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A B S T R A C T   

In this study, we report the generation of a polymer-based dynamic combinatorial library (DCL) incorporating 
exchangeable side chains using acylhydrazone formation reaction. In combination with tetrameric butyr
ylcholinesterase (BChE), the most potent binding side chain was identified, and the information obtained was 
further used for the synthesis of a multivalent BChE inhibitor. In the in vitro biological evaluation, this multi
valent inhibitor exhibited not only better inhibitory effect than the commercial reference but also high selectivity 
on BChE over acetylcholinesterase (AChE).   

1. Introduction 

Dynamic combinatorial chemistry (DCC) falls into the category of 
supramolecular chemistry and it utilizes covalent or noncovalent 
reversible reactions to generate dynamic combinatorial library (DCL) 
from building blocks with complementary functional groups [1–8]. DCL 
is fully under thermodynamic control therefore it can respond to the 
addition of external (e.g. enzyme, light, metal ion) or internal (e.g. pH, 
phase change) stimuli due to its adaptive nature, resulting in the for
mation of more favorable constituents at the cost of other less suitable 
combinations (Fig. 1). DCL, as a whole, keeps shifting from its initial 
equilibrium during the interaction with stimuli until an overall optimal 
state, being the amplification of the best-fit constituent(s), is eventually 
achieved [9–11]. Among its many applications, DCC has been an 
outstanding success in chemical biology for identification of novel li
gands for diverse protein targets [12–14]. DCC integrates compound 
library generation and affinity screening in one-pot, offering an efficient 
strategy for the investigation of ligand–protein interaction as well as 
subsequent drug development [15–17]. 

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are 
two cholinesterase proteins commonly found in mammals [18]. In 
human body as well as many other mammals, AChE and BChE mainly 
exist as tetrameric glycoproteins with four identical subunits [19–22]. 
Different from the well-established physiological property of AChE in 
regulating cholinergic signaling, the role of BChE has become less 
elusive only in the recent decade. BChE, also known as pseudocholin
esterase, or serum cholinesterase, is a non-specific enzyme that 

hydrolyzes both acetyl- and butyrylcholine [23,24]. Moreover, while 
BChE is found in more tissues, such as blood serum, liver and pancreas, 
than AChE, it exists at much lower concentration in the central and 
peripheral nervous systems [25]. Nevertheless, previous studies 
revealed that the level of AChE decreases in patient brain while the level 
and activity of BChE remain unchanged or even increase during the 
progression of Alzheimer’s disease (AD), suggesting that BChE might 
play an important role in the late stage of AD [26–28]. Besides, BChE 
activity has been identified to associate with diabetes, obesity, hydro
lysis of hunger hormone Ghrelin and other liver diseases [29–34]. 
Therefore, developing selective BChE inhibitor is currently becoming 
more and more an attractive target for multiple therapeutic interests 
despite the challenges mainly due to its structural similarity to AChE as 
both enzymes share 65% homologic amino acid sequences [35–37]. 

Multivalency serves in nature as a fundamental principle for 
achieving strong interactions [38]. Inspired by multivalency, numerous 
examples, big as the nest stadium and small as velcro, could be found in 
our daily life. In biology, multivalent interactions are characterized by 
the spontaneous, reversible binding of multiple ligands on one biological 
substrate to multiple receptors on another and play key roles in pro
cesses such as adhesion, recognition and signaling [39–42]. One distinct 
character of multivalent interactions between binding partners is the 
dramatic gain in affinity, making it a highly efficient tool for the targeted 
strengthening among different biological entities [43–46]. In the study, 
a polymer-based DCL was designed and generated through reversible 
acylhydrazone formation reaction, constructing a dynamic platform 
with multiple reaction sites (Fig. 2). This polymer-based DCL was further 
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subjected to the selection of tetrameric BChE through multivalent 
ligand/receptor interactions. The amplification information obtained 
from the dynamic system was analyzed and applied for the synthesis of a 
specific multivalent BChE inhibitor, which proved to be potent and se
lective comparing to the tested commercial reference. 

2. Materials and methods 

2.1. Materials 

Reagents were used as purchased if not specified. Butyr
ylcholinesterase (C7512) and acetylcholinesterase (C3389) were pur
chased from Sigma-Aldrich. 1H NMR and 13C NMR data were recorded 
on a Bruker Avance 400. Chemical shifts are reported as δ values (ppm), 
and J values are given in Hertz (Hz). Thin layer chromatography (TLC) 
was performed on precoated G/UV silica plates (0.20 mm, Qingdao- 
Haiyang), visualized with UV-detection. Flash column chromatog
raphy was performed on silica gel 60, 200–300 mesh (Qingdao- 
Haiyang). Sephadex G-50 was purchased from Pharmacia Fine Chem
icals, Sweden. High-resolution mass spectra were analyzed by Micromon 
technical corporation, China. Analytical high-performance liquid chro
matography (HPLC) with revise phase stationary phases was performed 
on HP-Agilent 1260 series controller. Solvents for HPLC use were of 
spectrometric grade. Gel permeation chromatography was performed on 
a Malvern instrument (Herrenberg, Germany) equipped with a refrac
tive index detector (Viscotek), viscosity detector (Viscotek 270 detector) 
and Viscotek A-Columns [set 1: A3000 (6 μm, 300 mm × 8 mm) +
A2000 (8 μm, 300 mm × 8 mm) and set 2: 2 × A6000M (13 μm, 300 mm 
× 8 mm)]. Millipore water was used as solvent with 8.5 g/L NaNO3 and 
0.2 g/L NaN3. The flow rate was 0.5 mL/min, and calibration was con
ducted with poly(ethylene glycol) standards. Absorbance in the IC50 
evaluation was measured on a Bio-Rad iMark ELISA microtiter plate 
reader. 

2.2. Synthesis 

2.2.1. N-(4-hydroxyphenyl)pyridine-4-carboxamide 3e 
4-aminophenol (443 mg, 4.06 mmol), hydroxybenzoic acid (500 mg, 

4.06 mmol) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hy
drochloride (934 mg, 4.87 mmol) were dissolved in acetone (25 mL). 
The mixture was refluxed for 20 h under N2 atmosphere. The solution 

was evaporated under vacuum, and the crude product was purified by 
silica gel chromatography (hexane:EtOAc = 1:1) to yield product 3e 
(200 mg, 23%) as a white solid. 1H NMR (400 MHz, DMSO‑d6) δ: 10.29 
(s, 1H), 9.36 (s, 1H), 8.77 (d, J = 4.0 Hz, 2H), 7.85 (d, J = 4.0 Hz, 2H), 
7.55 (d, J = 8.0 Hz , 2H), 6.78(d, J = 8.0 Hz , 2H). 13C NMR (100 MHz, 
DMSO‑d6) δ: 163.7, 154.5, 150.6, 142.5, 130.5, 122.8, 121.9, 115.5. 

2.2.2. Ethyl 2-((7-(dimethylamino)naphthalen-2-yl)oxy)acetate 4a 
To a solution of 7-N,N-dimethylamino-2-naphthol (278 mg, 1.48 

mmol) and K2CO3 (308 mg, 2.22 mmol) in CH3CN (10 mL) was added 
ethyl bromoacetate (197 μL, 1.78 mmol) at 0 ℃ dropwise. The reaction 
mixture was stirred at 0 ℃ for 1 h and then at r.t. overnight, at which 
time the solution was filtered, and the filtrate was concentrated under 
vacuum. The crude product was purified by silica gel chromatography 
(hexane:EtOAc = 8:1) to yield product 4a (344 mg, 84%) as a white 
solid. 1H NMR (400 MHz, DMSO‑d6) δ: 7.65–7.61 (m, 2H), 7.06–7.03 (m, 
2H), 6.88–6.83 (m, 2H), 4.84 (s, 2H), 4.20 (q, J = 8.0 Hz 2H), 2.98 (s, 
6H), 1.23 (t, J = 8.0 Hz, 3H). 13C NMR (100 MHz, DMSO‑d6) δ: 169.2, 
156.3, 149.3, 136.2, 129.3, 128.6, 122.3, 114.5, 114.2, 106.1, 105.5, 
65.0, 61.0, 40.7, 14.5. 

2.2.3. Ethyl 2-(3-(dimethylamino)phenoxy)acetate 4b 
Procedure for compound 4a was followed. Compound 4b was ob

tained as a yellow solid (43%). 1H NMR (400 MHz, CDCl3) δ: 7.14 (t, J =
8.4 Hz, 1H), 6.40 (dd, J = 8.4, 2.0 Hz, 1H), 6.34 (t, J = 2.4 Hz, 1H), 6.23 
(dd, J = 7.6, 2.0 Hz, 1H), 4.61 (s, 2H), 4.27 (q, J = 7.2 Hz, 2H), 2.92 (s, 
6H), 1.30 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 169.2, 
158.9, 152.0, 129.7, 106.6, 101.5, 100.0, 65.5, 61.2, 40.5, 14.2. 

2.2.4. Ethyl 2-(pyridin-3-yloxy)acetate 4c 
Procedure for compound 4a was followed. Compound 4c was ob

tained as a white solid (29%). 1H NMR (400 MHz, CDCl3) δ: 8.79 (dd, J 
= 4.0, 1.6 Hz, 1H), 8.04 (d, J = 8.8 Hz, 2H), 7.46 (dd, J = 9.2, 2.8 Hz, 
1H), 7.36 (dd, J = 8.4, 4.4 Hz, 1H), 7.02 (d, J = 2.8 Hz, 1H), 4.75 (s, 2H), 
4.30 (q, J = 7.2 Hz, 2H), 1.31(t, J = 6.8 Hz, 3H); 13C NMR (100 MHz, 
CDCl3) δ: 168.5, 155.9, 148.4, 144.6, 135.0, 131.1, 129.0, 122.1, 121.5, 
106.6, 65.6, 61.5, 14.1. 

2.2.5. Ethyl 2-(quinolin-6-yloxy)acetate 4d 
Procedure for compound 4a was followed. Compound 4d was ob

tained as a white solid (77%). 1H NMR (400 MHz, CDCl3) δ: 8.34–8.32 

Fig. 1. Conceptual demonstration of DCC.  

Fig. 2. Schematic illustration of polymer-based multivalent BChE inhibitor identification via ‘polymer-based’ DCC approach.  
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(m, 1H), 8.26 (dd, J = 4.4, 2.0 Hz, 1H), 7.25–7.18 (m, 2H), 4.57 (s, 2H), 
4.26 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, 
CDCl3) δ: 168.2, 154.1, 143.1, 138.0, 123.8, 121.6, 65.5, 61.6, 14.1. 

2.2.6. Ethyl 2-(4-(isonicotinamido)phenoxy)acetate 4e 
Procedure for compound 4a was followed. Compound 4e was ob

tained as a white solid. (116 mg, 42%) 1H NMR (400 MHz, DMSO‑d6) δ: 
10.41 (s, 1H), 8.78 (d, J = 5.2 Hz, 2H), 7.86 (d, J = 5.2 Hz, 2H), 7.68 (d, 
J = 8.4 Hz, 2H), 6.96 (d, J = 8.8 Hz , 2H), 4.77 (s, 2H), 4.18 (q, J = 7.2 
Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, DMSO‑d6) δ: 
169.2, 164.0, 154.6, 150.7, 142.4, 132.7, 122.4, 121.9, 115.0, 65.3, 
61.0, 14.5. 

2.2.7. 7-(2-hydrazinyl-2-oxoethoxy)-N,N,N-trimethylnaphthalen-2- 
aminium iodide 5a 

To a solution of compound 4a (324 mg, 1.18 mmol) in CH3CN was 
added methyl iodide (1.84 mL, 29.6 mmol). The reaction mixture was 
stirred at r.t. overnight, at which time the solvent was removed under 
vacuum. The residue was dissolved in water and filtered. The solvent 
was removed under vacuum to yield crude methylated product (374 
mg). The crude product (20 mg, 0.048 mmol) was dissolved in methanol 
(3 mL), and hydrazine hydrate (22 μL, o.48 mmol) was added to this 
solution. The reaction mixture was refluxed for 3 h, at which time the 
solvent was removed under vacuum. The solid was washed with 
dichloromethane (10 mL × 3) and dried to yield product 5a (17 mg, 
88%) as a white solid. 1H NMR (400 MHz, D2O) δ: 8.13 (d, J = 4.0 Hz, 
1H), 7.99 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 12.0 Hz, 1H), 7.69–7.66 (m, 
1H), 7.31–7.25 (m, 2H), 4.65 (s, 2H), 3.63 (s, 9H). 13C NMR (100 MHz, 
D2O) δ: 169.3, 156.4, 144.4, 133.5, 130.6, 129.6, 128.7, 120.7, 117.6, 
115.0, 108.1, 65.9, 57.0; HRMS (ESI-TOF): ([M− I], C15H20N3O2; cal.: 
274.1550, found: 274.1549). 

2.2.8. 3-(2-hydrazinyl-2-oxoethoxy)-N,N,N-trimethylbenzenaminium 
iodide 5b 

Procedure for compound 5a was followed. Compound 5b was ob
tained as a yellow solid (55%). 1H NMR (400 MHz, D2O) δ: 7.58 (t, J =
8.4 Hz, 1H), 7.46 (dd, J = 8.4, 2.4 Hz, 1H), 7.41 (t, J = 2.4 Hz, 1H), 7.17 
(dd, J = 8.0, 2.0 Hz, 1H), 4.74 (s, 2H), 3.62 (s, 9H); 13C NMR (100 MHz, 
DMSO‑d6) δ: 166.5, 159.0, 148.6, 131.3, 116.3, 113.2, 108.6, 67.1, 56.9; 
HRMS (ESI-TOF): ([M− I], C11H18N3O2; calc.: 224.1394, found: 
224.1389). 

2.2.9. 6-(2-hydrazinyl-2-oxoethoxy)-1-methylquinolin-1-ium iodide 5c 
Procedure for compound 5a was followed. Compound 5c was ob

tained as a white solid (64%). 1H NMR (400 MHz, D2O) δ: 9.02 (d, J =
5.6 Hz, 1H), 8.95 (d, J = 8.4 Hz, 1H), 8.35 (d, J = 9.6 Hz, 1H), 7.96–7.91 
(m, 2H), 7.66 (d, J = 2.8 Hz, 1H), 4.89 (s, 2H), 4.61 (s, 3H); 13C NMR 
(100 MHz, D2O) δ: 168.8, 157.3, 147.0, 146.0, 135.05, 131.4, 127.7, 
122.1, 120.3, 109.1, 66.4, 45.4; HRMS (ESI-TOF): ([M− I], C12H14N3O2; 
calc.: 232.1081, found: 232.7087). 

2.2.10. 3-(2-hydrazinyl-2-oxoethoxy)-1-methylpyridin-1-ium iodide 5d 
Procedure for compound 5a was followed. Compound 5d was ob

tained as a red solid (94%). 1H NMR (400 MHz, D2O) δ: 8.62 (s, 1H), 
8.47 (d, J = 6.0 Hz, 1H), 8.13 (dd, J = 9.2, 2.4 Hz, 1H), 7.917 (dd, J =
8.8, 6.0 Hz, 1H), 4.89 (s, 2H), 4.37 (s, 3H); 13C NMR (100 MHz, D2O) δ: 
167.9, 156.5, 138.7, 133.8, 130.7, 128.6, 67.1, 48.5; HRMS (ESI-TOF): 
([M− I], C8H12N3O2 ; calc.: 182.0924, found: 182.0918). 

2.2.11. 4-((4-(2-hydrazinyl-2-oxoethoxy)phenyl)carbamoyl)-1- 
methylpyridin-1-ium iodide 5e 

Procedure for compound 5a was followed. Compound 5e was ob
tained as a yellow solid (134 mg, 88%) 1H NMR (400 MHz, DMSO‑d6) δ: 
10.82 (s, 1H), 9.36 (s, 1H), 9.20 (d, J = 8.0 Hz, 2H), 8.52 (d, J = 8.0 Hz, 
2H), 7.69 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 4.50 (s, 2H), 4.43 
(s, 2H), 3.38 (s, 3H). 13C NMR (100 MHz, DMSO‑d6) δ: 167.0, 160.9, 

155.3, 148.7, 146.8, 131.9, 126.1, 122.5, 115.3, 66.9, 48.6. HRMS (ESI- 
TOF): ([M− I], C15H17N4O3; cal.: 301.12952, found: 301.12944). 

2.2.12. N-(4-phenoxyacetohydrazide)pyridine-4-carboxamide 5f 
To a solution of compound 4e (95 mg, 0.317 mmol) in methanol (3 

mL) was added hydrazine hydrate (153 μL, 1.583 mmol). The reaction 
mixture was refluxed for 3 h, then the solvent was removed under 
vacuum. The residue was washed with DCM (10 mL × 3) and dried to 
afford product 5f (58 mg, 64%) as a white solid. 1H NMR (400 MHz, 
DMSO‑d6) δ: 10.41 (s, 1H), 9.36 (s, 1H), 8.78 (d, J = 8.0 Hz, 2H), 7.86 (d, 
J = 4.0 Hz 2H), 7.68 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz , 2H), 4.49 
(s, 2H), 4.35 (s, 2H). 13C NMR (100 MHz, DMSO‑d6) δ: 167.1, 164.0, 
154.8, 150.7, 142.4, 132.6, 122.4, 121.9, 115.1, 66.9. HRMS (ESI-TOF): 
([M+H], C14H15N4O3; cal.: 287.11387, found: 287.11371). 

2.2.13. Acylydrazone polymer APG5b 
To a solution of polymer APG (50 mg, 0.0065 mmol) in methanol (2 

mL) with anhydrous MgSO4 (10 mg) was added compound 5b (23 mg, 
0.065 mmol). The reaction mixture was refluxed for 2 h, then the so
lution was filtered. The filtrate was concentrated under vacuum, and the 
crude product was purified by Sephadex G-50 column using water as 
eluent to yield polymer APG5b as a white solid (42 mg, 58%) (charac
terization see Table 1). 

2.3. General procedure of the formation, templating and analysis of DCL 

Acylhydrazides (1 μL, 50 mM each dissolved in DMSO), polymer 
APG (1 μL, 50 mM of aldehyde group concentration in 0.1 M, pH 6.2 PBS 
buffer), aniline (5 μL, 1 M in DMSO) were added to PBS buffer (993 μL, 
0.1 M, pH 6.2) in a screw-cap vial, which was assembled onto a rotary 
mixer at r.t.. 10 h later, pH of the DCL was raised to 8 by addition of 
aqueous NaOH solution. Polymer was separated by using ultrafiltration 
(MW cut-off 3500 Da at 10,000 rpm for 10 min). Equilibrium of the DCL 
was determined by HPLC analysis to verify the free acylhydrazide 
concentrations. 

Butyrylcholinesterase (0.25 eq, 9 mg) was subsequently added to the 
equilibrated DCL mixture, which was rotated for 20 h at r.t.. pH of the 
mixture was raised to 8 by addition of aqueous NaOH solution to quench 
any further exchange, and CH3CN was added to denature the enzyme. 
Enzyme and polymer were separated from the reaction mixture by ul
trafiltration (MW cut-off 3500 Da at 10,000 rpm for 10 min). The final 
acylhydrazide distribution was analyzed by HPLC analysis, and the re
sults were compared with that of in equilibrium. 

2.4. HPLC condition 

Column, a tandem column system with one Agilent Zorbax C8 (3.5 
μm, 250 mm × 4.6 mm) and one Agilent InfinityLab Poroshell 120 C18 
(4 μm, 250 mm × 4.0 mm) was applied to efficiently separate all con
stituents; flow rate, 0.5 mL/min; wavelength, 273 nm; injection volume, 
20 μL; gradient, NH4OAc (0.1 M)/MeOH at 85% for 25 min followed by 
85–25% over 5 min. 

Table 1 
Characterization of APG and APG5b.   

Mna (Da) Mwb (Da) PDIc NMRd (Da) 

APG 8470 9550 1.128 7684 
APG5b 12,000 14,100 1.175 9744  

a Mn, Number-average molecular weight. 
b Mw, Weight-average molecular weight. 
c PDI, Polymer dispersity index is defined as Mw/Mn. 
d Molecular weight calculated through NMR integration. 
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2.5. General kinetic studies and determination of Km 

BChE activity assays were carried out by Ellman’s method with slight 
modification [47]. To a solution of 50 mM phosphate buffer (pH 7.4) 
was added DTNB (250 μM) with different concentration of BTCh to make 
a total volume of 2 mL. BChE (0.5 U in 1 mL buffer) was added to initiate 
the hydrolysis process. The formation of 5-thio-2-nitrobenzoate (TNB) 
was recorded by UV–Vis spectroscopy at 412 nm using a time-drive 
analysis method over the first 1 min. Blank reactions were performed 
using buffer solution. Km was obtained using non-linear regression 
analysis (GraphPad). 

2.6. Determination of inhibition constants 

Ki and αKi were determined using the Ellman method by adding 
enzyme into BTCh and inhibitor solution. The concentration of BTCh 
was varied from 10 μM to 240 μM, while the concentration of inhibitor 
was fixed to 0 nM, 33 nM, 100 nM. Tacrine was used as the reference 
compound. The inhibition constants were calculated using non-linear 
regression analysis in a mixed binding model (GraphPad). 

2.7. Cytotoxicity evaluation 

The cytotoxicity of polymer APG, inhibitor APG5b and acylhy
drazide 5b against a series of human cancer cell lines was measured 
using MTT method with slight modification. Doxorubicin was used as 
reference in this bioassay. Specifically, cells were seeded at a density 
about 3000 cells/well on a 96-well plate in 100 μL complete medium 
containing Dulbecco’s modified Eagle’s medium (DMEM), 5% fetal 
bovine serum (FBS), 50 unit/mL penicillin and 50 μg/mL streptomycin. 
After incubation in 5% CO2 for 12 h at 37 ℃, the medium was removed. 
Complete medium containing the test material was then added to the 
well while control experiment without any test sample was conducted at 

the same time. After an additional 24 h incubation, each well was added 
with 20 μL of 5 mg/mL MTT stock solution. Then the cells were further 
incubated for 4 h. Subsequently, staining agent was replaced with 100 
μL of DMSO. The plates were placed on a table oscillator for 20 min, and 
the absorbance was measured at 570 nm. Results were expressed at half 
maximal inhibitory concentration (IC50), which was the dose of sample 
leading to a 50% loss of cell viability. 

3. Results and discussion 

3.1. Design and synthesis of initial binding blocks 

Acylhydrazone formation reaction was selected in current study to 
generate the DCL. This type of reversible reaction has been very often 
applied to DCC-based medicinal chemistry investigations as acylhy
drazone products offer balanced kinetic and thermodynamic properties 
[48,49]. An aldehyde-functionalized linear poly(glycidol) (APG), which 
was reported in our previous works [11,16] was chosen as the reaction 
platform. Density of the aldehyde group was optimized to incorporate as 
many reaction sites while maintaining its water solubility. Accordingly, 
six acylhydrazides were designed as the complementary binding blocks 
of polymer APG for DCL generation (Scheme 1). Although different in 
structure, acylhydrazides 5a-5e were all functionalized with quaternary 
ammonium salt groups, which in principle would specifically interact 
with certain amino acid residues situated in the active site gorge of BChE 
through cation-π-binding. A neutral acylhydrazide 5f was also designed 
as its close analog was reported to be an effective BChE inhibitor [50]. 
Specifically, the synthetic route began with the substitution of phenolic 
compound 3 to ethyl 2-bromoacetate, obtaining intermediate 4. Com
pounds 3a-3d were commercially available while compound 3e was 
synthesized through amidation between starting materials 1 and 2. After 
methylation and hydrazine substitution, intermediates 4a-4e were 
converted to the corresponding target molecules 5a-5e, and the neutral 

Scheme 1. Synthesis of acylhydrazide derivatives.  
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acylhydrazone 5f was obtained by skipping the methylation step from 
intermediate 4e. 

3.2. Generation and equilibrium determination of DCL 

Subsequently, the polymer-based DCL was generated by mixing 
equal molar amount of six acylhydrazone derivatives and aldehyde 
functionality (0.1 eq. of polymer APG) in pH 6.2 PBS buffer using aniline 
as acylhydrazone formation catalyst (Scheme 2). As concentration of 
constituents in the DCL was considerably low, NMR spectroscopy was no 

more a suitable tool for analysis. Instead, HPLC was applied to monitor 
the process of the dynamic system by analyzing the composition of free 
acylhydrazides, which were obtained through ultrafiltration, in the re
action mixture. Therefore, distribution of acylhydrazone side chains on 
the polymer was inversely proportional to that of free acylhydrazines. 
Under the optimal HPLC conditions, all six acylhydrazides could be 
detected (Fig. 3a), and the equilibrium was established within 10 h. 

Scheme 2. Generation of dynamic combinatorial library.  

Fig. 3. HPLC chromatographic analyses of free acylhydrazides in DCL: (a) at equilibrium; (b) after BChE intervention.  

Scheme 3. Synthesis of multivalent BChE inhibitor APG5b.  
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3.3. Identification of the amplified side chain 

With the equilibrium property determined, BChE was added to the 
equilibrated system. After stirred for 20 h at room temperature, pH of 
the mixture was adjusted to 8 by addition of NaOH to freeze further 
exchange, and CH3CN was added to denature the protein. Free acylhy
drazides were separated from the polymer and protein by ultrafiltration. 
According to the HPLC analysis (Fig. 3b), concentration of acylhy
drazide 5b decreased dramatically, while that of acylhydrazide 5f 
sharply increased. The concentration of the rest four hydrazides (5a, 5c, 
5e, 5d) only decreased slightly compared to acylhydrazide 5b. The 
change in free acylhydrazide concentration indicated that acylhydrazide 
5b was preferentially functionalized on the polymer at cost of other less 
favored constituents through multivalent specific binding to BChE. 

3.4. Synthesis of multivalent BChE inhibitor 

After identification of amplified constituent, a multivalent BChE in
hibitor containing only acylhydrazide 5b functionalized side chain was 
synthesized and purified for the following biological evaluation (Scheme 
3). 

3.5. Measurement of the Michaelis constant and inhibition constant 

Slightly modified Ellman’s method was applied to determine the 
Michaelis constant (Km) of BChE and inhibition constant (Ki) of various 
substrates. Km of BChE was determined to be 105 μM, and results indi
cated that the multivalent inhibitor APG5b displayed a mixed inhibition 
pattern, with a competitive inhibition constant of 59 nM (Ki) and a 
noncompetitive inhibition constant of 82 nM (αKi) (Fig. 4a). As a com
parison, acylhydrazide 5b exhibited much lower effective inhibition 
(Fig. 4b) with Ki = 2.8 μM and αKi = 2.1 μM. Tacrine, a commercial 
BChE inhibitor, was used as reference. Compared to APG5b, Tacrine 
showed a very similar inhibition with Ki of 62 nM and αKi of 102 nM, 
respectively (Fig. 4c). A possible explanation for the good inhibition 
potency of polymer APG5b was that the polymer and enzyme could 
form a cross-linked network instead of a 1:1 binding complex, leading to 
the significant increase in binding affinity. In order to test the selectivity 
of inhibitor APG5b, we also evaluated its inhibitory effect on AChE. 
Results showed that multivalent inhibitor APG5b displayed a Ki of 924 
nM and a αKi of 2.2 μM (Fig. 4d), indicating a good selectivity of in
hibitor APG5b on BChE over AChE. In addition, Ki of monomer 5b on 
AChE was determined to be 5.2 μM (Fig. 4e), which was not significantly 
different from that of on BChE. However, the inhibition difference of 

Fig. 4. Inhibition constant of (a) APG5b on BChE; (b) monomer 5b on BChE; (c) Tacrine on BChE; (d) APG5b on AChE; (e) monomer 5b on AChE (●) 0 nM, 33 nM 
(■), 100 nM (▴). 
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monomer 5b could be further amplified by the multivalent binding ca
pacity of polymer APG5b, resulting in the selectivity between enzymes. 

3.6. Evaluation of cytotoxicity 

Cytotoxicity of multivalent BChE inhibitor APG5b, polymer APG, 
acylhydrazide 5b and reference doxorubicin were evaluated against a 
series of cell lines, including human breast cancer MCF-7, lung cancer 
A549 and H1229, human adult cardiomyocyte AC16. As shown in 
Table 2, polymer APG did not display any inhibitory effect against all 
cell lines, while multivalent inhibitor APG5b showed weak cytotoxicity 
on the tested cell lines. Acylhydrazide 5b demonstrated moderate 
cytotoxicity on all cell lines, with IC50 values ranging from 69 μM to 99 
μM. All results provided possible explanation that the weak cytotoxicity 
of inhibitor APG5b was probably due to the presence of acylhydrazide 
5b functionalized side chains. It was worth noting that the IC50 value of 
multivalent inhibitor APG5b was significantly higher than its effective 
inhibition concentration, indicating that it could be applied as a safe 
BChE inhibitor. 

4. Conclusion 

In summary, we have demonstrated the generation of a polymer- 
based DCL using reversible acylhydrazone formation reaction. In com
bination with tetrameric BChE, the most active binding side chain was 
identified and further used for the synthesis of a multivalent inhibitor 
APG5b. In the in vitro biological evaluation, this multivalent inhibitor 
displayed better inhibition on BChE (Ki = 59 nM) than Tacrine (Ki = 62 
nM), and its selectivity between BChE and AChE was also verified. 
Moreover, in vitro cytotoxicity test showed that the synthesized BChE 
inhibitor was safe for its future applications. The combination of DCC 
and multivalent interactions in this study was proved to be an efficient 
strategy for the discovery of novel protein inhibitors and could be 
applied to the development of other protein targets. 
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