Paper

24 examples up to 99% yield

Niobium Pentachloride Mediated (Hetero)aromatic Aldehyde Friedel–Crafts Hydroxyalkylation with Arenes: An Efficient Strategy to Synthesize Triarylmethanes

R = H, F, NO₂, CH₃, CF₃, OCH₃

Α

Shirley M. M. Rodrigues^{*} Daniel Previdi Giovanni S. Baviera Alexandre A. Matias

Paulo M. Donate

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, Brazil shirleymma@yahoo.com.br

This paper is dedicated to Professor Mauricio Gomes Constantino on the occasion of his 75th birthday.

Received: 27.06.2019 Accepted after revision: 08.08.2019 Published online: 29.08.2019 DOI: 10.1055/s-0037-1610727; Art ID: ss-2019-m0349-op

Abstract Niobium pentachloride is an efficient and useful Lewis acid to conduct Friedel–Crafts hydroxyalkylation between arenes and (hetero)aromatic aldehydes, to generate triarylmethanes. This practical methodology offers several advantages, such as short reaction time, mild experimental conditions, and excellent yields.

Keywords triarylmethanes, niobium pentachloride, Friedel–Crafts hydroxyalkylation, carbocations, (hetero)aromatic aldehydes

Triarylmethanes are well-known substructures in several areas including dyes,¹ photochromic agents,² materials science,³ and medicinal chemistry (acting as anticancer,⁴ antitubercular,⁵ and antifungal agents⁶), among other fields.⁷ Due to the importance of triarylmethane compounds, considerable attention has been given to the development of different and efficient methods to synthesize these compounds.⁷

Friedel–Crafts hydroxyalkylation is a common strategy to prepare triarylmethanes.⁷ Various Lewis or protic acids, such as AuCl₃/AgOTf,⁸ Yb(OTf)₃,⁹ AlCl₃,¹⁰ BF₃·H₂O,¹¹ FeCl₃,¹² ZrOCl₂,¹³ TfOH,¹⁴ [Ir(COD)Cl]₂–SnCl₄,^{6,15} ZnBr₂/SiO₂,¹⁶ and FeCl₃/Ac₂O,¹⁷ have been employed.⁷ However, these methods have disadvantages: they demand the use of superacids and corrosive acids as well as additives like co-oxidants or co-catalysts, experimental conditions are harsh, reaction times are long, and yields are low.

In this context, the use of niobium(V) chloride (NbCl₅) offers many advantages: it is easy to handle and can act as an excellent acid system for numerous reactions under mild conditions, including allylic halide synthesis,¹⁸ intramolecular alkene hydrofunctionalization,¹⁹ benzylic alcohol nucleophilic substitution reactions,²⁰ dithioacetal deprotec-

tion,²¹ Mannich reactions,²² multicomponent reactions,²³ and Diels–Alder reactions,²⁴ among others.²⁵

NbCl₅ (1 equiv.) DCM, rt

X = various

As part of our interest in developing new synthetic methodologies, we report an efficient and simple procedure to obtain triarylmethanes through Friedel–Crafts-type hydroxyalkylation mediated by NbCl₅ under mild conditions.

First, we optimized the experimental conditions by using benzaldehyde as the common substrate. Different arenes were screened in the presence of various amounts of NbCl₅, using several kinds of solvents, at room temperature. One equivalent of NbCl₅ and dichloromethane as solvent provided the best results. Although the aldehyde was completely converted within a few hours, we routinely added saturated aqueous sodium carbonate solution after 24 hours to quench the reactions (Table 1).

Toluene (2a) was the first arene we used under these conditions (Table 1, entry 1), but the reaction with benzaldehyde (1a) did not produce any compound 3a, and we completely recovered benzaldehyde. On the other hand, the reaction between benzaldehyde (1a) and xylenes 2b-d resulted in the desired triarylmethanes **3b-d** (Table 1, entries 2-4) in good yields (59-66%). The fact that xylenes possess two electron-donating methyl groups and are thus more nucleophilic arenes than toluene explains the results. These reactions furnished only one regioisomeric product in which the methyne group attached to the aryl carbon is located at the para position relative to an electron-donating methyl group (Table 1, entries 2 and 3). In the case of p-xylene (2d), the para position is blocked, so the carbonyl group was added at the ortho position (Table 1, entry 4). Reaction of benzaldehyde (1a) with anisole (2e) produced compound **3e** in 58% yield (Table 1, entry 5). When we used 1,4-dimethoxybenzene (2f), the reaction afforded the desired compound **3f** in 75% yield (Table 1, entry 6). Furthermore, the reaction between a more electron-rich arene

В

such as 1,2,4-trimethoxybenzene (**2g**) and benzaldehyde (**1a**) gave the triarylmethane **3g** in 90% yield (Table 1, entry 7).

To work around this issue, we performed the reaction under the same conditions, but used 4-nitrobenzaldehyde (4a) as electrophile. As expected, the reaction between 4aand toluene (2a) produced the desired triarylmethane 5a in moderate yield (67%) (Table 1, entry 8). In addition, the reactions with 4-nitrobenzaldehyde (**4a**) and xylenes **2b–d** furnished the corresponding triarylmethanes **5b–d** in higher yields (72–77%) (Table 1, entries 9–11) than the corresponding reactions employing benzaldehyde (**1a**) as substrate (Table 1, entries 2–4).

Paper

Table 1 (continued)

Reactions with benzaldehyde (1a)			Reactions with 4-nitrobenzaldehyde (4a)		
Entry	Arene	Triarylmethane 3 (Yield) ^b	Entry	Arene	Triarylmethane 5 (Yield) ^b
5	OMe 2e	MeO 3e (58%; <i>p,p'/p,o'</i> 83:17) ^c OMe	12	OMe 2e	MeO 5e (72%; p,p'/p,o' 87:13) ^c
6	OMe OMe 2f	MeO OMe MeO OMe 3f (75%)	13	OMe OMe 2f	MeO MeO MeO Sf (85%)
7	MeO OMe 2g	MeO MeO MeO Jg (90%)	14	MeO OMe 2g	MeO MeO MeO MeO OMe OMe OMe

^a Reaction conditions: arene (2.2 mmol), aldehyde (1.0 mmol), NbCl₅ (1.0 mmol), DCM (5 mL), room temperature, 24 h.

^b Isolated yield. ^c Ratio determined by NMR spectroscopy.

The reaction between 4-nitrobenzaldehyde (**4a**) and anisole (**2e**) led to the expected triarylmethane **5e** in very good yield (72%) (Table 1, entry 12). When we used 1,4-dimethoxybenzene (**2f**), the reaction proceeded very well and gave compound **5f** in excellent yield (85%) (Table 1, entry 13). Likewise, when the reaction was conducted with electron-rich arenes like 1,2,4-trimethoxybenzene (**2g**) and 4nitrobenzaldehyde (**4a**), the triarylmethane **5g** emerged in very high yield (98%).

At this point, we decided to verify whether the high yields obtained in the previous reactions could be maintained even at lower NbCl₅ concentrations, mainly by using a highly electrophilic aldehyde, such as 4-nitrobenzaldehyde (**4a**), and a very nucleophilic arene, like 1,2,4-trimethoxybenzene (**2g**) (Table 2). The reactions between **4a** and **2g** with fewer equivalents of NbCl₅ produced low yields of triarylmethane **5g** (Table 2, entries 2 and 3). We also performed the control reaction without NbCl₅, but the desired product was not obtained (Table 2, entry 4), which demonstrates that the presence of 1 equivalent of NbCl₅ is important in this type of reaction. Table 2 Reactions of 2g with 4a in the Presence of Different Amounts of $\mathsf{NbCl}_\mathsf{s}^\mathsf{a}$

 $^{\rm a}$ Reaction conditions: arene ${\bf 2g}$ (2.2 mmol), aldehyde ${\bf 4a}$ (1.0 mmol), DCM (5 mL), room temperature, 24 h.

Isolated yield.

Syn thesis

S. M. M. Rodrigues et al.

With these results in hand, we fixed NbCl₅ at 1 equivalent and 1,2,4-trimethoxybenzene (**2g**) as starting arene, and studied the generality of the reaction through experiments carried out with different aldehydes as electrophiles (Table 3). When we applied the experimental conditions to 3-nitrobenzaldehyde and 2-nitrobenzaldehyde, the reactions produced the corresponding triarylmethanes **7a** and **7b** in very high yields (98% and 95%, respectively). Benzal-dehyde derivatives bearing an electron-withdrawing group (CF₃, Cl, Br, or F) at the *para* position also afforded the desired triarylmethanes **7c**-**f** in very high yields (96–99%) (Table 3).

Table 3Scope of the Reaction of 1,2,4-Trimethoxybenzene (**2g**) withRespect to the Aldehyde^a

 a Reaction conditions: arene 2g (2.2 mmol), aldehyde 6a--k (1.0 mmol), NbCl_5 (1.0 mmol), DCM (5 mL), room temperature, 24 h.

^b Isolated yield.

Furthermore, when we employed benzaldehydes bearing an electron-donating substituent [4-CH₃, 4-OCH₃, or 3,4,5-(OMe)₃], the reaction provided very good yields (**7g-i**, 93–98%) (Table 3). Similarly, 2-naphthaldehyde reacted with 1,2,4-trimethoxybenzene (**2g**) to produce the triarylmethane **7j** in 91% yield. The reaction between pyridine-4carbaldehyde and **2g** under the same reaction conditions afforded the corresponding diaryl(heteroaryl)methane **7k** in high yield (90%) (Table 3). The latter reaction attests to the great versatility of the methodology developed with the use of NbCl₅, which is important because diaryl(heteroaryl)methanes are essential structural moieties in natural products, biologically active molecules, and synthetic materials.²⁶

In contrast, the reactions with other aromatic and aliphatic aldehydes, including cinnamaldehyde, phenylacetaldehyde, valeraldehyde, and octanal, did not give the desired triarylmethanes, probably because carbocations that were not at the benzylic position originated in the medium. To guarantee the success of this methodology, the resulting carbocation needs to be simultaneously stabilized by the mesomeric effect of the oxygen atom and the phenyl group.

In summary, we have developed a simple and straightforward method to synthesize triarylmethanes by Friedel– Crafts hydroxyalkylation by means of a practical protocol based on niobium pentachloride. The results clearly demonstrate an excellent tolerance to the various types of functional groups, where both aromatic aldehydes with electron-donating and electron-withdrawing groups react well to produce triarylmethanes in excellent yields.

All solvents were obtained from commercial sources and were purified according to standard procedures. Melting points were determined on a Reichert Kofler block apparatus, with a non-calibrated thermometer, installed under a Bristoline microscope. NMR spectroscopy was performed on a Bruker DPX-300, Bruker DRX-400, or Bruker DRX-500 instrument, operating at 300, 400, or 500 MHz for ¹H and at 75, 100, or 125 MHz for ¹³C, respectively. TMS was used as internal standard. The chemical shifts are reported in ppm (δ); coupling constants (J) are given in hertz (Hz). The following abbreviations are employed to designate chemical shift multiplicities: s = singlet, br s = broad singlet, d = doublet, dd = double doublet, t = triplet, dt = double triplet, m = multiplet. Mass spectra were recorded on a Shimadzu GC/MS QP-2010 spectrometer (Shimadzu Corporation, Kyoto, Japan) fitted with an electron-impact ionization (EI) source operating at 70 eV. GC analyses were conducted on a Shimadzu GC-2010 Plus instrument equipped with a fused silica capillary column (Restek Rtx-5, 30 m length × 0.25 mm i.d.) operating at temperatures ranging from 100 to 310 °C at 5 °C/min. High-resolution electrospray ionization mass spectra (HRESIMS) were measured on a micrOTOF-Q II (Bruker Daltonics) spectrometer. IR spectra were recorded on a Perkin Elmer Spectrum RX I FTIR system, in KBr pellets or plates. All reactions were monitored by TLC on pre-coated aluminum sheets (silica gel 60 F₂₅₄) as the stationary phase.

Condensation Reaction of Aldehydes with Arenes in the Presence of NbCl $_{\rm 5}$ as Acid Catalyst; General Procedure

A suspension of aldehyde (1 mmol) and NbCl₅ (1 mmol) in DCM (5 mL) was stirred at 0 °C. Then, arene (2.2 mmol) was added. The reaction was allowed to reach room temperature. The end of the reaction was monitored via TLC. Next, the reaction mixture was quenched with saturated Na₂CO₃ solution (15 mL) and extracted with Et₂O (3 × 20 mL). The organic layer was washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated. The residue was purified by flash column chromatography (silica gel; hexane–EtOAc, 9.5:0.5 to 8:2 v/v) to afford the pure compounds. All obtained products were characterized by their spectroscopic data [¹H, ¹³C, and ¹⁹F NMR, IR, MS (EI)].

1,1'-(Phenylmethanediyl)bis(2,4-dimethylbenzene)(3b)

Pale yellow oil; yield: 198 mg (66%).

IR: 3054, 2927, 2852, 1712, 1266, 739 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.12 (s, 6 H), 2.28 (s, 6 H), 5.61 (s, 1 H), 6.62 (d, *J* = 7.80 Hz, 2 H), 6.87 (d, *J* = 7.80 Hz, 2 H), 6.97 (s, 2 H), 7.02 (d, *J* = 7.96 Hz, 2 H), 7.18–7.24 (m, 3 H).

¹³C NMR (100 MHz CDCl₃): δ = 19.5 (2 CH₃), 20.9 (2 CH₃), 49.9 (CH),126.0 (CH), 126.3 (2 CH), 128.2 (2 CH), 129.1 (2 CH), 129.7 (2 CH), 131.2 (2 CH),135.6 (2 C), 136.3 (2 C), 139.1 (2 C), 143.2 (C).

MS (El): *m/z* (%) = 300 (80) [M⁺], 285 (100), 223 (15), 207 (19), 193 (28), 179 (51), 165 (21), 91 (6), 77 (5).

1,1'-(Phenylmethanediyl)bis(3,4-dimethylbenzene)(3c)

Pale yellow oil; yield: 177 mg (59%).

IR: 3056, 2925, 2853, 1713, 1266, 739 cm⁻¹.

¹H NMR (300 MHz, $CDCI_3$): δ = 2.19 (s, 6 H), 2.22 (s, 6 H), 5.41 (s, 1 H), 6.82 (d, J = 7.41 Hz, 2 H), 6.91 (s, 2 H), 7.03 (d, J = 7.64 Hz, 2 H), 7.11 (d, J = 7.41 Hz, 2 H), 7.18–7.24 (m, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 19.3 (2 CH₃), 19.8 (2 CH₃), 56.2 (CH), 126.0 (CH), 126.8 (2 CH), 128.2 (2 CH), 129.4 (2 CH), 129.5 (2 CH), 130.7 (2 CH), 134.3 (2 C), 136.3 (2 C), 141.6 (2 C), 144.5 (C).

MS (EI): *m/z* (%) = 300 (45) [M⁺], 285 (100), 223 (13), 207 (11), 193 (17), 179 (19), 165 (13), 91 (3), 77 (3).

1,1'-(Phenylmethanediyl)bis(2,5-dimethylbenzene) (3d)

Pale yellow solid; mp 80-82 °C; yield: 186 mg (62%).

IR: 3056, 2932, 2836, 1712, 1266, 738 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.11 (s, 6 H), 2.20 (s, 6 H), 5.63 (s, 1 H), 6.54 (s, 2 H), 6.95 (d, *J* = 7.58 Hz, 2 H), 7.02 (d, *J* = 7.08 Hz, 2 H), 7.04 (d, *J* = 7.08 Hz, 2 H), 7.18–7.22 (m, 1 H), 7.25–7.29 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 19.2 (2 CH₃), 21.2 (2 CH₃), 50.5 (CH), 126.1 (CH), 126.9 (2 CH), 128.2 (2 CH), 129.8 (2 CH), 129.9 (2 CH), 130.1 (2 CH), 133.4 (2 C), 134.9 (2 C), 141.8 (2 C), 142.9 (C).

MS (EI): *m*/*z* (%) = 300 (70) [M⁺], 285 (100), 223 (7), 207 (17), 193 (30), 179 (69), 165 (21), 91 (6), 77 (5).

1,1'-(Phenylmethanediyl)bis(4-methoxybenzene)(3e)

Pale yellow oil; yield: 176 mg (58%); ratio of isomers p,p' (**3e**)/p,o' (**3e'**) = 83:17.

IR: 2915, 1598, 1493, 1260, 809, 746, 699 cm⁻¹.

Major Isomer

¹H NMR (300 MHz, CDCl₃): δ = 3.78 (s, 6 H), 5.45 (s, 1 H), 6.82 (d, *J* = 8.66 Hz, 4 H), 7.02 (d, *J* = 8.66 Hz, 4 H), 7.09–7.11 (m, 2 H), 7.16–7.23 (m, 2 H), 7.27–7.30 (m, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 48.7 (CH), 55.2 (2 CH₃O), 113.6 (2 CH), 126.1 (CH), 128.2 (2 CH), 129.3 (2 CH), 130.3 (2 CH), 136.5 (2 C), 144.6 (2 C), 158.7 (2 C).

MS (EI): m/z (%) = 304 (100) [M⁺], 289 (6), 273 (58), 227 (85), 197 (30), 181 (17), 153 (21), 113 (11).

Minor Isomer

MS (EI): m/z (%) = 304 (100) [M*], 289 (32), 273 (34), 227 (29), 197 (26), 165 (21), 121 (49), 91 (23).

1,1'-(Phenylmethanediyl)bis(2,5-dimethoxybenzene) (3f)

Pale yellow, viscous oil; yield: 273 mg (75%).

IR: 2950, 2832, 1590, 1493, 1219, 1049, 801, 709 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.69 (s, 6 H), 3.72 (s, 6 H), 6.23 (s, 1 H), 6.52 (d, *J* = 3.03 Hz, 2 H), 6.78 (dd, *J* = 8.85, 2.53 Hz, 2 H), 6.85 (d, *J* = 8.59 Hz, 2 H), 7.16 (d, *J* = 7.33 Hz, 2 H), 7.23 (t, *J* = 7.33 Hz, 1 H), 7.31 (d, *J* = 7.33 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 43.5 (CH), 55.4 (2 CH₃O), 56.4 (2 CH₃O), 110.7 (2 CH), 111.9 (2 CH), 117.2 (2 CH), 125.8 (CH), 127.9 (2 CH), 129.2 (2 CH), 133.9 (2 C), 143.3 (C), 151.6 (2 C), 157.3 (2 C).

MS (EI): m/z (%) = 364 (100) [M⁺], 333 (24), 241 (11), 213 (17), 151 (13), 121 (30).

1,1'-(Phenylmethanediyl)bis(2,4,5-trimethoxybenzene)(3g)

White solid; mp 123–124 °C (Lit.²⁷ 126–127 °C); yield: 382 mg (90%). IR: 2956, 1512, 1204, 1037, 816, 707 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.63 (s, 6 H), 3.66 (s, 6 H), 3.88 (s, 6 H), 6.08 (s, 1 H), 6.43 (s, 2 H), 6.54 (s, 2 H), 7.04–7.06 (d, *J* = 7.02 Hz, 2 H), 7.14–7.24 (m, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 42.5 (CH), 55.9 (2 CH₃O), 56.6 (2 CH₃O), 56.9 (2 CH₃O), 98.4 (2 CH), 114.6 (2 CH), 124.5 (C), 125.7 (CH), 127.8 (2 CH), 128.9 (2 CH), 142.7 (2 C), 144.2 (2 C), 148.0 (2 C), 151.5 (2 C).

MS (EI): m/z (%) = 424 (100) [M*], 393 (67), 347 (14), 241 (10), 181 (29), 151 (23), 91 (15).

1,1'-[(4-Nitrophenyl)methanediyl]bis(4-methylbenzene)(5a)

Yellow oil; yield: 213 mg (67%); ratio of isomers *p,p'* (**5a**)/*p,o'* (**5a'**) = 69:31.

IR: 2927, 1712, 1347, 1267, 748 cm⁻¹.

Major Isomer

¹H NMR (500 MHz, CDCl₃): δ = 2.33 (s, 6 H), 5.55 (s, 1 H), 6.97 (d, J = 7.91 Hz, 4 H), 7.12 (d, J = 7.91 Hz, 4 H), 7.27 (d, J = 8.69 Hz, 2 H), 8.12 (d, J = 8.69 Hz, 2 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 21.0 (2 CH₃), 55.9 (CH), 123.5 (2 CH), 129.1 (4 CH), 129.3 (4 CH), 130.2 (2 CH), 136.5 (2 C), 139.6 (2 C), 146.5 (C), 152.1 (C).

MS (EI): m/z (%) = 317 (78) [M⁺], 302 (100), 256 (10), 239 (10), 226 (11), 195 (39), 179 (44), 165 (37), 152 (9), 107 (12).

Minor Isomer

¹H NMR (500 MHz, CDCl₃): δ = 2.20 (s, 3 H), 2.34 (s, 3 H), 5.71 (s, 1 H), 6.75 (d, *J* = 7.52 Hz, 1 H), 6.91 (d, *J* = 8.04 Hz, 2 H), 7.12–7.15 (m, 4 H), 7.20 (d, *J* = 8.82 Hz, 2 H), 7.23–7.26 (m, 1 H), 8.13 (d, *J* = 8.82 Hz, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ = 19.8 (CH₃), 21.0 (CH₃), 53.0 (CH), 123.5 (2 CH), 126.1 (CH), 126.9 (CH), 129.2 (CH), 129.4 (2 CH), 129.5 (2 CH), 130.3 (2 CH), 130.7 (CH), 136.5 (2 C), 138.8 (C), 141.0 (C), 146.6 (C), 151.6 (C).

 $\begin{array}{l} \mathsf{MS}\left(\mathsf{EI}\right): m/z\left(\%\right)=317\ (84)\ [\mathsf{M}^{*}], 302\ (100), 256\ (10), 239\ (9), 226\ (16), \\ 195\ (27), 179\ (54), 165\ (37), 152\ (10), 107\ (9). \end{array}$

1,1'-[(4-Nitrophenyl)methanediyl]bis(2,4-dimethylbenzene)(5b)

Pale yellow solid; mp 134–137 °C; yield: 265 mg (77%). IR: 3066, 2974, 2917, 1519, 1342, 812, 744 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.12 (s, 6 H), 2.30 (s, 6 H), 5.70 (s, 1 H), 6.55 (d, *J* = 7.80 Hz, 2 H), 6.90 (d, *J* = 7.80 Hz, 2 H), 7.01 (s, 2 H), 7.19 (d, *J* = 8.74 Hz, 2 H), 8.12 (d, *J* = 8.74 Hz, 2 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 19.5 (2 CH₃), 20.9 (2 CH₃), 49.7 (CH), 123.5 (2 CH), 126.7 (2 CH), 129.0 (2 CH), 130.4 (2 CH), 131.5 (2 CH), 136.2 (2 C), 136.4 (2 C), 137.6 (2 C), 146.5 (C), 151.4 (C).

MS (EI): *m/z* (%) = 345 (74) [M⁺], 330 (100), 240 (12), 222 (34), 207 (20), 193 (44), 178 (40), 165 (9).

1,1'-[(4-Nitrophenyl)methanediyl]bis(3,4-dimethylbenzene)(5c)

Yellow oil; yield: 248 mg (72%).

IR: 3056, 2929, 1712, 1267, 738 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.20 (s, 6 H), 2.24 (s, 6 H), 5.49 (s, 1 H), 6.79 (d, *J* = 7.58 Hz, 2 H), 6.87 (s, 2 H), 7.06 (d, *J* = 7.58 Hz, 2 H), 7.28 (d, *J* = 8.72 Hz, 2 H), 8.12 (d, *J* = 8.72 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 19.3 (2 CH₃), 19.8 (2 CH₃), 56.0 (CH), 123.5 (2 CH), 126.6 (2 CH), 129.8 (2 CH), 130.2 (2 CH), 130.5 (2 CH), 135.1 (2 C), 136.8 (2 C), 140.0 (2 C), 146.4 (C), 152.3 (C).

MS (EI): *m*/*z* (%) = 345 (46) [M⁺], 330 (100), 222 (21), 207 (17), 193 (19), 178 (15), 165 (5).

1,1'-[(4-Nitrophenyl)methanediyl]bis(2,5-dimethylbenzene)(5d)

Yellow solid; mp 103–106 °C; yield: 259 mg (75%).

IR: 3076, 2972, 2917, 1518, 1346, 813, 737 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.11 (s, 6 H), 2.21 (s, 6 H), 5.72 (s, 1 H), 6.46 (br s, 2 H), 6.98 (d, *J* = 7.80 Hz, 2 H), 7.08 (d, *J* = 7.80 Hz, 2 H), 7.20 (d, *J* = 8.59 Hz, 2 H), 8.14 (d, *J* = 8.59 Hz, 2 H).

¹³C NMR (75 MHz, CDCl₃): δ = 19.1 (2 CH₃), 21.2 (2 CH₃), 50.3 (CH), 123.5 (2 CH), 127.6 (2 CH), 129.7 (CH), 129.8 (CH), 130.5 (2 CH), 130.6 (2 CH), 133.3 (2 C), 135.5 (2 C), 140.3 (2 C), 146.6 (C), 151.2 (C).

MS (El): *m*/*z* (%) = 345 (93) [M⁺], 330 (100), 240 (12), 222 (69), 207 (27), 193 (68), 178 (59), 165 (12).

1,1'-[(4-Nitrophenyl)methanediyl]bis(4-methoxybenzene)(5e)

Yellow oil; yield: 251 mg (72%); ratio of isomers *p*,*p*' (**5e**)/*p*,*o*' (**5e**') = 87:13.

IR: 3056, 2921, 1712, 1266, 738 cm⁻¹.

Major Isomer

¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 6 H), 5.53 (s, 1 H), 6.84 (d, *J* = 8.46 Hz, 4 H), 6.99 (d, *J* = 8.46 Hz, 4 H), 7.26 (d, *J* = 8.59 Hz, 2 H), 8.13 (d, *J* = 8.59 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 48.9 (CH), 55.3 (2 CH₃O), 114.0 (4 CH), 123.5 (2 CH), 130.1 (2 CH), 130.2 (4 CH), 134.8 (2 C), 146.4 (C), 152.4 (2 C), 158.4 (C).

MS (EI): *m/z* (%) = 349 (98) [M⁺], 334 (4), 318 (59), 227 (100), 121 (4), 91 (2).

Minor Isomer

¹³C NMR (100 MHz, CDCl₃): δ = 55.0 (CH₃O), 55.3 (CH₃O), 55.5 (CH), 113.9 (2 CH), 120.4 (CH), 123.3 (2 CH), 128.5 (2 CH), 129.9 (1 CH), 130.0 (CH), 130.4 (2 CH), 131.3 (CH), 134.2 (2 C), 146.3 (C), 156.9 (2 C), 158.3 (C).

MS (EI): *m*/*z* (%) = 349 (100) [M⁺], 334 (28), 318 (28), 227 (32), 121 (63), 91 (13).

1,1'-[(4-Nitrophenyl)methanediyl]bis(2,5-dimethoxybenzene) (5f)

Yellow solid; mp 135-137 °C; yield: 348 mg (85%).

IR: 2937, 2832, 1516, 1495, 1345, 1217, 1045, 834, 709 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.64 (s, 6 H), 3.67 (s, 6 H), 6.18 (s, 1 H), 6.37 (d, *J* = 2.96 Hz, 2 H), 6.75 (dd, *J* = 8.89, 2.96 Hz, 2 H), 6.82 (d, *J* = 8.74 Hz, 2 H), 7.22 (d, *J* = 8.89 Hz, 2 H), 8.10 (d, *J* = 8.74 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃): δ = 43.8 (CH), 55.5 (2 CH₃O), 56.3 (2 CH₃O), 111.3 (2 CH), 111.9 (2 CH), 117.3 (2 CH), 123.3 (2 CH), 129.9 (2 CH), 132.0 (C), 146.3 (2 C), 151.5 (2 C), 151.9 (C), 153.5 (2 C).

MS (EI): m/z (%) = 409 (100) [M⁺], 378 (6), 258 (13), 241 (8), 151 (15), 121 (42).

1,1'-[(4-Nitrophenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (5g)

Orange solid; mp 60-61 °C; yield: 460 mg (98%).

IR: 3001, 2936, 1512, 1203, 1033, 887, 742 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 3.65 (s, 6 H), 3.68 (s, 6 H), 3.90 (s, 6 H), 6.11 (s, 1 H), 6.39 (s, 2 H), 6.56 (s, 2 H), 7.20 (d, *J* = 8.66 Hz, 2 H), 8.10 (d, *J* = 8.66 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 43.0 (CH), 56.0 (2 CH₃O), 56.5 (2 CH₃O), 56.7 (2 CH₃O), 98.1 (2 CH), 114.5 (2 CH), 122.3 (2 C), 123.1 (2 CH), 129.5 (2 CH), 142.8 (2 C), 146.1 (C), 148.6 (2 C), 151.5 (2 C), 152.8 (C).

MS (EI): m/z (%) = 469 (100) [M⁺], 438 (48), 181 (21), 151 (27).

HRESIMS: m/z calcd for $C_{25}H_{27}NNaO_8$ [M + Na]⁺: 492.1634; found: 492.1628.

1,1'-[(3-Nitrophenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (7a)

Yellow solid; mp 101–104 °C (Lit.²⁸ 117 °C); yield: 459 mg (98%).

IR: 2963, 1512, 1201, 1034, 815, 763, 668 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.65 (s, 6 H), 3.68 (s, 6 H), 3.91 (s, 6 H), 6.12 (s, 1 H), 6.40 (s, 2 H), 6.58 (s, 2 H), 7.37–7.39 (m, 1 H), 7.40 (t, *J* = 6.82 Hz, 1 H), 7.92 (br s, 1 H), 8.00 (dt, *J* = 6.82, 2.52 Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 42.7 (CH), 56.1 (2 CH₃O), 56.6 (2 CH₃O), 56.8 (2 CH₃O), 98.1 (2 CH), 114.6 (2 CH), 120.9 (C), 122.4 (2 C), 123.6 (CH), 128.6 (CH), 134.9 (CH), 142.8 (CH), 147.0 (2 C), 148.2 (2 C), 148.7 (2 C), 151.6 (C).

MS (EI): m/z (%) = 469 (100) [M⁺], 438 (37), 181 (35), 151 (28).

HRESIMS: m/z calcd for $C_{25}H_{27}NNaO_8$ [M + Na]⁺: 492.1634; found: 492.1625.

1,1'-[(2-Nitrophenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (7b)

Orange solid; mp 134–135 °C; yield: 446 mg (95%).

IR: 3004, 2935, 2835, 1511, 1463, 1202, 1033, 851, 737 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.62 (s, 6 H), 3.68 (s, 6 H), 3.88 (s, 6 H), 6.35 (s, 1 H), 6.54 (s, 2 H), 6.55 (s, 2 H), 7.07 (dd, *J* = 7.83, 1.26 Hz, 1 H), 7.34 (dt, *J* = 7.83, 7.83, 1.39 Hz, 1 H), 7.44 (dt, *J* = 7.83, 7.83, 1.26 Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 38.9 (CH), 56.0 (2 CH₃O), 56.7 (2 CH₃O), 56.8 (2 CH₃O), 98.3 (2 CH), 114.3 (2 CH), 122.3 (2 C), 124.4 (CH), 126.8 (CH), 131.1 (CH), 131.9 (CH), 139.0 (2 C), 142.7 (2 C), 148.6 (2 C), 149.8 (C), 151.7 (C).

MS (EI): *m/z* (%) = 469 (26) [M⁺], 421 (100), 406 (23), 256 (39), 242 (36), 232 (20), 195 (43), 168 (35).

HRESIMS: m/z calcd for $C_{25}H_{27}NNaO_8$ [M + Na]⁺: 492.1634; found: 492.1610.

1,1'-{[4-(Trifluoromethyl)phenyl]methanediyl}bis(2,4,5-trime-thoxybenzene)(7c)

Pale yellow solid; mp 50-51 °C; yield: 478 mg (97%).

IR: 2937, 1510, 1324, 1206, 1035, 887, 768 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 3.65 (s, 6 H), 3.67 (s, 6 H), 3.89 (s, 6 H), 6.11 (s, 1 H), 6.41 (s, 2 H), 6.58 (s, 2 H), 7.17 (d, *J* = 7.78 Hz, 2 H), 7.50 (d, *J* = 7.78 Hz, 2 H).

¹³C NMR (125 MHz, CDCl₃): δ = 42.7 (CH), 56.1 (2 CH₃O), 56.7 (4 CH₃O), 98.5 (2 CH), 114.9 (2 CH), 123.3 (2 C), 124.4 (q, J_{CF} = 271 Hz, CF₃), 124.8 (q, J_{CF} = 3.84 Hz, 2 CHCCF₃), 128.2 (q, J_{CF} = 32.6 Hz, CCF₃), 129.2 (2 CH), 142.9 (2 C), 148.5 (2 C), 148.8 (C), 151.7 (2 C).

¹⁹F NMR (471 MHz, CDCl₃): δ = -63.24.

MS (EI): *m*/*z* (%) = 492 (100) [M⁺], 461 (16), 347 (10), 181 (21), 151 (27), 69 (5).

HRESIMS: m/z calcd for $C_{26}H_{27}F_3NaO_6$ [M + Na]*: 515.1657; found: 515.1643.

1,1'-[(4-Chlorophenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (7d)

White solid; mp 157–159 °C (Lit.²⁷ 168–169 °C); yield: 454 mg (99%). IR: 2932, 1513, 1450, 1203, 1036, 886, 761 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.64 (s, 6 H), 3.67 (s, 6 H), 3.89 (s, 6 H), 6.02 (s, 1 H), 6.39 (s, 2 H), 6.54 (s, 2 H), 6.98 (d, *J* = 8.42 Hz, 2 H), 7.21 (d, *J* = 8.42 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 42.1 (CH), 56.0 (2 CH₃O), 56.7 (2 CH₃O), 56.8 (2 CH₃O), 98.3 (2 CH), 114.5 (2 CH), 123.8 (2 C), 128.0 (2 CH), 130.3 (2 CH), 131.4 (C), 142.8 (C), 143.0 (2 C), 148.2 (2 C), 151.5 (2 C).

MS (EI): m/z (%) = 458 (100) [M⁺], 427 (72), 181 (25), 151 (30), 125 (17).

HRESIMS: m/z calcd for $C_{25}H_{27}CINaO_6$ [M + Na]*: 481.1394; found: 481.1370.

1,1'-[(4-Bromophenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (7e)

Orange solid; mp 137–138 °C (Lit.²⁹ 141 °C); yield: 483 mg (96%).

IR: 2933, 1511, 1451, 1200, 1035, 884, 761 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.64 (s, 6 H), 3.67 (s, 6 H), 3.88 (s, 6 H), 6.01 (s, 1 H), 6.40 (s, 2 H), 6.54 (s, 2 H), 6.92 (d, *J* = 8.47 Hz, 2 H), 7.35 (d, *J* = 8.47 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 42.1 (CH), 56.1 (2 CH₃O), 58.7 (2 CH₃O), 58.8 (2 CH₃O), 98.3 (2 CH), 114.6 (2 CH), 119.5 (C), 123.7 (2 C), 130.7 (2 CH), 131.0 (2 CH), 142.8 (C), 143.5 (2 C), 148.3 (2 C), 151.6 (2 C).

MS (EI): *m/z* (%) = 504 (100) [M⁺], 502 (98), 473 (63), 471 (62), 347 (16), 208 (12), 181 (37), 151 (40).

HRESIMS: m/z calcd for $C_{25}H_{27}BrNaO_6$ [M + Na]⁺: 525.0889; found: 525.0873.

1,1'-[(4-Fluorophenyl)methanediyl]bis(2,4,5-trimethoxyben-zene) (7f)

White solid; mp 100-101 °C; yield: 433 mg (98%).

IR: 2956, 1508, 1320, 1204, 1038, 884, 764 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.64 (s, 6 H), 3.66 (s, 6 H), 3.88 (s, 6 H), 6.05 (s, 1 H), 6.41 (s, 2 H), 6.55 (s, 2 H), 6.89–6.95 (m, 2 H), 6.99–7.04 (m, 2 H).

¹³C NMR (125 MHz, CDCl₃): δ = 41.8 (CH), 55.9 (2 CH₃O), 56.5 (2 CH₃O), 56.6 (2 CH₃O), 98.3 (2 CH), 114.4 (d, J_{CF} = 21.1 Hz, 2 CH), 114.6 (2 CH), 124.1 (2 C), 130.2 (d, J_{CF} = 7.7 Hz, 2 CH), 139.9 (d, J_{CF} = 2.9 Hz, C), 142.6 (2 C), 148.1 (2 C), 151.4 (2 C), 160.9 (d, J_{CF} = 243 Hz, C).

¹⁹F NMR (471 MHz, CDCl₃): δ = -118.7.

MS (EI): m/z (%) = 442 (100) [M⁺], 411 (70), 347 (7), 181 (17), 151 (20), 109 (20).

HRESIMS: m/z calcd for $C_{25}H_{27}FNaO_6$ [M + Na]⁺: 465.1689; found: 465.1680.

1,1'-[(4-Methylphenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (7g)

White solid; mp 134–137 °C (Lit.²⁹ 142–143 °C); yield: 408 mg (93%). IR: 2918, 1512, 1200, 1037, 854, 760 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.30 (s, 3 H), 3.64 (s, 6 H), 3.66 (s, 6 H), 3.88 (s, 6 H), 6.04 (s, 1 H), 6.44 (s, 2 H), 6.54 (s, 2 H), 6.93 (d, *J* = 7.96 Hz, 2 H), 7.04 (d, *J* = 7.96 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 21.0 (CH₃), 42.1 (CH), 56.1 (2 CH₃O), 56.7 (2 CH₃O), 57.0 (2 CH₃O), 98.5 (2 CH), 114.7 (2 CH), 125.0 (2 C), 128.7 (2 CH), 128.9 (2 CH), 135.1 (C), 141.0 (C), 142.7 (2 C), 148.0 (2 C), 151.6 (2 C).

MS (EI): *m/z* (%) = 438 (100) [M⁺], 407 (83), 347 (9), 181 (19), 151 (17), 105 (24).

HRESIMS: m/z calcd for $C_{26}H_{30}NaO_6$ [M + Na]⁺: 461.1940; found: 461.1930.

1,1'-[(4-Methoxyphenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (7h)

White solid; mp 125–130 °C (Lit.²⁹ 131 °C); yield: 432 mg (95%). IR: 2960, 1507, 1205, 1029, 880, 815, 764 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.64 (s, 6 H), 3.66 (s, 6 H), 3.78 (s, 3 H), 3.88 (s, 6 H), 6.02 (s, 1 H), 6.42 (s, 2 H), 6.54 (s, 2 H), 6.79 (d, J = 8.59 Hz, 2 H), 6.96 (d, J = 8.59 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 41.7 (CH), 55.1 (CH₃O), 56.1 (2 CH₃O), 56.7 (2 CH₃O), 57.1 (2 CH₃O), 98.6 (2 CH), 113.3 (2 CH), 114.6 (2 CH), 125.0 (C), 129.9 (2 CH), 136.3 (2 C), 142.8 (2 C), 148.0 (2 C), 151.6 (2 C), 157.6 (C).

MS (EI): m/z (%) = 454 (94) [M⁺], 423 (100), 347 (6), 271 (10), 181 (14), 151 (12), 121 (37).

HRESIMS: m/z calcd for $C_{26}H_{30}NaO_7$ [M + Na]⁺: 477.1889; found: 477.1882.

1,1'-[(3,4,5-Trimethoxyphenyl)methanediyl]bis(2,4,5-trimethoxybenzene) (7i)

Yellow solid; mp 103–104 °C (Lit.²⁷ 97–99 °C); yield: 504 mg (98%). IR: 3002, 2935, 2834, 1588, 1512, 1454, 1205, 1126, 1031, 880, 763 cm⁻¹. Downloaded by: Macquarie University. Copyrighted material

¹H NMR (400 MHz, CDCl₃): δ = 3.65 (s, 6 H), 3.70 (s, 6 H), 3.71 (s, 6 H), 3.82 (s, 3 H), 3.89 (s, 6 H), 6.01 (s, 1 H), 6.28 (s, 2 H), 6.54 (s, 2 H), 6.55 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 42.6 (CH), 56.0 (4 CH₃O), 56.8 (2 CH₃O), 57.1 (2 CH₃O), 60.8 (CH₃O), 98.4 (2 CH), 106.4 (2 CH), 114.5 (2 CH), 124.5 (2 C), 136.1 (C), 139.8 (C), 142.7 (2 C), 148.1 (2 C), 151.6 (2 C), 152.8 (2 C).

MS (EI): m/z (%) = 514 (100) [M⁺], 483 (92), 347 (12), 331 (18), 181 (38), 151 (14).

HRESIMS: m/z calcd for $C_{28}H_{34}NaO_9$ [M + Na]⁺: 537.2101; found: 537.2093.

2-[Bis(2,4,5-trimethoxyphenyl)methyl]naphthalene (7j)

White solid; mp 155–159 °C; yield: 432 mg (91%).

IR: 2962, 1512, 1196, 1034, 878, 818, 762 cm⁻¹.

 1H NMR (300 MHz, CDCl_3): δ = 3.61 (s, 6 H), 3.67 (s, 6 H), 3.90 (s, 6 H), 6.24 (s, 1 H), 6.47 (s, 2 H), 6.57 (s, 2 H), 7.25–7.28 (m, 1 H), 7.35 (br s, 1 H), 7.39–7.42 (m, 2 H), 7.67–7.81 (m, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 42.7 (CH), 56.1 (2 CH₃O), 56.8 (2 CH₃O), 57.0 (2 CH₃O), 98.7 (2 CH), 115.0 (2 CH), 124.5 (2 C), 125.1 (CH), 125.6 (CH), 126.9 (CH), 127.4 (CH), 127.5 (CH), 127.9 (CH), 128.3 (CH), 132.1 (C), 133.5 (C), 142.0 (C), 142.9 (2 C), 148.3 (2 C), 151.8 (2 C).

MS (EI): *m*/*z* (%) = 474 (100) [M⁺], 443 (76), 347 (7), 181 (14), 151 (12), 141 (22).

HRESIMS: m/z calcd for $C_{29}H_{30}NaO_6$ [M + Na]⁺: 497.1940; found: 497.1929.

4-[Bis(2,4,5-trimethoxyphenyl)methyl]pyridine (7k)

Yellow solid; mp 94–95 °C; yield: 382 mg (90%).

IR: 2957, 2935, 1595, 1512, 1451, 1317, 1204, 1038, 890, 765 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.65 (s, 6 H), 3.68 (s, 6 H), 3.90 (s, 6 H), 6.02 (s, 1 H), 6.40 (s, 2 H), 6.55 (s, 2 H), 6.97–6.98 (m, 2 H), 8.45–8.46 (m, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 42.4 (CH), 56.1 (2 CH₃O), 56.6 (2 CH₃O), 56.7 (2 CH₃O), 98.1 (2 CH), 114.5 (2 CH), 122.2 (2 C), 124.2 (2 CH), 142.8 (2 C), 148.6 (2 C), 149.3 (2 CH), 151.6 (2 C), 153.9 (C).

MS (EI): m/z (%) = 425 (100) [M⁺], 394 (39), 347 (19), 181 (31), 151 (25).

HRESIMS: m/z calcd for $C_{24}H_{28}NO_6$ [M + H]⁺: 426.1917; found: 426.1905.

Funding Information

The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grants 2016/04896-7 and 2018/24680-4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support and fellowships.

Acknowledgment

The generous gift of niobium pentachloride samples by CBMM (Companhia Brasileira de Metalurgia e Mineração) is gratefully acknowledged. The authors thank Prof. Dr. Norberto Peporine Lopes from Central de Espectrometria de Massas de Micromoléculas Orgânicas (CEMMO) of the Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo for assistance and access to the mass spectrometry facility.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610727.

References

- (1) Muthyala, R.; Katritzky, A. R.; Lan, X. Dyes Pigm. 1994, 25, 303.
- (2) (a) Baptista, M. S.; Indig, G. L. J. Phys. Chem. B 1998, 102, 4678.
 (b) Irie, M. J. Am. Chem. Soc. 1983, 105, 2078.
- (3) (a) Noack, A.; Schröder, A.; Hartmann, H. Angew. Chem. Int. Ed.
 2001, 40, 3008. (b) Strekowski, L.; Lee, H.; Lin, S. Y.; Czarny, A.; Deeveer, D. V. J. Org. Chem. 2000, 65, 7703.
- (4) Lewis, M. R.; Goland, P. P. Cancer Res. 1952, 12, 130.
- (5) Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289.
- (6) Podder, S.; Choudhury, J.; Roy, U. K.; Roy, S. J. Org. Chem. 2007, 72, 3100.
- (7) For reviews on the synthesis and application of triarylmethanes, see: (a) Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. *Tetrahedron* **2006**, *62*, 6731. (b) Mondal, S.; Panda, G. *RSC Adv.* **2014**, *4*, 28317.
- (8) (a) Nair, V.; Abhilash, K. G.; Vidya, N. Org. Lett. 2005, 7, 5857.
 (b) Nair, V.; Vidya, N.; Abhilash, K. G. Synthesis 2006, 3647.
- (9) Genovese, S.; Epifano, F.; Pelucchini, C.; Curini, M. Eur. J. Org. Chem. 2009, 1132.
- (10) Wang, X.; Wang, Y.; Du, D. M.; Xu, J. J. Mol. Catal. A: Chem. 2006, 255, 31.
- (11) Prakash, G. K. S.; Panja, C.; Shakhmin, A.; Shah, E.; Mathew, T.; Olah, G. A. J. Org. Chem. **2009**, 74, 8659.
- (12) Li, H.; Yang, J.; Liu, Y.; Li, Y. J. Org. Chem. **2009**, 74, 6797.
- (13) Pasha, M. A.; Nagashree, S. Int. J. Res. Chem. Environ. 2013, 3, 54.
- (14) (a) Wilsdorf, M.; Leichnitz, D.; Reissig, H.-U. Org. Lett. 2013, 15, 2494. (b) Saito, S.; Ohwada, T.; Shudo, K. J. Org. Chem. 1996, 61, 8089.
- (15) Choudhury, J.; Podder, S.; Roy, S. J. Am. Chem. Soc. **2005**, 127, 6162.
- (16) Kodomari, M.; Nagamatsu, M.; Akaike, M.; Aoyama, T. *Tetrahedron Lett.* **2008**, 49, 2537.
- (17) Li, Z. X.; Duan, Z.; Kang, J. X.; Wang, H. Q.; Yu, L. J.; Wu, Y. J. Tetrahedron **2008**, 64, 1924.
- (18) Ravikumar, P. C.; Yao, L.; Fleming, F. F. J. Org. Chem. 2009, 74, 7294.
- (19) Ferrand, L.; Tang, Y.; Aubert, C.; Fensterbank, L.; Mouriès-Mansuy, V.; Petit, M.; Amatore, M. Org. Lett. **2017**, *19*, 2062.
- (20) Yadav, J. S.; Bhunia, D. C.; Krishna, K. V.; Srihari, P. *Tetrahedron Lett.* **2007**, *48*, 8306.
- (21) Kirihara, M.; Noguchi, T.; Okajima, N.; Naito, S.; Ishizuka, Y.; Harano, A.; Tsukiji, H.; Takizawa, R. *Tetrahedron* **2012**, 68, 1515.
- (22) Wang, R.; Li, B.; Huang, T.; Shi, L.; Lu, X. Tetrahedron Lett. 2007, 48, 2071.
- (23) (a) Siqueira, M. S.; Silva-Filho, L. C. Tetrahedron Lett. 2016, 57, 5050. (b) Santos, W. H.; Silva-Filho, L. C. Synthesis 2012, 44, 3361.

Downloaded by: Macquarie University. Copyrighted material

Paper

Syn<mark>thesis</mark>

S. M. M. Rodrigues et al.

- (24) (a) Constantino, M. G.; de Oliveira, K. T.; Polo, E. C.; da Silva, G. V. J.; Brocksom, T. J. *J. Org. Chem.* **2006**, *71*, 9880. (b) Constantino, M. G.; Lacerda, V.; da Silva, G. V. J. *Molecules* **2002**, *7*, 456.
- (25) (a) Lacerda, V.; dos Santos, D. A.; Silva-Filho, L. C.; Greco, S. J.; dos Santos, R. B. Aldrichimica Acta 2012, 45, 19. (b) Andrade, C. K. Z. Curr. Org. Synth. 2004, 1, 333. (c) Andrade, C. K. Z.; Rocha, R. O. Mini-Rev. Org. Chem. 2006, 3, 271.
- (26) (a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. *Chem. Rev.* **2010**, *110*, 2250. (b) Yue, C.; Na, F.; Fang, X.; Cao, Y.; Antila, J. C. Angew. Chem. Int. Ed. **2018**, *57*, 11004.
- (27) Thirupathi, P.; Kim, S. S. Eur. J. Org. Chem. 2010, 1798.
- (28) Széki, T. Ber. Dtsch. Chem. Ges. 1911, 44, 1476.
- (29) Thirupathi, P.; Kim, S. S. J. Org. Chem. 2010, 75, 5240.