Synthesis of 7-(2,4-dichlorophenyl)-D-*erythro*-3-hydroxy-5heptanolide, 6-(2,4-dichlorophenyl)-D-*erythro*-2,4-dihydroxyhexane-1-sulfonic acid, and 6-(2,4-dichlorophenyl)-D-*erythro*-2,4-dihydroxyhexylphosphonic acid*

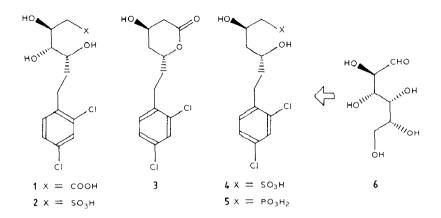
György Hodosi, Géza Galambos, Benjamin Podányi, and János Kuszmann[†] Institute for Drug Research, P.O.B. 82, 1325 Budapest (Hungary)

(Received May 17th, 1991; accepted August 17th, 1991)

ABSTRACT

6-(2,4-Dichlorophenyl)-D-erythro-1,2,4-hexanetriol, synthesised from D-glucose, was partially silylated, then reacted with 2-methoxypropene to afford 1-O-tert-butyldimethylsilyl-6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D-erythro-1,2,4-hexanetriol (17). Desilylation of 17 gave 6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D-erythro-1,2,4-hexanetriol, which was converted into the 1-tosylate 18 and the 1-bromo derivative 19. Reaction of 18 with potassium thiolbenzoate gave, after debenzoylation, oxidation, and deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexane-1-sulfonic acid (4). Reaction of 18 or 19 with triethyl phosphite gave, after deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexylphosphonic acid (5), and reaction of 19 with potassium cyanide gave, after subsequent hydrolysis and deprotection, 7-(2,4-dichlorophenyl)-D-erythro-3-hydroxy-5-heptanolide (3).

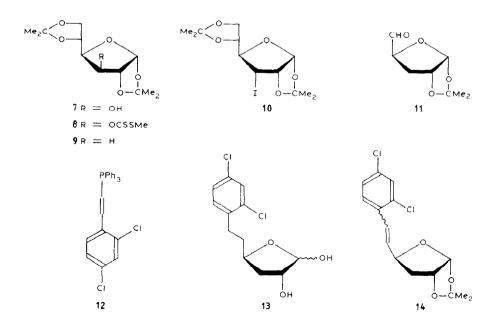
INTRODUCTION


In the preceding paper¹, the synthesis of the mevalonic acid analogue 1 was described, which differed from the model compound 3 of known biological activity² by an additional hydroxyl group in the lactone moiety. However, both 1 and its bioisosteric derivative 2, in which the carboxyl group was substituted by the sulfonic acid group, were less active than the corresponding dihydroxy derivative 3^{**} . In order to determine the possible influence of the additional hydroxyl group on the biological activity, the synthesis of analogues of 3, which differ only in the nature of the acidic group, *i.e.* the sulfonic acid 4 and the phosphonic acid 5, was undertaken.

The strategy of Lee³ was applied, starting from D-glucose (6) and involving (a) removal of HO-3 by reduction, (b) replacement of C-5,6 by the 2,4-dichlorophenylethyl substituent, and (c) introduction of the new acidic group via a chain elongation at C-1.

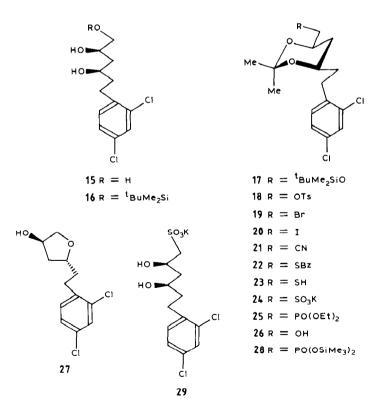
^{*} Potential Inhibitors of HMG-CoA Reductase, Part II. For Part I, see ref. 1.

[†] Author for correspondence.


^{**} Despite the fact that **3** was synthesised as the optically pure D-*erythro* isomer by two different approaches^{3,4}, the racemate was used for the biological investigations².

RESULTS AND DISCUSSION

The reductive elimination of HO-3 involved³ conversion of the 1,2:5,6-di-*O*isopropylidene derivative 7 into the 3-*O*-(*S*-methyl dithiocarbonate) **8**, followed by reduction with Bu_3SnH^{5-7} to afford the 3-deoxy derivative **9** (80% from 7). The drawbacks of this approach are the toxic reagents and the high price of Bu_3SnH . Therefore, 7 was converted⁸ into the 3-deoxy-3-iodo-D-*allo* derivative **10**, using Ph₃P, I₂, and imidazole in toluene at 110°. Reduction of **10** by Bu_3SnH^6 gave 92% of **9** but, because of the drawbacks mentioned above, NiCl₂–NaBH₄ in ethanol^{9,10} was used. Thus, **9** was obtained by a safe and simple procedure in an overall yield of 68% from 7.


Partial hydrolysis of **9** and subsequent periodate oxidation¹¹ afforded **11**, the free aldehyde group of which was converted *via* a Wittig reaction with the 2,4-dichloroben-

zyltriphenylphosphonium ylid 12 in 1:4 N, N-dimethylformamide-tetrahydrofuran into 14. According to the n.m.r. data, 14 was a 3:1 mixture of the Z and E isomers ($J_{5,6}$ 11.4 and 16.0 Hz, respectively) which could not be resolved by column chromatography. Hydrogenation (Pd/C) of this mixture gave, after hydrolysis, the free saturated lactol 13³.

Borohydride reduction of 13 afforded the triol 15, which was the key intermediate in the synthesis of the target molecules 4 and 5 (4 was isolated as the potassium salt 29). Since, the direct activation of HO-1 would lead¹ only to the 1,4-anhydro derivative 27, due to rapid intramolecular cyclisation, an indirect route was used. Thus, HO-1 in 15 was protected by the 'BuMe₂Si group (\rightarrow 16) and HO-3,5 were blocked by the isopropylidene group (\rightarrow 17). Protection by acetylation was avoided because of possible acetyl migration¹ during the removal of the 'BuMe₂Si group. The silyl group of 17 was removed by reaction with Bu₄NF in tetrahydrofuran to give 95% of 26. The primary hydroxyl group of 26 was activated either by tosylation (\rightarrow 18) or by conversion into the bromide 19 by treatment¹² with N-bromosuccinimide and Ph₃P in N,N-dimethylformamide. Treatment of 18 with a boiling solution of sodium iodide in acetone gave the iodide 20.

Both 18 and 19 are suitable for the introduction of acidic functions at C-1. Thus, treatment of 18 with potassium thiolbenzoate in boiling acetone afforded 85% of 22, which was converted into thiol 23 on treatment with methanolic sodium methoxide (at

least 1.1 equiv. because of the acidity of the SH group). Oxidation¹³ of 23 with $KMnO_4$ in acetone afforded the potassium sulfonate 24, which was hydrolysed with acid to give 29.

When 18 was treated with sodium diethyl phosphonate^{14,15}, only the derivative 26 could be isolated. The Michaelis–Arbusov reaction^{15–17} of 18 with triethyl phosphite at 150–160° afforded 58% of the diethyl phosphonate 25. A higher yield (78%) of 25 was obtained when this reaction was applied to the bromide 19. The ester 25 was deprotected using Me₃SiCl–NaI in *N*,*N*-dimethylformamide¹⁸ to give the silylated intermediate 28, which hydrolysed spontaneously in the presence of water to yield 5.

In order to obtain appropriate biological data, the activites of **29**, **5**, and **3** should be compared. However, only the biological activity of racemic **3** has been reported². Hence, **3** was synthesised from the bromide **19** by treatment in sequence with sodium cyanide in hexamethylphosphoric triamide at 80° to give the nitrile **21**, oxidation with H_2O_2 in dimethyl sulfoxide¹⁹, and hydrolysis of the resulting amide. The lactone **3** ($v_{C=0}$ 1730 cm⁻¹) was identical with that described^{3,4}.

BIOLOGICAL RESULTS

The assay for the inhibition of HMG-CoA reductase was carried as described² for racemic 3, but with the D-*erythro*(3*R*,5*R*) isomer. The following activities were obtained: 3 (10⁻⁵M) 82% inhibition relative to that of compactin (*cf.* 80% for racemic 3), 29 (10⁻⁵M) 13.3%, 5 (10⁻⁴M) 16.2%.

Thus, exchange of the carboxyl group at C-1 by a sulfonic (29) or phosphonic (5) group decreases the activity significantly.

EXPERIMENTAL

General methods. — Organic solutions were dried over $MgSO_4$ and concentrated under diminished pressure. Reactions were carried out at 20° and optical rotations were determined on 1% solutions in CHCl₃ at 20° unless stated otherwise.

T.l.c. was performed on Kieselgel G with EtOAc (A), EtOAc-hexane (B 3:1, C 2:1, D 1:1, E 1:2, F 1:3, G 1:4, H 1:5, I 1:6, and J 1:10), and EtOAc-EtOH (K 2:1, L 1:1, M 1:2, and N 1:3), with detection by charring with H₂SO₄. N.m.r. spectra (¹H, 250 MHz; ¹³C, 75 MHz) were recorded on a Bruker Ac 250 spectrometer on solutions in CDCl₃ (internal Me₄Si) unless stated otherwise. Multiplicities of ¹³C signals were obtained from DEPT experiments.

7-(2.4-Dichlorophenyl)-D-erythro-3-hydroxy-5-heptanolide (3). — A solution of $K_2CO_3(0.1 \text{ g})$ in water (0.5 mL) was added to a stirred solution of 23 (0.17 g) in Me₂SO (8 mL) at 0°, then aq. 30% H₂O₂ (0.2 mL) was added. The mixture was stirred for 2 h at 0°, then concentrated at 12 Pa. To a solution of the residue in 1:1 water-MeCN (4 mL) was added 2m HCl (1 mL), and the solution was boiled under reflux for 3 h, then concentrated. Column chromatography (solvent A) of the residue gave 3 (0.065 g, 46.4%), isolated as a syrup, $[\alpha]_{\rm p}$ + 60.2°, $R_{\rm F}$ 0.3 (solvent A); lit.³ $[\alpha]_{\rm p}^{20}$ + 63.1°; lit.⁴ $[\alpha]_{\rm p}^{20}$ + 59.7°. N.m.r. data: ¹H, δ 7.35 (m, 1 H, H-3', aromatic), 7.17 (m, 2 H, H-5', 6', aromatic), 4.70 (m, 1 H,

H-5), 4.38 (m, 1 H, H-3), 3.05–2.57 (m, 4 H, H-2a,2b,7a,7b), and 2.05–1.70 (m, 4 H, H-4a,4b,6a,6b); ¹³C, δ 170.5 (C-1), 137.3 (C-1', aromatic), 134.6 (C-4', aromatic), 132.7 (C-2', aromatic), 131.4 (C-6', aromatic), 129.4 (C-3', aromatic), 127.3 (C-5', aromatic), 74.9 (C-5), 62.7 (C-3), 38.7 (C-2), 35.9 (C-4), 35.2 (C-6), and 28.7 (C-7).

Anal. Calc. for C₁₃H₂₄Cl₂O₃: C, 54.00; H, 4.87. Found: C, 53.95; H, 4.93.

6-(2,4-Dichlorophenyl)-D-erythro-2,4-dihydroxyhexylphosphonic acid (5). — Chlorotrimethylsilane (0.5 mL) and NaI (0.58 g) were added to a stirred solution of **25** (0.41 g) in MeCN (8 mL). The mixture was kept for 3 h at 60° (bath) to give the intermediate **28**, R_F 0.15 (solvent A), then cooled, filtered, washed with MeCN, and concentrated. A solution of the residue in water was neutralised with conc. NH₄OH and extracted with CHCl₃, and the aqueous solution was concentrated. The cations were removed from an aqueous solution of the residue with Varion KS (H⁺) resin and the solution was concentrated to give **5** (0.12 g, 40.0%), isolated as a syrup, [α]_D + 13.6° (*c* 0.7, MeOH). N.m.r. data: ¹H (MeOD + D₂O), δ 7.41 (d, 1 H, H-3', aromatic), 7.32 (d, 1 H, H-6', aromatic), 7.26 (dd, 1 H, H-5', aromatic), 4.20 (m, 1 H, H-2), 3.86 (m, 1 H, H-4), 2.95–2.65 (m, 2 H, H-6a,6b), and 2.1–1.65 (m, 6 H, H-1a,1b,3a,3b,5a,5b); $J_{3',5'}$ 1.6, $J_{5',6'}$ 8.3 Hz; ¹³C (MeOD), δ 139.6 (C-1', aromatic), 135.2 (C-4', aromatic), 132.9 (C-2', aromatic), 132.6 (C-6', aromatic), 129.8 (C-3', aromatic), 128.2 (C-5', aromatic), 70.1 (C-4), 66.8 (C-2), 45.2 (C-3), 37.6 (C-5), 36.2 (C-1), and 29.7 (C-6); ¹ $J_{C-1,P}$ 133, ³ $J_{C-3,P}$ 10.5 Hz.

Anal. Calc. for C₁₂H₁₇Cl₂O₅P: C, 42.00; H, 4.99. Found: C, 42.11; H, 4.97.

3-Deoxy-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranose (9). — (a) A mixture of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-iodo-D-allo-furanose⁸ (10, 25 g) and Bu₃SnH (20.0 mL) in toluene (300 mL) was stirred under reflux for 40 min. The residue obtained after concentration was purified by column chromatography (solvent D) to give 9 (15.6 g, 96%), isolated as a syrup, $[\alpha]_{\rm p} - 4.9^{\circ}$ (c 0.5), $R_{\rm F}$ 0.55 (D); lit.²⁰ $[\alpha]_{\rm p}^{18} - 8.6^{\circ}$ (EtOH); lit.⁵ $[\alpha]_{\rm p}^{20} - 7.5^{\circ}$. N.m.r. data: ¹H, δ 5.74 (d, 1 H, H-1), 4.70 (dd, 1 H, H-2), 4.15–3.70 (m, 4 H, H-4,5,6a,6b), 2.11 (dd, 1 H, H-3a), 1.69 (ddd, 1 H, H-3b), 1.24, 1.28, 1.34, and 1.43 (4 s, each 3 H, 2 CMe₂); $J_{1,2}$ 3.6, $J_{2,3b}$ 4.6, $J_{3a,4b}$ 13.1, $J_{3a,4}$ 3.5, $J_{3b,4}$ 9.9 Hz.

(b) A solution of NiCl₂·6H₂O (0.041 g) in EtOH (1 mL) was added dropwise to a cooled (0–10°) and stirred mixture of 10 (1.3 g) and NaBH₄ (0.40 g) in EtOH (25 mL). The temperature was raised to 20–25°. The resulting black suspension was neutralised with M HCl and filtered. The filtrate was concentrated and the residue was extracted with CHCl₃ to give, after column chromatography (solvent *E*), 9 (0.68 g, 79.6%).

Anal. Calc. for C₁₂H₂₀O₅: C, 59.02; H, 8.25. Found: C, 58.96; H, 8.32.

6-(2,4-Dichlorophenyl)-D-erythro-1,2,4-hexanetriol (15). — To a stirred solution of 13³ (5.2 g) in EtOH (100 mL) at 0° was added NaBH₄ (1.4 g). After 1 h, the solution was neutralised with acetic acid and concentrated, and the residue was extracted with hot CHCl₃. Concentration of the extract gave 15 as a crude syrup (5.0 g, 95.6%). Column chromatography (solvent A) gave material with $[\alpha]_{D}$ + 8.3°, R_{F} 0.15 (solvent A). N.m.r. data: ¹H, δ 7.36–7.18 (m, 3 H, aromatic), 4.1–3.9 (m, 2 H, H-2,4), 3.66 (dd, 1 H, H-1a), 3.49 (dd, 1 H, H-1b), 3.0–2.7 (m, 2 H, H-6a,6b), and 1.9–1.6 (m, 4 H, H-3a,3b,5a,5b); $J_{1a,1b}$ 11.0, $J_{1a,2}$ 3.4, $J_{1b,2}$ 6.6 Hz; ¹³C, δ 131.3 (d, C-6', aromatic), 129.3 (d, C-3', aromatic), 127.2 (d, C-5', aromatic), 72.7, 71.4 (d, C-2,4), 66.8 (t, C-1), 39.0 and 37.8 (t, C-3,5).

Anal. Calc. for C₁₂H₁₆Cl₂O₃: C, 51.63; H, 5.78. Found: C, 51.74; H, 5.81.

I-O-tert -*Butyldimethylsilyl-6-(2,4-dichlorophenyl)*-D-erythro-*1,2,4-hexanetriol* (16). — 'BuMe₂SiCl (5.9 g) was added to a solution of 15 (10 g) in pyridine (80 mL) under N₂. After 3 h, when the reaction was completed, H₂O (1 mL) was added and the mixture was processed in the usual way to give, after column chromatography (solvent *D*), 16 (11.1 g, 78.8%), isolated as a syrup, $[\alpha]_{\rm b}$ + 11.2° (*c* 0.4), $R_{\rm F}$ 0.7 (solvent *A*). N.m.r. data: ¹H, δ 7.36 (d, 1 H, H-3', aromatic), 7.2–7.1 (m, 2 H, H-5',6', aromatic), 3.96–3.84 (m, 2 H, H-2,4), 3.60 (dd, 1 H, H-1a), 3.43 (dd, 1 H, H-1b), 2.83 (m, 2 H, H-6a,6b), 1.8–1.5 (m, 4 H, H-3a,3b,5a,5b), 0.9 (s, 9 H, 'Bu), and 0.1 (s, 6 H, Me₂Si); $J_{\rm la,1b}$ 9.9, $J_{\rm la,2}$ 3.7, $J_{\rm lb,2}$ 7.2 Hz; ¹³C, δ 131.4 (d, C-6', aromatic), 129.2 (d, C-3', aromatic), 127.0 (d, C-5', aromatic), 72.9, 70.9 (d, C-2,4), 67.2 (t, C-1), 39.0, 37.4 (t, C-3,5), 29.0 (t, C-6), 25.9 (q, CMe₃), 0.01 and 5.4 (each q, Me₂Si).

Anal. Calc. for C₂₁H₃₄Cl₂O₃Si: C, 58.19; H, 7.91. Found: C, 58.24; H, 7.85.

1-O-tert-*Butyldimethylsily1-6-(2,4-dichlorophenyl)-2,4*-O-*isopropylidene*-D-erythro-*1,2,4-hexanetriol* (17). — *p*-Toluenesulfonic acid (0.15 g) was added to a stirred mixture of **16** (6.5 g) and 2-methoxypropene (1.82 mL) in acetone (80 mL) under N₂. After 40 min, Et₃N (0.1 mL) was added and the solution was concentrated. Column chromatography (solvent *F*) of the residue gave **17** (6.4 g, 89.5%), isolated as a syrup, $[\alpha]_{D} + 25.9^{\circ}$, R_{F} 0.8 (solvent *D*). N.m.r. data: ¹H, δ 7.35 (m, 1 H, H-3', aromatic), 7.15 (m, 2 H, H-5',6', aromatic), 3.95–3.72 (m, 2 H, H-2,4), 3.66 (dd, 1 H, H-1a), 3.46 (dd, 1 H, H-1b), 2.92–2.66 (m, 2 H, H-6a,6b), 1.75 (m, 2 H, H-5a,5b), 1.59 (m, 1 H, H-3a), 1.42, 1.40 (2 s, each 3 H, Me₂C), 1.16 (m, 1 H, H-3b), 0.89 (s, 9 H, Me₃C), and 0.06 (s, 6 H, Me₂Si).

Anal. Calc. for C₂₁H₃₄Cl₂O₃Si: C, 58.19; H, 7.91. Found: C, 58.12; H, 8.02.

6 - (2,4 - Dichlorophenyl) - 2,4 - O - isopropylidene - 1 - O - p-toluenesulfonyl-D-erythro- $1,2,4-hexanetriol (18). — To a solution of 26 (4.5 g) in pyridine (60 mL) was added tosyl chloride (4.01 g). After 7 h, the mixture was processed in the usual way. Crystallisation of the product from EtOAc-hexane gave 18 (5.4 g, 81.8%), m.p. 86–87° [<math>\alpha$]_D + 14.9°. N.m.r. data: ¹H, δ 7.79 (d, 2 H, H-3″,5″, aromatic), 7.33 (m, 3 H, H-3′,2″,6″, aromatic), 7.14 (m, 2 H, H-5′,6′, aromatic), 4.07 (m, 1 H, H-2), 4.0–3.85 (m, 2 H, H-1a,1b), 3.78 (m, 1 H, H-4), 2.75 (m, 2 H, H-6a,6b), 2.44 (s, 3 H, TsMe), 1.71 (m, 2 H, H-5a,5b), 1.48 (dt, 1 H, H-3a), 1.35, 1.33 (2 s, each 3 H, Me₂C), and 1.17 (q, 1 H, H-3b); $J_{3a,3b}$ 12.6, $J_{3a,4}$ 2.3, $J_{2,3a}$ 2.5, $J_{3b,4}$ 11.5, $J_{2,3b}$ 11.5 Hz; ¹³C, δ 131.2 (d, C-6′, aromatic), 129.3 (d, C-3′, aromatic), 127.1 (d, C-5′, aromatic), 77.4, 72.7 (d, C-2,4), 75.3 (t, C-1), 41.5 (t, C-3), 35.1 (t, C-5), and 29.8 (t, C-6).

Anal. Calc. for C₂₂H₂₆Cl₂O₅S: C, 55.81; H, 5.54. Found: C, 55.72; H, 5.63.

The tosylate 18 was unstable at room temperature and decomposed slowly to give

l-Bromo-6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D-erythro-2,4-hexanediol (19). — (*a*) Triphenylphosphine (0.9 g) was added gradually to a solution of 26 (1 g) and *N*-bromosuccinimide (0.61 g) in *N*,*N*-dimethylformamide (30 mL) at 0°. The mixture

27.

was heated for 1 h at 50° (bath), then cooled, EtOAc (70 mL) was added, the mixture was washed with brine (40 mL), dried, and filtered, and the solvent was evaporated. The semicrystalline residue was extracted with ether, and the extract was filtered from Ph_3PO and concentrated. Column chromatography (solvent F) of the residue gave 19 (0.9 g, 75.0%), isolated as a syrup, $R_F 0.80$ (solvent D).

(b) Triphenylphosphine (0.74 g) was added gradually to a solution of **26** (0.6 g) and N-bromosuccinimide (0.5 g) in CH₂Cl₂ (10 mL) at 0°. The mixture was boiled under reflux for 40 min, then cooled, diluted with CH₂Cl₂ (50 mL), washed with aq. 5% NaHCO₃ (10 mL), dried, filtered, and concentrated. Column chromatography (solvent F) of the residue gave **19** (0.55 g, 76.6%), R_F 0.8 (solvent D). N.m.r. data: ¹H, δ 7.36 (m, 1 H, H-3', aromatic), 7.15 (m, 2 H, H-5',6', aromatic), 4.01 (m, 1 H, H-2), 3.78 (m, 1 H, H-4), 3.36 (dd, 1 H, H-1a), 3.24 (dd, 1 H, H-1b), 2.80 (m, 2 H, H-6a,6b), 1.85–1.70 (m, 3 H, H-3a,5a,5b), 1.43 (s, 6 H, Me₂C), and 1.22 (q, 1 H, H-3b); $J_{3a,3b}$ 12.6, $J_{3b,4}$ 11.7, $J_{2,3b}$ 11.7 Hz.

Anal. Calc. for C₁₅H₁₉BrCl₂O₂: C, 47.15; H, 5.01. Found: C, 47.26; H, 4.98.

6-(2.4-Dichlorophenyl)-1-iodo-2,4-O-isopropylidene-D-erythro-2,4-hexanediol (20). — A solution of 18 (1.5 g) and dry NaI (2.37 g) in dry acetone (30 mL) was boiled under reflux for 3 h, then cooled, and the solvent was evaporated. A solution of the semi-crystalline residue in CHCl₃ (50 mL) was washed with water, saturated aq. Na₂S₂O₃, and water, dried, filtered, and concentrated. Column chromatography (solvent *I*) of the residue gave 20 (0.8 g, 58.8%), isolated as a syrup, R_F 0.7 (solvent *F*). N.m.r. data: ¹H, δ 7.36 (m, 1 H, H-3', aromatic), 7.16 (m, 2 H, H-5',6', aromatic), 3.90–3.70 (m, 2 H, H-2,4), 3.20–3.05 (m, 2 H, H-1a,1b), 2.80 (m, 2 H, H-6a,6b), 1.85–1.70 (m, 3 H, H-3a,5a,5b), 1.44, 1.42 (2 s, each 3 H, CMe₂), and 1.15 (m, 1 H, H-3b); ¹³C, δ 137.9 (C-1', aromatic), 134.6 (C-4', aromatic), 132.2 (C-2', aromatic), 131.4 (C-6', aromatic), 129.2 (C-3', aromatic), 126.9 (C-5', aromatic), 99.4 (CMe₂), 69.2, 67.6 (C-2,4), 36.7 (C-3), 35.6 (C-5), 29.9 (C-6), 28.4 (C-1), 19.9, and 9.4 (CMe₂).

Anal. Calc. for C₁₅H₁₉Cl₂IO₂: C, 40.11; H, 4.26. Found: C, 40.02; H, 4.29.

1-Cvano-6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D-erythro-2,4-hexanediol

(21). — Dry NaCN (0.38 g) in hexamethylphosphoric triamide (7 mL) was heated, with stirring, under N₂ for 1 h at 60–70° (bath). A solution of **19** (0.5 g) in hexamethylphosphoric triamide (3 mL) was added and heating was continued for 3 h. The mixture was cooled, aq. 10% LiCl (30 mL) was added, the mixture was extracted with ether (3 × 20 mL), and the combined extracts were washed with aq. 10% LiCl (10 mL), dried, filtered, and concentrated. Column chromatography (solvent *F*) of the residue gave **21** (0.3 g, 67.9%), isolated as a syrup, $[\alpha]_{\rm D}$ + 34.7° (*c* 0.1), $R_{\rm F}$ 0.4 (solvent *F*). N.m.r. data: ¹H, δ 7.36 (m, 1 H, H-3', aromatic), 7.15 (m, 2 H, H-5', 6', aromatic), 4.10 (m, 1 H, H-3), 3.80 (m, 1 H, H-5), 2.80 (m, 2 H, H-7a,7b), 2.50 (m, 2 H, H-2a,2b), 1.77 (m, 2 H, H-6a,6b), 1.65 (dt, 1 H, H-4a), 1.43 (s, 6 H, CMe₂), and 1.32 (q, 1 H, H-4b); $J_{4a,4b}$ 12.7, $J_{3,4a}$ 2.5, $J_{4a,5}$ 2.3, $J_{3,4b}$ 11.5, $J_{4b,5}$ 11.5 Hz.

Anal. Calc. for: C₁₆H₁₉Cl₂NO₂: C, 58.55; H, 5.83. Found: C, 58.62; H, 5.86.

1-Benzoylthio-6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D-erythro-2,4-hexanediol(**22**). — A solution of **18**(2 g) and potassium thiolbenzoate (1.15 g) in acetone (30 mL) was boiled under reflux for 11 h, then cooled, filtered, and concentrated. A solution of the residue in CHCl₃ (30 mL) was washed with aq. 5% NaHCO₃ (10 mL) and water (10 mL), dried, filtered, and concentrated. Column chromatography (solvent *G*) of the residue gave **22** (1.6 g, 86.0%), isolated as a syrup, R_F 0.5 (solvent *F*). N.m.r. data: ¹H, δ 7.98 (d, 2 H, H-2",6", aromatic), 7.58 (t, 1 H, H-4", aromatic), 7.45 (t, 2 H, H-3",5", aromatic), 7.35 (m, 1 H, H-3', aromatic), 7.14 (m, 2 H, H-5',6', aromatic), 4.00 (m, 1 H, H-2), 3.78 (m, 1 H, H-4), 3.25 (dd, 1 H, H-1a), 3.13 (dd, 1 H, H-1b), 2.79 (m, 2 H, H-6a,6b), 1.75 (m, 2 H, H-5a,5b), 1.66 (dt, 1 H, H-3a), 1.43, 1.41 (2 s, each 3 H, CMe₂), and 1.30 (q, 1 H, H-3b); $J_{1a,1b}$ 13.6, $J_{1a,2}$ 5.1, $J_{1b,2}$ 6.6, $J_{3a,3b}$ 13.0, $J_{2,3a}$ 3.3, $J_{3a,4}$ 3.3, $J_{3b,4}$ 12.0, $J_{2,3b}$ 12.0 Hz.

Anal. Calc. for C₂₂H₂₄Cl₂O₃S: C, 60.13; H, 5.51. Found: C, 60.27; H, 5.43.

6- (2,4- Dichlorophenyl)- 2,4-O-isopropylidene-1-mercapto-D-erythro-2,4-hexanediol (23). — A solution of 22 (0.53 g) and methanolic 4.4M sodium methoxide (0.32 mL) in 2:1 tetrahydrofuran–MeOH (6 mL) was boiled under reflux, with stirring under N₂. After 2 h, the mixture was cooled, neutralised with acetic acid, and concentrated. A solution of the residue in CHCl₃ was washed with water, dried, filtered, and concentrated. Column chromatography (solvent *H*) of the residue gave 23 (0.37 g, 92.5%), isolated as a syrup, R_F 0.4 (*H*). N.m.r. data: ¹H, δ 7.35 (m, 1 H, H-3', aromatic), 7.15 (m, 2 H, H-5',6', aromatic), 4.05 (m, 1 H, H-2), 3.78 (m, 1 H, H-4), 2.90–2.65 (m, 4 H, H-1a,1b,6a,6b), 1.75 (m, 2 H, H-5a,5b), 1.68 (dt, 1 H, H-3a), 1.43, 1.42 (2 s, each 3 H, CMe₂), and 1.20 (q, 1 H, H-3b); $J_{3a,3b}$ 12.8, $J_{2,3a}$ 2.4, $J_{3a,4}$ 2.4, $J_{3b,4}$ 12.0, $J_{2,3b}$ 12.0 Hz.

Anal. Calc. for C₁₅H₂₀Cl₂O₂S: C, 53.73; H, 6.01. Found: C, 53.81; H, 5.98.

Potassium 6-(2,4-dichlorophenyl) -D-erythro-2,4-isopropylidenedioxyhexane-1sulfonate (24). — A solution of 23 (0.20 g) and KMnO₄ (0.60 g) in acetone (10 mL) and water (0.5 mL) was boiled under reflux for 10 h. More KMnO₄ (0.10 g) was added and boiling was continued for 5 h. The mixture was cooled, the residual KMnO₄ was decomposed with aq. H₂O₂ (30%), the brown precipitate was filtered off, and the solution was concentrated. Column chromatography (solvent *K*) of the residue gave 24 (0.14 g, 56.0%), isolated as a syrup, $[\alpha]_D 0^\circ$ (*c* 0.1, MeOH), $R_F 0.4$ (solvent *K*). N.m.r. data (MeOD): ¹H, δ 7.38 (m, 1 H, H-3', aromatic), 7.24 (m, 2 H, H-5', 6', aromatic), 4.38 (m, 1 H, H-2), 3.86 (m, 1 H, H-4), 3.04 (dd, 1 H, H-1a), 2.86 (dd, 1 H, H-1b), 2.80 (m, 2 H, H-6a,6b), 1.99 (d, 1 H, H-3a), 1.72 (m, 2 H, H-5a,5b), 1.46, 1.35 (2 s, each 3 H, CMe₂), and 1.22 (q, 1 H, H-3b); $J_{1a,1b}$ 13.8, $J_{1a,2}$ 4.3, $J_{1b,2}$ 7.7, $J_{3a,3b}$ 12.9, $J_{3a,4}$ 2.4, $J_{2,3a}$ 2.4, $J_{3b,4}$ 11.3, $J_{2,3b}$ 11.5 Hz; ¹³C (MeOD), δ 139.7 (C-1', aromatic), 135.6 (C-4', aromatic), 133.4 (C-2', aromatic), 133.0 (C-6', aromatic), 130.0 (C-3', aromatic), 128.2 (C-5', aromatic), 100.3 (OCMe₂O), 69.2, 67.5 (C-2,4), 58.5 (C-1), 38.3, 37.1 (C-3,5), 30.4 (C-6), 29.5, and 20.1 (CMe₂).

Anal. Calc. for C₁₅H₁₉Cl₂KO₅S: C, 42.75; H, 4.54; K, 9.28. Found: C, 42.83; H, 4.46; K, 9.12.

Diethyl 6-(2,4-Dichlorophenyl)-D-erythro-2,4-isopropylidenedioxyhexylphosphonate (25). — (a) A solution of 18 (0.46 g) in freshly distilled triethyl phosphite (5 mL) was boiled under reflux for 40 h under N₂. The reagent was then distilled off at 12 Pa. Column chromatography (solvent A) of the residue gave 25 (0.25 g, 58.1%), isolated as a syrup, $[\alpha]_{\rm p} \sim 0^{\circ}$ (c 0.1, MeOH), $R_{\rm F}$ 0.3 (solvent A). N.m.r. data: ¹H, δ 7.35 (m, 1 H, H-3', aromatic), 7.14 (m, 2 H, H-5', 6', aromatic), 4.22 (m, 1 H, H-2), 4.11, 4.08 (2 q, 2 H, J7.1 Hz, OCH₂CH₃), 3.78 (m, 1 H, H-4), 2.78 (m, 2 H, H-6a,6b), 2.15–1.70 (m, 6 H, H-1a,1b,3a,3b,5a,5b), 1.44, 1.40 (2 s, each 3 H, CMe₂), and 1.32 [t, 6 H, J 7.1 Hz, (CH₃CH₂O)₂P].

(b) The solution of 19 (0.5 g) in freshly distilled triethyl phosphite (5 mL) was boiled under reflux for 30 h, then processed as in (a) to give 25 (0.55 g, 78%).

Anal. Calc. for C₁₉H₂₉Cl₂O₅P: C, 51.94; H, 6.65. Found: C, 51.82; H, 6.53.

6-(2,4-Dichlorophenyl)-2,4-O-isopropylidene-D-erythro-1,2,4-hexanetriol (26). — Bu₄NF (5.0 g) was added to a solution of 17 (6.3 g) in tetrahydrofuran (100 mL). After 40 min, the solvent was evaporated. Column chromatography (solvent D) of the residue gave 26 (4.50 g, 95.0%), isolated as a syrup, $[\alpha]_{\rm p}$ + 25.9°, $R_{\rm F}$ 0.4 (solvent D). N.m.r. data: ¹H, δ 7.35 (m, 1 H, H-3', aromatic), 7.15 (m, 2 H, H-5',6', aromatic), 3.96 (m, 1 H, H-2), 3.81 (m, 1 H, H-4), 3.60 (dd, 1 H, H-1a), 3.50 (dd, 1 H, H-1b), 2.9–2.65 (m, 2 H, H-6a,6b), 2.04 (b, 1 H, OH), 1.75 (m, 2 H, H-5a,5b), 1.43 (s, 6 H, CMe₂), and 1.4–1.25 (m, 2 H, H-3); $J_{1a,1b}$ 11.4, $J_{1a,2}$ 3.3, $J_{1b,2}$ 6.1 Hz.

Anal. Calc. for C₁₅H₂₀Cl₂O₃: C, 56.43; H, 6.32. Found: C, 56.38; H, 6.41.

Potassium 6 - (2,4 - dichlorophenyl) -D-erythro -2,4 - dihydroxyhexane -1 -sulfonate (29). — M HCl (2 mL) was added to a solution of 25 (0.25 g) in water (15 mL). After 15 min, the mixture was concentrated. Column chromatography (solvent *E*) of the residue gave amorphous 29 (0.9 g, 40.9%), $[\alpha]_{\rm D} + 9.6^{\circ}$ (c 0.2, MeOH), $R_{\rm F}$ 0.4 (solvent *L*). N.m.r. data (MeOD): ¹H, δ 7.39 (d, 1 H, H-3', aromatic), 7.30 (d, 1 H, H-6', aromatic), 7.23 (dd, 1 H, H-5', aromatic), 4.34 (m, 1 H, H-2), 3.87 (m, 1 H, H-4), 3.1–2.7 (m, 4 H, H-1a,1b,6a,6b), and 1.9–1.6 (m, 4 H, H-3a,3b,5a,5b).

Anal. Calc. for C₁₂H₁₅Cl₂KO₅S: C, 37.80; H, 3.97. Found: C, 37.92; H, 3.88.

1,4-Anhydro-6-(2,4-dichlorophenyl)-D-erythro-1,2,4-hexanetriol (27). — Compound 18 (7.2 g) was allowed to decompose in air at room temperature. After 24 h, column chromatography (solvent D) of the product gave 27 (3.18 g, 80.1%), $R_{\rm F}$ 0.25 (solvent D). N.m.r. data: ¹H, δ 7.36 (s, 1 H, H-3', aromatic), 7.18 (s, 2 H, H-5',6', aromatic), 4.52 (m, 1 H, H-2), 4.15 (m, 1 H, H-4), 4.03 (dd, 1 H, H-1a), 3.72 (dd, 1 H, H-1b), 2.95–2.65 (m, 2 H, H-6a,6b), and 2.10–1.60 (m, 4 H, H-3a,3b,5a,5b); $J_{\rm 1a,1b}$ 10.0, $J_{\rm 1a,2}$ 5.0, $J_{\rm 1b,2}$ 1.0 Hz; ¹³C, δ 138.1 (C-1', aromatic), 134.5 (C-4', aromatic), 132.3 (C-2', aromatic), 131.2 (C-6', aromatic), 129.2 (C-3', aromatic), 127.1 (C-5', aromatic), 77.3 (C-4), 75.2 (C-1), 72.5 (C-2), 41.6 (C-3), 35.1 (C-5), and 29.8 (C-6).

Anal. Calc. for C₁₂H₁₄Cl₂O₂: C, 55.19; H, 5.40. Found: C, 55.26; H, 5.57.

ACKNOWLEDGMENTS

We thank Dr. I. Perczel for measuring some of the n.m.r. spectra, and Dr. A. Máderspach and Dr. A. Jávor for the biological results.

REFERENCES

- 1 J. Kuszmann, and B. Podányi, Carbohydr. Res., 225 (1992) 247-267.
- 2 G. E. Stokker, W. E. Hoffmann, A. W. Alberts, E. J. Cragoe, Jr. A. A. Deanna, J. L. Gilfillan, J. W. Huff, F. C. Novello, J. D. Prugh, R. L. Smith, and A. K. Willard, J. Med. Chem., 28 (1985) 347–358.
- 3 T. Lee, Tetrahedron Lett., 26 (1985) 4995-4996.
- 4 Y. Guidon, C. Yoakim, M. A. Bernstein, and H. E. Morton, Tetrahedron Lett., 26 (1985) 1185.
- 5 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, (1975) 1574-1585.
- 6 H. G. Kuivila, Synthesis, (1970) 499-509.
- 7 D. H. R. Barton and R. Subramanian, J. Chem. Soc., Perkin Trans. 1, (1977) 1718-1723.
- 8 B. Samuelsson and P. J. Garegg, J. Chem. Soc., Perkin Trans. 1, (1980) 2866-2869.
- 9 R. Paul, P. Buisson, and N. Joseph, Ind. Eng. Chem., 44 (1952) 1006-1010.
- 10 H. Paulsen and V. Sinwell, Chem. Ber., 111 (1978) 879-889.
- 11 D. H. Muray and J. Prokop, J. Pharm. Sci., 54 (1965) 1468-1473.
- 12 S. Hanessian, M. M. Ponpipom, and P. Lavallee, Carbohydr. Res., 24 (1972) 45-56.
- 13 B. Flaschentraeger and G. Wannschaff, Chem. Ber., 67 (1934) 1121-1123.
- 14 T. C. Myers, P. Seymour, and V. J. Elwood, J. Am. Chem. Soc., 76 (1954) 4172-4173.
- 15 G. M. Kosolapoff, J. Am. Chem. Soc., 67 (1945) 1180-1182.
- 16 A. K. Bhattacharya and G. Thyagarayan, Chem. Rev., 81 (1981) 415-430.
- 17 R. L. Whistler and C. C. Wang, J. Org. Chem., 33 (1968) 4455-4458.
- 18 T. Morita, Y. Okamoto, and H. Sakurai, Tetrahedron Lett., (1978) 2523-2526.
- 19 A. R. Katritzky and L. Urogdi, Synthesis, (1989), 949-950.
- 20 M. Cěrny and J. Pacák, Chem. Listy, 49 (1955) 1848-1850.