was carried out in the presence of catalyst (10 mol %) for 8 h. $^{^{}c}$ In the absence of catalyst under 1 atm of H_{2} . ^d Under 1 atm of N₂. ^e Reaction was carried out for 48 h. $[^]f$ 3a was obtained from the stoichiometoric reaction of 4a (10 mol %) with 1a. Table 2 Hydrogenolysis of silyl enol ethers catalysed by [RuCl(η²-H₂)(dppe)₂]OTf (4a) under 1 atm of D₂ ^aAll the reactions were carried out in the presence of [RuCl(h₂-H₂)(dppe)₂]OTf (4a) (5 mol.%) and silyl enol ether (0.60 mmol) in anhydrous 1,2-dichloroethane (5 ml) at 50 °C for 48 h under 1 atm of D₂. ^bDetermined by GLC. variable-temperature T_1 measurement and the observation of a large ${}^{1}J_{\rm HD}$ for the corresponding isotopomer. The broad signal at -9.11 ppm exhibited a minimum T_1 value of 21 ms (400 MHz in CD₂Cl₂) at 243 K. The deuterio derivative trans-[RuCl(η^2 -HD)((S)-BINA-P)₂OTf (4e- d_1) was prepared by the reaction of 5e with a stoichiometric amount of trifluoromethanesulfonic acid- d_1 (DOTf) in CD₂Cl₂ at room temperature. A ¹J_{HD} coupling constant of 21.5 Hz in CD₂Cl₂ at 20 °C was observed for complex (4e- d_1). These values of the minimum T_1 and ${}^1J_{\rm HD}$ are compatible with the η^2 -H₂ bonding to the metal [3]. Dihydrogen and dinitrogen ruthenium complexes containing CHIRAPHOS ligands $[RuCl(\eta^2-H_2)((R, \eta^2-H_2))]$ R)-CHIRAPHOS)₂OTf (4g) and $[RuCl(N_2)((R, R)-$ CHIRAPHOS)₂OTf (4f) were synthesized by the following procedures (Scheme 3). At first, $[RuCl_2((R, R)-$ CHIRAPHOS)₂] (2f) was prepared from the reaction of $[RuCl_2(PPh_3)_3]$ with two equivalents of (R, R)-CHIR-APHOS in toluene at reflux temperature [22]. Subsequent treatment of complex 2f with AgOTf in dichloromethane under 1 atm of N2 afforded the dinitrogen complex 4f in high yield. The dinitrogen complex 4f was converted to $[RuCl(N_2)((R, R)-CHIR-$ APHOS)₂]PF₆ (**4h**) by anion exchange with NaPF₆. The molecular structure of 4h was unambiguously determined by X-ray analysis (see Section 3). The N₂ stretching absorption at 2155 cm⁻¹ for 4f indicates that the back-bonding from the metal to the N₂ ligand is weak. In fact, the coordinated N2 on the Ru atom was Scheme 2. readily replaced by dihydrogen to form the dihydrogen complex 4g. The existence of the η^2 -H₂ moiety in complex 4g was confirmed by variable-temperature T_1 measurement. A minimum T_1 value of 15 ms (400 MHz in CD₂Cl₂) at 273 K was obtained for the broad signal at -12.6 ppm, assignable to the η^2 -H₂ coordination [3]. Catalytic asymmetric protonation of silyl enol ethers with 1 atm of H₂ was investigated by using both 4e and 4g under various reaction conditions (Scheme 4). However, treatment of 1e (0.20 mmol) in the presence of a catalytic amount of 4e or 4g (0.010 mmol, 5 mol.%) at 25 °C for 48 h in anhydrous dichloromethane under 1 atm of H₂ afforded 3e in 41 or 13% GLC yield, respectively, with no enantioselectivity. Change of the solvent from dichloromethane to THF or toluene did not induce any asymmetric reaction. The protonation of tert-butyldimethylsilyl enol ethers with HCl is known to occur at the sp² carbon bearing the methyl group (Cprotonation) [23]. Thus, we expected that if 1g is used as substrate in place of 1e, some asymmetric induction may be realized. However, the reaction of 1g with H₂ in the presence of a catalytic amount of 4e (5 mol.%) under the same reaction conditions proceeded quite slowly to give 3e in 20% GLC yield with no enantioselectivity. Furthermore, the stoichiometric protonation of 1e $$RuCl_{2}(PPh_{3})_{3} + 2 \stackrel{\square}{P} \stackrel{\square}{P} + 3 PPh_{2}$$ $$P = (R, R)-CHIRAPHOS$$ $$2f$$ $$P = (R, R)-CHIRAPHOS$$ ($$ Scheme 3. with one equivalent of **4e** at $-78\,^{\circ}$ C for 3 h in anhydrous dichloromethane under 1 atm of H₂ afforded **3e** in >95% yield, but no enantioselectivity was observed. These results indicate that H⁺ of activated H₂ on the ruthenium is transferred not to the sp² carbon, but to the oxygen atom of silyl enol ethers (*O*-protonation). ### 2.4. The reaction mechanism for the hydrogenolysis of **1a** catalysed by **4a** In order to obtain further information about the reaction mechanism, we investigated the following stoichiometric or catalytic reactions. When dihydrogen complex 4a was reacted with one equivalent of 1a under 1 atm of N₂ in ClCD₂CD₂Cl at room temperature in an NMR tube, ${}^{1}H$ -, ${}^{29}Si\{{}^{1}H\}$ -, and ${}^{31}P\{{}^{1}H\}$ -NMR analysis of the reaction mixture showed the almost quantitative formation of Me₃SiH, 2a (>95 mol.%), 3a (>95 mol.%), and a small amount (<5 mol.%) of monohycomplex $[RuHCl(dppe)_2]$ (5a; ¹H-NMR (ClCD₂CD₂Cl): δ -18.5 (s), ³¹P{¹H}-NMR: δ 61.6 (s)) [24]. Furthermore, treatment of lithium enolate 6a, which was prepared in situ from 1a and MeLi, with one equivalent of [RuCl(η^2 -D₂)(dppe)₂]OTf (4a') under 1 atm of D₂ in anhydrous THF at room temperature led to the formation of α -monodeuterated 3a' in > 95% **GLC** yield and a monodeuteride complex [RuDCl(dppe)₂] (5a') in 85% isolated yield (Scheme 5). In this case, the nucleophilic reaction of 6a on the coordinated D₂ causes the heterolytic cleavage of the D₂ to form 3a', while D - remains at the ruthenium atom as 5a'. Noteworthy is that the reaction of [RuHCl(dppe)₂] (5a) [13] with equimolar Me₃SiOTf (29 Si{ 1 H}-NMR δ 46.0) under 1 atm of H₂ in anhydrous C₆D₆ at room temperature rapidly produced the dihydrogen complex 4a and Me₃SiH in quantitative NMR yields (Scheme 6). This finding indicates that the cationic complex 2a may initially form from the reaction of complex 5a with Me₃SiOTf as a hydride acceptor, which is immediately transformed into the dihydrogen complex 4a under H₂. In sharp contrast, the catalytic hydrogenation of trimethylsilyl enol ethers by using typical homogeneous catalysts such as Wilkinson complex [RhCl(PPh₃)₃] under the same reaction conditions led to the formation of the corresponding saturated trimethylsilyl ethers. For example, treatment of **1d** in the presence of 5 mol.% of OSiR₃ Me $$+ H_2$$ $$- 1e \text{ or } 1g$$ $$- 78 ^{\circ}\text{C}$$ ^{$$ Scheme 4. [RhCl(PPh₃)₃] under 1 atm of H_2 in anhydrous C_6H_6 at 50 °C for 24 h afforded (1-phenyl-1-trimethylsilyloxy)ethane in >95% GLC yield [25]. Furthermore, the reaction of 2-cyclohexen-1-one in the presence of a catalytic amount of **2a** under 1 atm of H_2 at 50 °C for 18 h did not produce **3a** at all, indicating that the hydrogenolysis of **1a** does not proceed via 2-cyclohexen-1-one, which might be formed from dehydrosilylation of **1a** [26]. Based on the above results, we propose a mechanism for the novel hydrogenolysis of a silvl enol ether 1a catalysed by dihydrogen complex 4a as a typical example (Scheme 7). The reaction is initiated by the nucleophilic attack of the oxygen atom of the enol ether on the coordinated H₂ on the ruthenium atom. This induces the heterolytic cleavage of the H₂ and results in the formation of 3a and Me₃SiOTf together with 5a. The following reaction of Me₃SiOTf with 5a under 1 atm of H₂ regenerates the starting dihydrogen complex 4a via 2a, concurrent with theformation of Me₃SiH. It is presumed that a delicate balance of the acidity of dihydrogen complex 4a and the nucleophilicity of the hydride complex 5a might realize this novel catalytic hydrogenolysis of silyl enol ethers. However, we cannot exclude the possibility that the concerted transfer of a proton and a hydride of the activated H₂ to the oxygen atom and the silicon atom of the enol ether, respectively, gives rise to the formation of 3a and Me₃SiH. It is to be noted that this reaction mechanism is comparable to that of the heterolytic cleavage of H₂ catalysed by (dppm = bis(diphenylphosphi-[Cp*RuH(dppm)] no)methane), where tetramethylpiperidine and an acridinium salt work as proton and hydride acceptors, respectively [6a]. ### 2.5. Stoichiometric asymmetric protonation of prochiral lithium enolate **6e** Treatment of lithium enolate **6e**, which was prepared in situ from the reaction of **1e** and MeLi, with one Scheme 5. Scheme 6. equivalent of complex 4e in anhydrous dichloromethane under 1 atm of H_2 at -78 °C gave 3e in > 95% GLC yield with 75% ee (S), together with the formation of **5e** in 69% isolated yield (Scheme 8). In this stoichiometric protonation, the enantiomeric excess of 3e critically depended upon the nature of the solvent. When THF, diethyl ether, or toluene was used in place of dichloromethane, no or much lower enantioselectivities (<1%ee, < 1% ee, and 5% ee (S), respectively) were observed under similar reaction conditions. On the other hand, the stoichiometric protonation of **6e** with **4g** at -78 °C under similar reaction conditions afforded 3e in >95% GLC yield with lower enantioselectivity (<10% ee); thus, 4g was less effective for the asymmetric protonation of **6e** compared with **4e**. These results indicate that the reaction mechanism is different between silyl enol ethers (1e and 1g) and lithium enolate (6e). We believe that the high enantioselectivity attained by the protonation of lithium enolate (6e) with a stoichiometric amount of 4e is realized by the protonation of the coordinated H₂ at the sp² carbon bearing the methyl group (C-protonation) in place of the O-protonation (vide supra). #### 2.6. Conclusion Novel catalytic hydrogenolysis of trialkylsilyl enol ethers with H_2 has been found to be catalysed by acidic dihydrogen complexes of ruthenium such as $[RuCl(\eta^2-H_2)(dppe)_2]OTf$ (4a) and $[RuCl(\eta^2-H_2)((S)-BINA-P)_2]OTf$ (4e). In this reaction, H_2 is heterolytically Scheme 7. cleaved into $\mathrm{H^+}$ and $\mathrm{H^-}$ on the ruthenium centre and transferred to the enol oxygen and the trialkylsilyl silicon atom, respectively, to form a ketone and a silane. Furthermore, employment of a stoichiometric amount of a chiral dihydrogen complex 4e results in the enantioselective protonation of a prochiral lithium enolate with $\mathrm{H_2}$ to give a chiral ketone with high enantioselectivity (up to 75% ee). This provides a new approach to the enantioselective protonation of prochiral enolates [27]. #### 3. Experimental #### 3.1. General considerations Preparation of complexes was performed under 1 atm of N₂ or Ar dried by passage through CaCl₂ and P₂O₅. Reaction of trialkylsilyl enol ethers with dihydrogen was carried out under 1 atm of H₂ dried by passage through CaCl₂ and P₂O₅. D₂ (99.9%) was obtained from Takachiho Chemical Industrial Co. (Japan). Solvents were dried by refluxing over Na-benzophenone ketyl (THF, toluene, benzene, and hexanes), P₂O₅ (dichloromethane, 1,2-dichloroethane), and distilled just before use. Unless otherwise noted, all manipulations were done by use of Schlenk techniques. Schlenks and flasks were dried thoroughly in an oven at 150 °C for 3 h just before use. NMR spectra were recorded on a JEOL JNM-LA-400 spectrometer. IR spectra were recorded on a Shimadzu FTIR-8100M spectrometer. Quantitative GLC analyses were performed on a Shimadzu GC-14A instrument equipped with a flame ionization detector using a 25 m × 0.25 mm CBP-10, 14% cyano-propylphenylpolysiloxane in fused silica capillary column. GC-MS analyses were carried out on a Shimadzu GC-MS QP-5000 spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 series II Scheme 8. CHN analyzer. Optical rotation was measured on a JASCO DIP-360. Trimethylsilyl enol ethers (1a, 1d, and 1h), triethylsilyl chloride, *t*-butyldimethylsilyl chloride and Me₃SiOTf were purchased from Tokyo Chemical Industry Co. (Japan) and distilled under reduced pressure. Other silyl enol ethers (1b [28], 1c [29], 1e [30], 1f [31] and 1g [32]) were prepared by the method described in the literatures. (*S*)-BINAP [17], *n*-BuLi and MeLi were purchased from Kanto Chemical Co., Inc. (Japan). 2-Methyl-1-tetralone (3e) and (*R*, *R*)-CHIRAPHOS [18] were purchased from Aldrich Chemical Company, Inc. Me₃SiH was obtained from Trichemical Co. Ltd (Japan). Amounts of the solvent molecules in the crystals were determined by both elemental analyses and ¹H-NMR spectroscopy. # 3.2. Preparation of $[RuCl(\eta^2-H_2)((S)-BINAP)_2]OTf$ (4e) To a solution of $[RuHCl((S)-BINAP)_2]$ (5e) (1.152 g, 0.83 mmol) in dichloromethane (10 ml) and THF (10 ml) was added 80 µl of HOTf by syringe under 1 atm of H₂. The reaction mixture was stirred at room temperature (r.t.) for 30 min, during which the yellow solution turned to a red solution. Addition of hexanes (50 ml) to the reaction mixture afforded a pale red solid 4e, which was collected by filtration, washed with hexanes (20 $ml \times 3$), and dried under reduced pressure. Yield: 82% (1.050 g, 0.68 mmol). ¹H-NMR (CD₂Cl₂): δ -9.11 (br, 2H), 5.2–8.8 (m, 64H); a minimum T_1 value of 21 ms (400 MHz) at 243 K was obtained for the broad signal at -9.11 ppm upon changing the temperature from 233 to 303 K. ${}^{31}P{}^{1}H}-NMR$ (CD₂Cl₂): δ 2.5 (t, J=27 Hz), J = 27Hz). Anal. Calc. 26.3 (t, for C₈₉H₆₆ClF₃O₃P₄SRu: C, 69.73; H, 4.34. Found: C, 69.74; H, 4.38%. Complex **4e** was also prepared form the reaction of **5e** with Me₃SiOTf under 1 atm of H₂. To a solution of **5e** (138 mg, 0.10 mmol) in dichloromethane (10 ml) was added Me₃SiOTf (22 mg, 0.10 mmol) by syringe under 1 atm of H₂. The reaction mixture was stirred at r.t. for 30 min under 1 atm of H₂. The color of the solution turned from yellow to red during the reaction. Addition of hexanes (50 ml) to the reaction mixture afforded a pale red powder, which was collected by filtration and washed with hexanes (20 ml \times 3). The resultant powder was recrystallized from THF-hexanes to give a pale red solid of **4e** (49 mg, 0.032 mmol) in 32% yield. ## 3.3. Preparation of $[RuCl(\eta^2-HD)((S)-BINAP)_2]OTf$ (4e-d₁) The Ru(η^2 -HD) complex (**4e**- d_1) was prepared in situ by the following procedure. To a solution of **5e** (28 mg, 0.020 mmol) in CD₂Cl₂ (0.75 ml) was added a mixture (20 mg) of HOTf and D₂O (1/1, wt.%) at r.t. under 1 atm of N₂. ¹H-NMR spectra of the reaction mixture showed the formation of **4e**- d_1 . ¹H-NMR (CD₂Cl₂): δ –9.01 (tq, $^2J_{PH} = 7.2$ Hz, $^1J_{HD} = 21.5$ Hz). ### 3.4. Preparation of $[RuCl_2((R, R)-CHIRAPHOS)_2] \cdot CH_2Cl_2$ (2f·CH₂Cl₂) A solution of [RuCl₂(PPh₃)₃] (910 mg, 0.95 mmol) and (R, R)-CHIRAPHOS (812 mg, 1.90 mmol) in toluene (20 ml) was stirred at reflux temperature for 3 h under 1 atm of N₂. After evaporation of the solvent, the residue was washed with hexanes (20 ml × 3) and extracted with CH₂Cl₂. Addition of hexanes to the concentrated CH₂Cl₂ solution afforded 2f·CH₂Cl₂ (821 mg, 0.74 mmol) in 78% yield as yellow crystals. ¹H-NMR (CDCl₃): δ 0.72 (br s, 12H), 2.81 (br s, 4H), 6.83–7.51 (m, 40H). ³¹P{¹H}-NMR (CDCl₃): δ 46.8 (s). Anal. Calc. for C₅₆H₅₆Cl₂P₄Ru·CH₂Cl₂: C, 61.69; H, 5.27. Found: C, 61.83; H, 5.31%. ### 3.5. Preparation of $[RuCl(N_2)((R, R)-CHIRAPHOS)_2]OTf(4f)$ A solution of **2f** (821 mg, 0.74 mmol) and AgOTf (210 mg, 0.82 mmol) in CH₂Cl₂ (20 ml) was stirred at r.t. for 30 min under 1 atm of N₂. After evaporation of the solvent, the residue was extracted with CH₂Cl₂ (10 ml). Addition of Et₂O to the concentrated CH₂Cl₂ solution of product under 1 atm of N₂ afforded **4f** (739 mg, 0.63 mmol) in 86% yield as pale yellow crystals. IR (KBr): ν (N₂), 2155 cm⁻¹. ¹H-NMR (CDCl₃): δ 0.36 (q, 6H, J=7 Hz), 0.65 (q, 6H, J=7 Hz), 2.37 (br m, 2H), 3.00 (br m, 2H), 6.71–7.48 (m, 40H). ³¹P{¹H}-NMR (CDCl₃): δ 37.7 (t, J=22 Hz) and 51.0 (t, J=22 Hz). Anal. Calc. for C₅₇H₅₆ClF₃N₂O₃P₄RuS: C, 58.69; H, 4.84; N, 2.40. Found: C, 58.91; H, 5.13; N, 2.51%. # 3.6. Conversion of $\mathbf{4f}$ into $[RuCl(\eta^2-H_2)((R,R)-CHIRAPHOS)_2]OTf(\mathbf{4g})$ In an NMR tube was placed **4f** (15.0 mg, 0.013 mmol) under 1 atm of N₂. Dry CD₂Cl₂ (0.60 ml) was then added by syringe under 1 atm of N₂. The reaction mixture was stirred at r.t. for 5 min under 1 atm of H₂. ¹H and ³¹P{¹H}-NMR spectra of the reaction mixture showed the complete conversion of **4f** into **4g**. ¹H-NMR (CD₂Cl₂): δ –12.6 (br, 2H), 0.37 (q, 6H, J = 6 Hz), 0.80 (q, 6H, J = 6 Hz), 1.78 (br m, 2H), 3.16 (br m, 2H), 6.69–7.55 (m, 40H); a minimum T_1 value of 15 ms (400 MHz) at 273 K was obtained for the broad signal at –12.6 ppm upon changing the temperature from 233 to 303 K. ³¹P{¹H}-NMR (CD₂Cl₂): δ 36.1 (t, J = 24 Hz) and 64.9 (t, J = 24 Hz). ### 3.7. Reaction of 1a with H_2 in the presence of 2a in an NMR tube (Scheme 1) In an NMR tube was placed 2a (16.3 mg, 0.015 mmol) under 1 atm of H_2 . A solution of 1a (28 mg, 0.16 mmol) in anhydrous $ClCD_2CD_2Cl$ (0.8 ml) was then added by syringe. The reaction mixture was kept at 50 °C for 8 h under 1 atm of H_2 . The ¹H-NMR analysis of the mixture revealed that 3a was obtained in >95% yield. The quantitative formation of Me_3SiH was confirmed by ¹H and ²⁹Si{¹H}-NMR spectra of the reaction mixture. Me_3SiH : ²⁹Si{¹H}-NMR (C_6D_6): δ -16.4. (1a: ²⁹Si{¹H}-NMR (C_6D_6): δ 14.6). ### 3.8. Reaction of $\mathbf{1a}$ in the presence of a catalytic amount of $\mathbf{4a}$ under 1 atm of H_2 A typical experimental procedure for the reaction described in Table 1 is as follows. In a 20 ml flask were placed 2a (32.5 mg, 0.030 mmol) and naphthalene (30 mg) as an internal standard for GLC analysis under 1 atm of N_2 . Anhydrous 1,2-dichloroethane (5 ml) was added, and then the mixture was magnetically stirred at r.t. for 5 min. After the N_2 atmosphere was replaced by 1 atm of H_2 , 1a (102 mg, 0.60 mmol) was added by syringe. The reaction mixture was stirred at 50 °C for 18 h in the flask attached with a balloon (3 l) containing 1 atm of H_2 . The yield of 3a was determined by GLC. # 3.9. Reaction of trimethylsilyl enol ethers (1a-1f and 1g) in the presence of a catalytic amount of 4a under 1 atm of D_2 A typical experimental procedure for the reaction of 1a with D₂ catalysed by 4a (Table 2; run 1) is described below. In a 20 ml flask were placed 2a (32.5 mg, 0.030 mmol) and naphthalene as an internal standard for GLC under 1 atm of N₂. Anhydrous 1,2-dichloroethane (5 ml) was added, and then the mixture was magnetically stirred at r.t. for 5 min. After the N₂ atmosphere of the reaction mixture was replaced by 1 atm of D₂, **1a** (102) mg, 0.60 mmol) was added by syringe. The reaction mixture was stirred at 50 °C for 48 h in the flask attached with a balloon (3 l) containing 1 atm of D₂. The formation of 3a' was observed by GLC (>95% yield). No other products than 3a' and Me₃SiD were observed by NMR, GLC and GC-MS. For the isolation of 3a', the solvent was removed under reduced pressure and the residue was extracted with Et₂O (10 ml). The Et₂O solution was distilled at atmosphere pressure to give a colorless liquid 3a' (b.p. 155 °C). The presence of D at the α -position of 3a' was confirmed by ¹H-NMR and GC–MS. ¹H-NMR (CDCl₃): δ 1.74 (m, 2H), 1.87 (m, 4H), 2.34 (br t, 3.05H; O=CC H_2 CH₂). This result indicates the 95% deuterium content at the α - position of 3a'. GC-MS m/z (relative intensity) 99 [M⁺, 20], 98 [M⁺ -1, 2]. The presence of D at the α -position of 3d' (>95% GLC yield) was confirmed by 1 H-NMR and GC-MS. 1 H-NMR (CDCl₃): δ 2.62 (t, 2.00H; O=C-C H_3 , $^{1}J_{\rm HD}$ = 2.4 Hz), 7.47 (t, 2H), 7.68 (t, 2H), 7.96 (d, 1H). This result indicates the >99% deuterium content at the α -position of 3d'. GC-MS m/z (relative intensity) 121 [M $^{+}$, 30], 120 [M $^{+}$ -1, 10]. The presence of D at the α-position of 3e' (>95% GLC yield) was also confirmed by 1 H-NMR and GC-MS. 1 H-NMR (CDCl₃): δ 1.26 (s, 3H), 1.90 (m, 1H), 2.20 (m, 1H), 2.63 (m, 0.07H; O=C-C(CH₃)H-CH₂-), 2.99 (m, 2H), 7.22 (d, 1H), 7.29 (t, 1H), 7.44 (t, 1H), 8.03 (d, 1H). This result indicates the 93% deuterium content at the α-position of 3e'. GC-MS m/z (relative intensity) 161 [M⁺, 64], 160 [M⁺-1, 9]. The presence of D at the α -position of **3f**' (>95% GLC yield) was also confirmed by ¹H-NMR and GC–MS. ¹H-NMR (CDCl₃): δ 0.99 (s, 3H), 1.05 (s, 3H), 1.18 (s, 3H), 1.6–2.0 (m, 6H), 2.68 (m, 0.15*H*; O=CC*H*(CH₂)–CH₂–). This result indicates the 85% deuterium content at the α -position of **3f**'. GC–MS *m*/*z* (relative intensity) 141 [M⁺, 22], 140 [M⁺ – 1, 1]. ### 3.10. Stoichiometric reaction of 4a' and 6a under D_2 atmosphere (Scheme 5) A solution of **6a** was prepared by the lithiation of **1a** (17.5 mg, 0.10 mmol) with MeLi (0.10 ml of 1.02 N diethyl ether solution, 0.10 mmol) in Et₂O (1 ml) at r.t. for 2 h under 1 atm of N₂. A solution of complex 4a', which was prepared from 2a (110 mg, 0.10 mmol) in dry THF (10 ml) under 1 atm of D₂, was added to the above solution at 0 °C under 1 atm of D2. The mixture was warmed up to r.t. and stirred at r.t. for 1 h under 1 atm of D₂. The GLC analysis based on naphthalene (10 mg) as an internal standard showed the formation of 3a' in > 95\% yield. For the isolation of 3a', the solvent was removed under reduced pressure and the residue was extracted with Et₂O (10 ml). The Et₂O solution was distilled at atmosphere pressure to give a colorless liquid **3a**' (b.p. 155 °C). ¹H-NMR (CDCl₃): δ 1.74 (m, 2H), 1.87 (m, 4H), 2.34 (br t, 3.04H; O=C-C H_2 -C H_2). This result indicates the 96% deuterium content at the α position of 3a'. GC-MS m/z (relative intensity) 99 [M⁺, 22], 98 $[M^+-1, 1]$. On the other hand, the remained residue was recrystallized from CH₂Cl₂-Et₂O to give deuteride complex 5a' (79 mg, 0.085 mmol) in 85% yield. $^{31}P\{^{1}H\}$ -NMR (C₆D₆): δ 62.7 (s); ^{1}H -NMR (C₆D₆): δ -17.6 (m, 0.12H; RuH), 2.04 (br, 4H), 2.65 (br, 4H), 6.87-7.70 (m, 40H). The ¹H-NMR spectrum of 5a' indicates the 88% deuterium content as deuteride of 5a'. ### 3.11. Stoichiometric reaction of **5a** with Me₃SiOTf under H₂ atmosphere (Scheme 6) In an NMR tube was dissolved **5a** (28.0 mg, 0.03 mmol) in anhydrous C_6D_6 (1.0 ml) under 1 atm of H_2 . Then, Me₃SiOTf (9.0 mg, 0.04 mmol) was added by syringe. The $^{31}P\{^1H\}$ -NMR spectrum of the reaction mixture showed that **4a** was formed in >95% yield. **4a**: $^{31}P\{^1H\}$ -NMR (C_6D_6): δ 51.6 (s); 1H -NMR (C_6D_6): δ -11.5 (br, 2H), 2.01 (br, 4H), 2.48 (br, 4H), 6.76–7.70 (m, 40H). On the other hand, the complete consumption of Me₃SiOTf ($^{29}Si\{^1H\}$ -NMR δ 46.0) and the formation of Me₃SiH ($^{29}Si\{^1H\}$ -NMR δ -16.4) was confirmed by 1H and $^{29}Si\{^1H\}$ -NMR spectra of the reaction mixture. #### 3.12. Asymmetric protonation of **6e** with **4e** (Scheme 8) A solution of **6e** was prepared by lithiation of **1e** (25.0) mg, 0.10 mmol) with MeLi (0.10 ml of 1.02 N diethyl ether solution, 0.10 mmol) in anhydrous Et₂O (3 ml) at r.t. for 2 h under 1 atm of N₂. A solution of complex 4e (150 mg, 0.10 mmol) in anhydrous CH₂Cl₂ (5 ml) was then added to the above solution of **6e** at -78 °C under 1 atm of H_2 . The mixture was stirred at -78 °C for 4 h under 1 atm of H₂. Then the reaction mixture was gradually warmed up to r.t. and stirred at r.t. for 12 h. The GLC analysis showed the formation of 3e in > 95%yield. The solvent was removed under reduced pressure and the residue was extracted with Et₂O (5 ml \times 3). The Et₂O solution was purified by TLC (SiO₂, hexane-EtOAc = 7/3 as an eluent) to afford **3e** as a pale yellow liquid (12 mg, 0.075 mmol) in 75% isolated yield. On the other hand, the remained residue was recrystallized from CH₂Cl₂-Et₂O to give **5e** as a yellow solid (95 mg, 0.069 mmol) in 69% yield. The absolute configuration of (S)-**3e** was determined by its optical rotation [33]. $[\alpha]^{18}D$ 30 (c 0.40, dioxane). The 75% ee value of (S)-3e was determined by GLC (carrier gas, helium; column temperature, 120 °C; split ratio, 20:1) on a cyclodextrin phase (Chiraldex GT-A, 30 m). The retention time of (R)-3e, 22.87 min (12.6%); the retention time of (S)-3e, 24.01 min (87.4%). #### 3.13. An X-ray crystallographic study A single crystal of $[RuCl(N_2)((R, R)-CHIRA-PHOS)_2]PF_6$ (4h) obtained by anion exchange of 4f with NaPF₆ was sealed in Pyrex glass capillaries under N₂ atmosphere and used for data collection. Diffraction data were collected on a Rigaku AFC-7R four-circle automated diffractometer at 20 °C. Orientation matrixes and unit cell parameters were determined by least-squares treatment of 25 reflections with $27.0 < 2\theta < 28.7^{\circ}$ for 4h. No significant decay was observed for three standard reflections monitored every 150 reflections during the data collection. Intensity data were Table 3 Crystallographic data of [RuCl(N₂)((R, R)-CHIRAPHOS)₂]PF₆ (4h) | Formula | $C_{56}H_{56}ClF_6N_2P_5Ru$ | |--------------------------------------|-----------------------------| | Formula weight | 1162.45 | | Crystal system | Orthorhombic | | Space group | $P2_12_12_1(#19)$ | | Crystal color | Yellow | | a (Å) | 15 107(3) | | b (Å) | 23.838(4) | | c (Å) | 14.838(3) | | V (Å ³) | 5343(1) | | Z | 4 | | $D_{\rm calc}$ (g cm ⁻¹) | 1.445 | | $F(0\ 0\ 0)$ | 2384 | | $\mu_{\rm calc}$ (cm ⁻¹) | 5.53 | | No. of unique data | 6778 | | No. of data used $(I > 3\sigma(I))$ | 3251 | | No. of parameters refined | 427 | | R | 0.057 | | $R_{ m w}$ | 0.058 | | Goodness-of-fit indicator | 1.45 | | Maximum residuals (e $Å^{-3}$) | 0.64 | corrected for Lorentz-polarization effects and for absorption (scans). Details of crystal and data collection parameters are summarized in Table 3. Structures solution and refinements were carried out by using the TEXSAN program package [34]. The positions of heavy atoms were determined by Patterson methods and subsequent Fourier syntheses (DIRDIF PATTY) [35]. All non-hydrogen atoms except for carbon atoms of phenyl rings of 4h were refined anisotropically by full-matrix least-squares techniques (based on F). All hydrogen atoms were placed at the calculated positions and included in the final stage of refinement with fixed parameters. The ORTEP drawing of 4h is shown in Fig. 1. Selected bond lengths and angles are listed in Table 4. Fig. 1. ORTEP drawing of $[RuCl(N_2)((R,R)-CHIRAPHOS)_2]PF_6$ (4h). PF_6^- anion and hydrogen atoms are omitted for clarity. Table 4 Selected bond lengths and angles in $[RuCl(N_2)((R, R)-CHIRA-PHOS)_2]PF_6$ (4h) | Bond lengths (Å) | | | | |------------------|----------|-----------------|----------| | Ru(1)- $Cl(1)$ | 2.399(3) | Ru(1)-P(4) | 2.423(4) | | Ru(1)-P(1) | 2.427(4) | Ru(1)-N(1) | 1.96(1) | | Ru(1)-P(2) | 2.421(4) | N(1)-N(2) | 1.02(1) | | Ru(1)-P(3) | 2.421(4) | | | | Bond angles (°) | | | | | Cl(1)-Ru(1)-P(1) | 94.0(1) | P(2)-Ru(1)-P(3) | 98.8(1) | | Cl(1)-Ru(1)-P(2) | 84.9(1) | P(2)-Ru(1)-P(4) | 167.0(1) | | Cl(1)-Ru(1)-P(3) | 92.4(1) | P(3)-Ru(1)-P(4) | 81.8(1) | | Cl(1)-Ru(1)-P(4) | 82.1(1) | P(1)-Ru(1)-N(1) | 86.1(4) | | Cl(1)-Ru(1)-N(1) | 178.6(4) | P(2)-Ru(1)-N(1) | 96.4(4) | | P(1)-Ru(1)-P(2) | 82.1(1) | P(3)-Ru(1)-N(1) | 87.4(4) | | P(1)-Ru(1)-P(3) | 173.6(1) | P(4)-Ru(1)-N(1) | 96.5(3) | | P(1)-Ru(1)-P(4) | 98.8(1) | Ru(1)-N(1)-N(2) | 178.0(1) | | | | | | #### 4. Supplementary material Crystallographic data for this structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 211323 (compound 4h). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2, 1EZ, UK (Fax: +44-1223-336-033, or e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk). #### Acknowledgements This work was supported by a Grant-in-Aid (09102004 and 12750747) from the Ministry of Education, Science, Sports, and Culture of Japan. We thank Dr Dai Masui and Dr Shin Takemoto for assistance with 400 MHz NMR analyses. #### References - [1] (a) G.J. Kubas, R.R. Ryan, B.I. Swanson, P.J. Vergamini, H.J. Wasserman, J. Am. Chem. Soc. 106 (1984) 451; - (b) G.J. Kubas, Accounts Chem. Res. 21 (1988) 120; - (c) G.J. Kubas, Metal Dihydrogen and σ-Bond Complexes: Structure, Theory, and Reactivity, Kluwer Academic/Plenum Publishers, New York, 2001; - (d) M. Peruzzini, R. Poli (Eds.), Recent Advances in Hydride Chemistry, Elsevier, Amsterdam, 2001. - For recent examples, see; (a) D.H. Lee, B.P. Patel, E. Clot, O. Eisenstein, R.H. Crabtree, Chem. Commun. (1999) 297. (b) S.E. Landau, R.H. Morris, A.J. Lough, Inorg. Chem. 38 (1999) 6060. (c) V.I. Bakhmutov, C. Bianchini, M. Peruzzini, F. Vizza, E.V. Vorontsov, Inorg. Chem. 39 (2000) 1655. (d) N. Mathew, B.R. Jagirdar, R.S. Gopalan, G.U. Kulkarni, Organometallics 19 (2000) 4506. (e) J.K. Law, H. Mellows, D.M. Heinekey, J. Am. Chem. Soc. 123 (2001) 2085. (f) K. Abdur-Rashid, T.P. Fong, B. Greaves, D.G. Gusev, J.G. Hinman, S.E. Landau, A.J. Lough, R.H. Morris, J. Am. Chem. Soc. 122 (2000) 9155. (g) S.H. Liu, - S.T. Lo, T.B. Wen, Z.Y. Zhou, C.-P. Lau, G. Jia, Organometallics 20 (2001) 667. (h) B.F.M. Kimmich, R.M. Bullock, Organometallics 21 (2002) 1504. - [3] For recent reviews, see, (a) P.G. Jessop, R.H. Morris, Coord. Chem. Rev. 121 (1992) 155. (b) D.M. Heinekey, W.J. Oldham, Chem. Rev. 93 (1993) 913. (c) R.H. Crabtree, Angew. Chem. Int. Ed. Engl. 32 (1993) 789. (d) S. Sabo-Etienne, B. Chaudret, Chem. Rev. 98 (1998) 2077. (e) S. Sabo-Etienne, B. Chaudret, Coord. Chem. Rev. 178–180 (1998) 381. (f) M.A. Esteruelas, L.A. Oro, Chem. Rev. 98 (1998) 577. (g) G. Jia, C.-P. Lau, Coord. Chem. Rev. 190–192 (1999) 83. (h) R. Custelcean, J.E. Jackson, Chem. Rev. 101 (2001) 1963. (i) G.J. Kubas, J. Organomet. Chem. 635 (2001) 37. - [4] (a) It is well known that M(η²-H₂) complexes serve as precursors to homogeneous hydrogenation catalysts [3a,e,f]. (b) The first well-documented examples of M(η²-H₂) (M = Fe or Ru)-assisted catalytic hydrogenation of carbon-carbon triple bonds are found in the following literatures; C. Bianchini, A. Meli, M. Peruzzini, P. Frediani, C. Bohanna, M.A. Esteruelas, L.A. Oro, Organometallics 11 (1992) 138. (c) C. Bianchini, C. Bohanna, M.A. Esteruelas, P. Frediani, A. Meli, L.A. Oro, M. Peruzzini, Organometallics 11 (1992) 3837. (d) C. Bianchini, F. Laschi, D. Masi, F.M. Ottaviani, A. Pastor, M. Peruzzini, P. Zanello, F. Zanobini, J. Am. Chem. Soc. 115 (1993) 2723. - [5] (a) G. Jia, R.H. Morris, C.T. Schweitzer, Inorg. Chem. 30 (1991) 594: - (b) K. Abdur-Rashid, A.J. Lough, R.H. Morris, Organometallics 19 (2000) 2655; - (c) K. Abdur-Rashid, A.J. Lough, R.H. Morris, Organometallics 20 (2001) 1047; - (d) K. Abdur-Rashid, A.J. Lough, R.H. Morris, J. Am. Chem. Soc. 123 (2001) 7473. - [6] (a) R.T. Hembre, J.S. McQueen, J. Am. Chem. Soc. 116 (1994) 2141. - (b) R.T. Hembre, J.S. McQueen, V.W. Day, J. Am. Chem. Soc. 118 (1996) 798. - [7] (a) V.I. Bakhmutov, E.V. Vorontsov, D.Y. Antonov, Inorg. Chim. Acta 278 (1998) 122: - (b) R.M. Bullock, M.H. Voges, J. Am. Chem. Soc. 122 (2000) 12594: - (c) M.P. Magee, J.R. Norton, J. Am. Chem. Soc. 123 (2001) 1778. - [8] (a) M. Hidai, Y. Mizobe, Chem. Rev. 95 (1995) 1115; - (b) M. Hidai, Y. Ishii, Bull. Chem. Soc. Jpn 69 (1996) 819;(c) H. Seino, Y. Mizobe, M. Hidai, Chem. Rec. 1 (2001) 362. - [9] (a) Y. Nishibayashi, S. Iwai, M. Hidai, Science 279 (1998) 540; - (b) Y. Nishibayashi, S. Takemoto, S. Iwai, M. Hidai, Inorg. Chem. 39 (2000) 5946;(c) Y. Nishibayashi, I. Wakiji, K. Hirata, M. Rakowski DuBois, - (c) Y. Nishibayashi, I. Wakiji, K. Hirata, M. Rakowski DuBois M. Hidai, Inorg. Chem. 40 (2001) 578. - [10] A short account of our recent work, see, M. Hidai, Y. Nishibayashi, in: M. Peruzzini, R. Poli (Ed.), Recent Advances in Hydride Chemistry, Elsevier, Amsterdam, 2001, p. 117. - [11] For an example, see: M. Tanaka, Y. Watanabe, T. Mitsudo, Y. Yasunori, Y. Takegami, Chem. Lett. (1974) 137. - [12] Y. Nishibayashi, I. Takei, M. Hidai, Angew. Chem. Int. Ed. 38 (1999) 3047. - [13] B. Chin, A.J. Lough, R.H. Morris, C.T. Schweitzer, C. D'Agostino, Inorg. Chem. 33 (1994) 6278. - [14] The pseudo-aqueous pK_a values are estimated by NMR analysis of acid-base reactions in organic solvents such as CD_2Cl_2 or THF- d_8 [13]. We shall simply use the term pK_a in the text. - [15] E.P. Cappellani, S.D. Drouin, G. Jia, P.A. Maltby, R.H. Morris, C.T. Schweitzer, J. Am. Chem. Soc. 116 (1994) 3375. - [16] E. Rocchini, A. Mezzetti, H. Rüegger, U. Burckhardt, V. Gramlich, A.D. Zotto, P. Martinuzzi, P. Rigo, Inorg. Chem. 36 (1997) 711. - [17] Recent examples, see, (a) T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada, R. Noyori, J. Am. Chem. Soc. 120 (1998) 1086. (b) H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, A.F. England, T. Ikariya, R. Noyori, Angew. Chem. Int. Ed. 37 (1998) 1703. (c) T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa, K. Murata, E. Katayama, T. Yokozawa, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 120 (1998) 13529. (d) J. Yin, S.L. Buchwald, J. Am. Chem. Soc. 122 (2000) 12051. (e) K. Ueda, Y. Sato, M. Mori, J. Am. Chem. Soc. 122 (2000) 10722. (f) M. Ogasawara, H. Ikeda, T. Nagano, T. Hayashi, J. Am. Chem. Soc. 123 (2001) 2089. - [18] Recent examples, see, (a) B.F.M. Kimmich, E. Somsook, C.R. Landis, J. Am. Chem. Soc. 120 (1998) 10115. (b) D.K. Wicht, M.A. Zhuravel, R.V. Gregush, D.S. Glueck, I.A. Guzei, L.M. Liable-Sands, A.L. Rheingold, Organometallics 17 (1998) 1412. (c) M.A. Casado, J.J. Perez-Torrente, M.A. Ciriano, L.A. Oro, A. Orejon, C. Claver, Organometallics 18 (1999) 3035. (d) H.S. Park, E. Alberico, H. Alper, J. Am. Chem. Soc. 122 (2000) 11697. (e) R. Kuwano, K. Sato, T. Kurokawa, D. Karube, Y. Ito, J. Am. Chem. Soc. 122 (2000) 7614. - [19] We attempted to determine the pK_a value of **4e** from reactions of **4e** with PEtPh₂ (HPEtPh₂⁺, $pK_a \approx 4.9$), PCy₂Ph (HPCy₂Ph⁺, $pK_a \approx 6$), or PCy₃ (HPCy₃⁺, $pK_a \approx 9.7$) in either CD₂Cl₂ or THF- d_8 at 20 °C by employing the NMR method [13]. Unfortunately, it was unsuccessful because mixtures of unidentified products and **5e** were obtained from the reactions. However, the finding that **4e** was readily deprotonated by Et₃N in CD₂Cl₂ at 20 °C indicates that the pK_a value of **4e** is far below 10.8, the pK_a of Et₃NH⁺. - [20] The formation of **3a** and Et₃SiH or t-BuMe₂SiH was confirmed by the 1 H and 29 Si{ 1 H}-NMR study of the reaction mixture performed in NMR tubes (Et₃SiH; 29 Si{ 1 H}-NMR (ClCD₂CD₂Cl): δ -0.50, t-BuMe₂SiH; 29 Si{ 1 H}-NMR (ClCD₂CD₂Cl): δ -0.54). - [21] H. Kawano, T. Ikariya, Y. Ishii, M. Saburi, S. Yoshikawa, Y. Uchida, H. Kumobayashi, J. Chem. Soc. Perkin. Trans. 1 (1989) 1571. - [22] Independently, Mezzetti and co-workers reported the preparation of [RuCl₂(CHIRAPHOS)₂] and [RuCl(CHIRAPHOS)₂]BF₄; R.M. Stoop, C. Bauer, P. Setz, M. Wörle, T.Y.H. Wong, A. Mezzetti, Organometallics 18 (1999) 5691 - [23] M.H. Novice, H.R. Seikaly, A.D. Seiz, T.T. Tidwell, J. Am. Chem. Soc. 102 (1980) 5835. - [24] No other products except for Me₃SiH were not confirmed by the ²⁹Si{¹H}-NMR study of the reaction mixture. - [25] In the catalytic hydrogenation of trimethylsilyl enol ethers, the corresponding ketones are sometimes observed as by-products. This is considered to arise from the reaction of trimethylsilyl enol ethers with adventitious water in a solvent. In fact, treatment of 1a with 10 equivalent of D₂O in the presence of 5 mol.% of [RhCl(PPh₃)₃] under H₂ (1 atm) at 50 °C for 18 h afforded 3a' in > 95% GLC yield, together with Me₃SiOSiMe₃. However, no reaction occurred upon treatment of 1a with 10 equivalent of D₂O in the absence of the catalyst at 50 °C for 18 h. - [26] The formation of 2-cyclohexen-1-one by the Pd(II)-catalysed dehydrosilylation of 1a was reported. Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 43 (1978) 1011. - [27] (a) C. Fehr, Angew. Chem. Int. Ed. Engl. 35 (1996) 2566;(b) A. Yanagisawa, K. Ishihara, H. Yamamoto, Synlett (1997) 411; - (c) M. Sugiura, T. Nakai, Angew. Chem. Int. Ed. 36 (1997) 2366; (d) G. Asensio, P. Aleman, J. Gil, L.R. Domingo, M. Medio-Simon, J. Org. Chem. 63 (1998) 9342; - (e) S. Nakahara, M. Kaneeda, K. Ishihara, H. Yamamoto, J. Am. Chem. Soc. 122 (2000) 8120. - [28] P.F. Hudrlik, J.M. Takacs, J. Org. Chem. 43 (1978) 3861. - [29] R.D. Clark, K.G. Untch, J. Org. Chem. 44 (1979) 248. - [30] Y. Watanabe, Y. Ishimura, J. Am. Chem. Soc. 111 (1989) 410. - [31] G.M. Rubottom, H.D. Juve, Jr., J. Org. Chem. 48 (1983) 422. - [32] K. Morikawa, J. Park, P.G. Andersson, T. Hashiyama, K.B. Sharpless, J. Am. Chem. Soc. 115 (1993) 8463. - [33] G. Jaouen, A. Meyer, J. Am. Chem. Soc. 97 (1975) 4667. - [34] TEXSAN: Crystal Structure Analysis Package, Molecular Structure Corp., The Woodlands, TX, 1985 and 1992. - [35] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R. Gould, J.M.M. Smits, C. Smykalla, PATTY: The DIRDIF Program System, Technical Report of the Crystallography Laboratory, University of Nijimegen, The Netherlands, 1992.