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Abstract Aspirin is one of the most widely used analgesic,

antipyretic, and anti-inflammatory drugs. Herein we disclose

a way to transform aspirin into novel multicomponent crystal

forms of salicylic acid, also a long-known analgesic with

anti-inflammatory properties, among others, covering a

broad spectrum of applications, including skin care products.

A salicylic acid:salicylate ammonium salt and a salicylate:2-

methyl-4-oxopentan-2-aminium molecular salt are con-

comitantly formed in acetone/ammonia solutions, resulting

from aspirin decomposition. Furthermore the 2-methyl-4-

oxopentan-2-aminium cation results from a sequence of

in situ reactions: (i) imine formation, in which acetone is

known to undergo under basic pH conditions; (ii) nucleo-

philic attack of a-carbon of the deprotonated acetone to the

imine yielding 4-amino-4-methylpentan-2-one; and (iii)

protonation of 4-amino-4-methylpentan-2-one. In the

structures obtained for the novel multicomponent crystal

forms, the strong charge-assisted N?–H���O/O- hydrogen

bonds between the drug molecule and the co-former play a

key function in the supramolecular arrangement. The typical

R2
2ð8Þ carboxylic���carboxylic homosynthon observed in

salicylic acid was inhibited by the salt formation. These

results are in agreement with the results of a careful survey on

the Cambridge Structural Database.
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Introduction

Salicylic acid, also known as ortho-hydroxybenzoic acid or

2-hydroxybenzoic acid (Fig. 1), was used as early as 400

b.c. as an analgesic and is naturally prevalent in willow

leaves, as well as in poplar and birch trees [1]. Salicylic

acid has antiseptic, preservative, analgesic, and anti-

inflammatory properties, covering a broad spectrum of

applications, including skin care products [2, 3].

On the other hand, aspirin, acetylsalicylic acid, or,

under IUPAC designation, 2-acetoxybenzoic acid was

first synthesized in 1853 and by the turn of the nineteenth

century became the world’s best selling drug [4, 5]. It is

a salicylate drug, often used as an analgesic to relieve

minor aches and pains, as an antipyretic to reduce fever,

and as an anti-inflammatory medication. Aspirin also has

an antiplatelet and is used long-term, at low doses, to

help prevent heart attacks, strokes, and blood clot for-

mation in people at high risk for developing this condi-

tion [6–22].

Aspirin is known to exist in two polymorphic forms:

form I (Fig. 2a) [23] and form II [24] (Fig. 2b), and their

supramolecular arrangements are related to each other by a

relative shift of adjacent layers along the crystallographic

c axis in space group P21/c [8, 25].

Salicylic acid has some similarities to aspirin, not only

on its analgesic action but also in its chemical structure,

molecular and crystal packing arrangements [24–28]. The

formation of the centrosymmetric homosynthon R2
2ð8Þ

forming carboxylic acid dimers also occurs in salicylic acid

as observed in both aspirin polymorphs [29]. Salicylic acid
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supramolecular arrangement is further characterized by an

intramolecular hydrogen bond between the hydroxyl and

carboxylic groups forming a S(6) synthon [30–32]

(Fig. 2c). All these features lead to a less flexible molecule

with reduced intermolecular hydrogen-bonding capacity,

which likely explains the low tendency for polymorphism,

as opposed to its isomers, p- and m-hydroxybenzoic acids

[3, 33].

Two ammonium salts [34, 35] and five new aspirin

multicomponent crystal forms have been reported: with

5-methoxysulfadiazine (1:1) [27], sulfadimidine (1:1) [28],

carbamazepine [24, 36], DABCO [37], and D-theanine

[38]. In all of them aspirin synthons were disrupted due to

the formation of O–H���O, N–H���O, and/or N–H���N
interactions with the co-formers.

Also several multicomponent crystal forms of salicylic

acid have been reported [37, 39–53] with several co-

formers such as meloxicam [42], temozolomide [43], car-

bamazepine [45, 46], theophylline [47], caffeine [48, 49],

creatinine [50], as well as some b-cyclodextrine clathrates

[54]. In most of these forms, the formation of ring synthons

is common, except in the salt examples where the depro-

tonation of the carboxylic group makes it much more

unlikely.

Taking this into consideration, we decided to further

search for new multicomponent forms of aspirin using

mono-, di-, and tricarboxylic acids and aminoacids as co-

formers. In these studies, besides the intended supramo-

lecular rearrangements, we have also induced traditional

covalent reactions, yielding new multicomponent crystal

forms of salicylic acid.

Results and discussion

Polymorphic and multicomponent crystal form screenings

of both aspirin and salicylic acid have been extensively

reported previously. To expand these studies we decided to

attempt the co-crystallization of aspirin with mono-, di-, and

tricarboxylic acids and aminoacids, but these efforts were

unsuccessful. Instead, we induced aspirin’s in situ decom-

position into salicylic acid when doing a salt screening in

basic pH media. Two concomitant new multicomponent

forms were obtained: an ammonium salt1 with a supramo-

lecular anion2 formed by salicylic acid and salicylate (1)

and a molecular salt (see footnote 1) between salicylate and

2-methyl-4-oxopentan-2-aminium (2). These crystal forms

were structurally characterized, but as they were always

concomitantly obtained (Fig. 3), we were unable to further

characterize their separate thermal behavior and stability.

Graph-set notation will be used to characterize the

description of these novel crystal forms [58].

Salicylic acid:salicylate ammonium salt, 1

The asymmetric unit of the ammonium salt consists on one

neutral molecule of salicylic acid, one salicylate anion, and

one ammonium cation (Fig. 4). The anionic nature of the

salicylate was determined by the C–O distances [59]

[1.272(2) and 1.267(2) Å] and confirmed by the location of

all four hydrogen atoms from electron density map around

the nitrogen. This crystal form of global formula

[NH4]?�[(SA)(HSA)]- is a salt in which the anion is

actually a supramolecular anion (see footnote 2) formed

between neutral and deprotonated salicylic acid, having

direct intermolecular hydrogen-bonding between them.

Both salicylic acid and salicylate display intramolecular

S(6) interactions via O–HOH���OCOOH [2.641(4) Å] and O–

HOH���OCOO– [2.513(4) Å], respectively. In the crystal pack-

ing we find no direct contacts between symmetry equivalent

fragments. Salicylic acid interacts with the salicylate by both

the hydroxyl and carboxyl groups [O–HOH���OCOO–

2.974(5) Å and O–HCOOH���OCOO– 2.597(4) Å] and connects

with the ammonium cations through N–H���OCOOH interac-

tions [N–H���OCOOH 3.141(6) Å]. The salicylate is further

hydrogen-bonded to the cations by two N–H���OCOO–

[3.226(6), 2.732(5), and 2.859(6) Å] and one N–H���OOH

[2.934(6) and 2.964(6) Å]. Thus each ammonium cation

connects to four salicylates and one salicylic acid molecule. A

layer is formed in the ab plane, where tapes of alternated sal-

icylic acid and salicylate are assisted by the ammonium cations

that lie in the space between them (Fig. 5). Details on the

hydrogen bonds present 1 are given in Table 1.

The direct interactions between salicylic acid���salicylate

were not seen in the salt reported by Downie and Speak-

man [34] where both entities interact directly with the

ammonium cation and water molecules. The N–H���OCOO–

and N–H���OOH depicted in the salt reported herein are

similar to the ones reported in the two ammonium salts

previously reported [34, 35].

Fig. 1 a Salicylic acid and b aspirin

1 We have used a long-used definition of salts (inorganic counterion)

versus molecular salt (organic counterion) [55, 56].
2 We have used the definition of supramolecular anion when referring

to a supramolecular aggregate that as a whole has a negative charge,

as used by Braga and co-workers [57].
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Salicylate:2-methyl-4-oxopentan-2-aminium molecular

salt, 2

The asymmetric unit of this crystalline consists of one

salicylate and one 2-methyl-4-oxopentan-2-aminium cation

(Fig. 6). The assessment of the molecular salt nature was

done both by the analysis of the C–O distances (1.260(3)

and 1.252(3) Å) in the carboxylate moiety and the location

of three hydrogen atoms on the nitrogen from the electron

density map.

The 2-methyl-4-oxopentan-2-aminium cation is formed

in situ by a sequence of reactions: (i) imine formation that

acetone is known to undergo under basic pH conditions;

(ii) nucleophilic attack giving rise to 4-amino-4-methyl-

pentan-2-one; and (iii) 4-amino-4-methylpentan-2-one

protonation (Scheme I).

Both the salicylate and the 2-methyl-4-oxopentan-2-

aminium cation display intramolecular interactions: O�
HOH � � � O�COO � 2:502 3ð ÞÅ

� �
in the first case and N?–

H���OCO [2.811(4) Å] for the cation (Fig. 7).

2-Methyl-4-oxopentan-2-aminium cations build pairs

via N?–H���OCO [2.905(4) Å] interactions that give rise to

R2
2ð4Þ synthons. Furthermore, each cation connects with

two different anions through different N?–H���OCOO–

[2.757(4) and 2.775(4) Å] hydrogen bonds forming tetra-

mers based on R2
4ð8Þ motifs. There are no direct interac-

tions between salicylates. These interactions give rise to

chains that grow along the a axis (Fig. 7; Table 1).

Experimental

Synthesis

Reagents and solvents were acquired from Sigma-Aldrich.

Fig. 3 Experimental powder diffraction pattern obtained for the bulk

sample at 293 K (pink) and calculated powder diffraction patterns for

1 (blue) and 2 (green) at 150 K, showing that the bulk obtained is a

mixture of both forms (Color figure online)

OH

O

OH

OH

O

O

-

NH4
+..

(a) (b)

Fig. 4 a [NH4]?.[(SA)(HSA)]- salt, 1; b molecular diagram of 1. Ellipsoids are set at 50 % probability

Fig. 2 a Aspirin polymorph I: R2
2 synthon formed by the carboxylic

groups (green) and R2
2 synthon formed by the C–H���O interactions

(purple); b Aspirin polymorph II: R2
2 synthon formed by the carboxylic

groups (green) and C–H���O interactions (purple) giving rise to

catemeric chains; c salicylic acid R2
2 synthon formed by the carboxylic

moiety (green) and the S(6) synthon (blue) (Color figure online)
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Fig. 5 Crystal packing of 1
depicting a tapes formed by

salicylic acid (purple) and

salicylate (blue) assisted by the

ammonium cations (yellow) in a

view along a; b space filling

representation of the tapes; c the

tapes assisted by the ammonium

cations in a view along

c. Hydrogen atoms not involved

in hydrogen-bonding are not

displayed for clarity (Color

figure online)
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.
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+

(a)   (b)
Fig. 6 a Salicylate:2-methyl-4-

oxopentan-2-aminium

molecular salt, 2; b molecular

diagram of 2. Ellipsoids are set

at 50 % probability

Table 1 Hydrogen bond details for 1 and 2

Structure Sym. op. D–H���A d(D–H) (Å) d(H���A) (Å) d(D���A) (Å) (DĤA) (�)

1 x, y, z O� HOH � � � O�COO� 0.82 1.78 2.513(4) 148

-1 ? x, y, z Nþ � H � � � OOH 0.78(4) 2.22(4) 2.934(6) 153(4)

1 - x, -1/2 ? y, 1/2 - z Nþ � H � � � O�COO� 1.06(4) 2.58(4) 3.226(6) 119(3)

1 - x, -1/2 ? y, 1/2 - z Nþ � H � � � O�COO� 1.06(4) 1.68(4) 2.732(5) 173(3)

2 - x, -1/2 ? y, 1/2 - z Nþ � H � � � O�COO� 0.98(5) 2.01(4) 2.859(6) 144(4)

x, y, z O� HCOOH � � � OCOOH 0.82 1.93 2.641(4) 145

1 - x, -1/2 ? y, 1/2 - z O� HOH � � � O�COO� 0.82 2.44 2.974(5) 124

x, y, z Nþ � H � � � OOH 0.86(5) 2.30(4) 2.964(6) 134(3)

1 - x, 1/2 ? y, 1/2 - z Nþ � H � � � OCOOH 0.86(5) 2.49(4) 3.141(6) 133(4)

-1 ? x, -1 ? y, z O� HCOOH � � � O�COO� 0.82 1.78 2.597(4) 176

2 1 - x, 1 - y, 1 - z Nþ � H � � � O�COO� 0.99(3) 1.84(3) 2.775(4) 158(3)

x, y, z O� HOH � � � O�COO � O�
HOH � � � O�COO�

0.82 1.77 2.502(3) 148

x, y, z Nþ � H � � � O�COO� 0.98(3) 1.79(3) 2.757(4) 173(3)

x, y, z Nþ � H � � � OCO 0.94(3) 2.16(3) 2.811(4) 125.6(8)

-x, 1 - y, 1 - z Nþ � H � � � OCO 0.94(3) 2.21(3) 2.905(4) 130(2)
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50 mg of aspirin was dissolved in a 1:1 blend of

ammonia and acetone. The solution was left to crystallize

at room temperature and after 3 days colorless crystals of 1

(needle) and 2 (plate) were concomitantly formed in sim-

ilar proportion.

Characterization

Single-crystal X-ray diffraction

X-ray data were collected at 150 K on a Bruker AXS-

KAPPA APEX II diffractometer. Bruker AXS-KAPPA

APEX II diffractometer with graphite-monochromated

radiation (Mo Ka, k = 0.71069 Å). The X-ray generator

was operated at 50 kV and 30 mA and the X-ray data

collection was monitored by the APEX2 program. All data

were corrected for Lorentzian, polarization and absorption

effects using SAINT [60] and SADABS [61] programs.

Crystals suitable for X-ray diffraction study were mounted

on a loop with Fomblin� protective oil.

SIR97 [62] and SHELXS-97 [63] were used for structure

solution and SHELXL-97 [63] was used for full-matrix least-

squares refinement on F2. These three programs are included

in the package of programs WINGX-Version 1.80.05 [64].

Fig. 7 Crystal packing of 2

depicting a the R2
2ð4Þ synthons

formed by pairs of 2-methyl-4-

oxopentan-2-aminium cations;

b the tetramers formed by R2
2ð8Þ

synthons between two cation–

anion pairs and the

intramolecular interactions

shown in blue; c chain of

cations and anions based on the

previously mentioned R2
2ð4Þ

(blue) and R2
2ð8Þ (purple)

synthons growing along

a. Hydrogen atoms not involved

in hydrogen-bonding were

omitted for clarity (Color figure

online)

Scheme 1 General mechanisms for (I) imine formation; (II) deprotonation of acetone a-carbon; and (III) nucleophilic attack to the imine giving

rise to 4-amino-4-methylpentan-2-one
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MERCURY 3.0 [65] was used for packing diagrams. PLA-

TON [66] was used for hydrogen bond interactions. Crys-

tallographic details for 1 and 2 are given in Table 2.

Non-hydrogen atoms were refined anisotropically using a

full-matrix least-squares refinement. All the hydrogen atoms

were inserted in idealized positions and allowed to refine

riding in the parent carbon atom, except for those bonded to

the N atoms, which were located in a difference map.

X-ray powder diffraction

Data were collected in a D8 Advance Bruker AXS h - 2h
diffractometer, with a copper radiation source (Cu Ka,

k = 1.5406 Å) and a secondary monochromator, operated

at 40 kV and 30 mA.

The program Mercury 3.0 [65] was used for calculation

of X-ray powder patterns on the basis of the single-crystal

structure determinations. The identity of single crystals and

the bulk material obtained from solution and grinding/

kneading experiments was always verified by comparison

of the calculated and observed X-ray powder diffraction

patterns.

Conclusions

In this study we demonstrated that aspirin tends to

decompose into salicylic acid in high pH (basic) environ-

ments. Furthermore, multicomponent crystal forms with

salicylic acid were easily formed.

As mentioned in the introduction, several multicompo-

nent crystal structures with aspirin have been reported [67]

as well as several salicylic acid co-crystals [37, 39–46, 48–

54, 68]. From a Cambridge Structural Database [69] survey

including multicomponent forms of salicylates and organic

cations containing amines presented in supplementary

information (Tables S1, S2), we observed that the typical

R2
2ð8Þ homosynthon is commonly disrupted by direct

anion–cation interactions of the type N?–H���O/O-, con-

sidering from primary to aromatic amines. This is also

observed in both forms discussed herein, where the N?–

H���O/O- interactions play a main role, forming different

ring synthons. Also due to the presence of charges in 1 and

2, most of the hydrogen-bond interactions are charge-

assisted which reinforces the supramolecular arrangements,

like those found in the survey. The intramolecular S(6)

synthon is never disrupted, indicating that it is a very

strong intramolecular hydrogen bond, which may be one of

the causes for the lack polymorphs of salicylic acid. This

synthon is also present in most of the structures analyzed in

the survey reinforcing its strength.

Supporting information

The crystal structures reported in the manuscript entitled

‘‘Transforming aspirin into novel molecular salts of sali-

cylic acid,’’ authored by Vânia André, Inês Martins, Sı́lvia

Quaresma, Marta Martins and M. Teresa Duarte, have been

deposited at the Cambridge Crystallographic Data Centre

and allocated the deposition numbers: CCDC 914535 and

CCDC 914536.
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