Recl. Trav. Chim. Pays-Bas 107, 278-285 (1988)

Preparation and structure of triorganotin, triorganolead and tetraphenylantimony derivatives of acetylenedicarboxylic acid, terephthalic acid and dithioterephthalic acid

A. Glowacki, F. Huber and H. Preut

Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Otto-Hahn-Straße, D-4600 Dortmund 50, Federal Republic of Germany (Received December 9th, 1987)

Abstract. Triorganotin, triorganolead and tetraphenylantimony derivatives of acetylenedicarboxylic acid (H₂ADC), terephthalic acid (H₂TER) and dithioterephthalic acid (H₂DTT) (R_3M),X (M = Sn, Pb; R = Me, Ph; X = ADC, TER, DTT) and $(Ph_4Sb)_2X (X = ADC, TER)$ were prepared by neutralization of R_3MOH or Ph_4SbOH with the appropriate acid (X = ADC, DTT) or by reaction of R₃MCl or Ph₄SbCl with K₂TER. The crystal structures of (Me₃Sn)₂ADC and (Me₃Sn)₂TER were determined by X-ray diffraction. The Sn atoms are in slightly distorted trigonal-bipyramidal environments, with C(Me) in the equatorial plane and O(carboxyl) in apical positions. The carboxylate groups are bridging, leading to the formation of a two-dimensional polymer of puckered 22-membered [(Me₃Sn)₂ADC] and 26-membered [(Me₃Sn)₂TER] rings. From vibrational spectra, analogous structures are inferred for solid $(Ph_3Sn)_2ADC$, $(R_3Pb)_2ADC$ (R = Me, Ph), and (Me₃Pb)₂TER, but structures with unidentate - COO and - COS groups and tetracoordinated Sn or Pb and pentacoordinated Sb are proposed for the other compounds. The DTT ligands are linked by S bonds to M. According to IR and ¹H NMR studies the polymeric species dissociate on dissolution so that generally species with unidentate carboxylate groups are present. Sn and Pb in $(R_3M)_2X$ (X = ADC, TER) are apparently tetracoordinated in CHCl₃, but pentacoordinated in DMSO by addition of a solvent molecule.

Introduction

The carboxylate group has different possibilities for bonding and therefore offers in a specific molecular unit great adaptability to electronic and/or steric effects of other substituents and allows intermolecular coordination. In organotin(IV) and organolead(IV) carboxylates, bridging and intermolecular chain formation are quite common¹, though unidentate² and chelating bonding³ as well as various intermediate types of bonding by the carboxylate group have also been observed. In tetraorganoantimony carboxylates essentially only unidentate bonding of the carboxylate group occurs, though additionally more or less weak intramolecular chelation may exist⁴. During our studies on organometal carboxylates we became interested in structural features of derivatives of such dicarboxylic acids, which are distinguished by a virtually rigid link to the two carboxylic groups. We therefore synthesized organotin, organolead and organoantimony derivatives of acetylenedicarboxylic acid (H₂ADC), terephthalic acid (H₂TER), and dithioterephthalic acid (H_2DTT) , and studied the structure

of these compounds, of which bis(triorganotin)acetylene dicarboxylates were prepared for the first time by *Luijten* and *van der Kerk*⁵.

Experimental

The organometallic educts were prepared according to standard procedures to be found in the literature: Me_3SnOH^6 , Me_3PbOH^7 , Ph_3SnOH , Ph_3PbOH^8 , Ph_4SbOH^9 , Me_3SnCl^{10} , Me_3PbCl , Ph_3PbCl^{11} , Ph_3SnCl^{12} . Ph_4SbCl was obtained from Ph_4SbOH and HCl. H_2ADC , H_2TER (from EGA) and H_2DTT (from Fluka) were used as purchased. K_2TER was prepared by neutralizing H_2TER with KOH in water. CH_3OH was purified and dried by standard methods.

The IR spectra of Nujol mulls were recorded with a Perkin-Elmer PE 580B Spectrophotometer using CsBr windows. C and H were determined microanalytically, Sn was estimated gravimetrically as SnO_2 . Pb was titrated against Titriplex III (2.5×10^{-2} molar) after digestion with concentrated H_2SO_4 and $(NH_4)_2S_2O_8$, and Sb was estimated iodometrically after analogous digestion followed by reduction of Sb(V).

[#] Dedicated to Prof. Dr. G. J. M. van der Kerk on the occasion of his 75th birthday.

The organometal compounds listed in Table I with yields and analytical data were synthesized by one of the following procedures under dry N_2 at room temperature.

Table I	Preparation and	analytical d	lata of (R ₃)	$M)_2 X \ (M = S)_2 X$	n, Pb; R	= Me, Ph;	X = ADC, TER	, DTT) and (Ph	$(A_4Sb)_2X (X = A_4Sb)_2X$	ADC, TER).
---------	-----------------	--------------	---------------------------	------------------------	----------	-----------	--------------	----------------	-----------------------------	------------

Compound	Procedure of	Yield	Mp.	Analysis [found (calcd.) %]			
Compound	preparation	(%)	(°C)	С	Н	М	
$(Me_{3}Sn)_{2}ADC (1)$ $C_{10}H_{18}O_{4}Sn_{2} (439.63)$	A	74	178	27.1 (27.32)	4.2 (4.13)	52.7 (54.00)	
$(Ph_3Sn)_2ADC (2) C_{40}H_{30}O_4Sn_2 (812.06)$	A	73	185 ^{a,b}	58.9 (59.16)	3.7 (3.72)	28.3 (29.23)	
(Me ₃ Pb) ₂ ADC (3) C ₁₀ H ₁₈ O ₄ Pb ₂ (616.65)	Α	85	90ª	19.6 (19.48)	3.0 (2.94)	67.0 (67.20)	
(Ph ₃ Pb) ₂ ADC (4) C ₄₀ H ₃₀ O ₄ Pb ₂ (989.08)	A	91	120ª	48.3 (48.58)	3.2 (3.06)	41.5 (41.90)	
$(Ph_4Sb)_2ADC (5) C_{52}H_{40}O_4Sb_2 (972.39)$	A	60	175ª	64.4 (64.23)	4.0 (4.15)	25.0 (25.04)	
$(Me_2Sn)_2TER$ (6) $C_{14}H_{22}O_4Sn_2$ (491.71)	В	79	212	34.4 (34.20)	4.6 (4.51)	47.1 (48.28)	
(Ph ₃ Sn) ₂ TER (7) C ₄₄ H ₃₄ O ₄ Sn ₂ (864.13)	В	81	164ª	61.2 (61.16)	3.7 (3.97)	26.9 (27.47)	
$(Me_{3}Pb)_{2}TER (8)$ $C_{14}H_{22}O_{4}Pb_{2} (668.73)$	В	76	148ª	25.2 (25.15)	3.1 (3.32)	62.1 (61.97)	
(Ph ₃ Pb) ₂ TER (9) C ₄₄ H ₃₄ O ₄ Pb ₂ (1041.15)	В	87	176ª	50.6 (50.76)	3.3 (3.29)	39.8 (39.80)	
(Ph ₄ Sb) ₂ TER (10) C ₅₆ H ₄₄ O ₄ Sb ₂ (1024.46)	В	83	218ª	65.7 (65.66)	4.0 (4.33)	23.5 (23.77)	
(Me ₃ Sn) ₂ DTT (11) C ₁₄ H ₂₂ O ₂ S ₂ Sn ₂ (523.83)	A	91	155ª	31.9 (32.10)	4.3 (4.23)	44.8 (45.32)	
(Ph ₃ Sn) ₂ DTT (12) C ₄₄ H ₃₄ O ₂ S ₂ Sn ₂ (896.25)	A	68	196	58.7 (58.96)	3.9 (3.82)	25.8 (26.49)	
$(Me_{3}Pb)_{2}DTT (13)$ $C_{14}H_{22}O_{2}Pb_{2}S_{2} (700.85)$	Α	87	136ª	24.1 (23.99)	3.3 (3.16)	59.2 (59.13)	
$(Ph_3Pb)_2DTT (14) C_{44}H_{34}O_2Pb_2S_2 (1073.27)$	Α	82	191ª	49.4 (49.24)	3.0 (3.19)	38.6 (38.61)	

^a Decomposition. ^b Lit.⁵ 185°C.

Procedure A

A solution of R_3MOH or Ph_4SbOH in dry CH_3OH was added to a methanolic solution of H_2ADC or H_2DTT (mole ratio 2:1) over a period of 15 min. After stirring for 1 h the reaction mixture was dried *in vacuo*. The residue was suspended in CH_3OH while warming it (only slightly in the case of organolead compounds), then separated by filtration, dried in a vacuum desiccator over silica gel and stored in total darkness at 0°C.

Procedure B

A solution of R_3MCl or Ph_4SbCl in CH_3OH was added over a period of 20 min to K_2TER (mole ratio 2:1) dissolved in a mixture of CH_3OH/H_2O (60:25 by vol.). The resulting precipitate was filtered off, washed with aqueous methanol and dried and stored according to Procedure A.

Suitable single crystals of $(Me_3Sn)_2ADC(1)$ and $(Me_3Sn)_2TER(6)$ for X-ray diffraction were obtained by slowly cooling the filtrate of hot suspensions of 1 and 6, respectively, in CH₃OH, in the case of 1 after addition of Bu₂O. Crystal data are listed in Table II.

The intensities were measured on a Nonius CAD-4 diffractometer employing graphite monochromated Ag-K α radiation. A *Lorentz*polarization correction and absorption correction via ψ scans was applied. The structure of 1 was solved by means of direct methods using the MULTAN80¹³ program, that of 6 by applying the *Patterson* function and ΔF syntheses. Refinement proceeded by means of full-matrix least-squares calculations, anisotropic for all non-H atoms, isotropic for all H atoms, which were placed in geometrically calculated positions (C-H 0.95 Å). Complex neutral-atom scattering factors were taken from Ref. 14. The following programs were used: Enraf-Nonius Structure Determination Package¹⁵, PARST¹⁶ and SHELXTL PLUS¹⁷.

Results and discussion

The compounds $(R_3M)_2ADC$, $(R_3M)_2DTT$ (M = Sn, Pb; R = Me, Ph) and $(Ph_4Sb)_2ADC$ (Table I) can be easily prepared in ca. 60-90% yield by neutralizing the appropriate hydroxides R₃MOH or Ph₄SbOH with H₂ADC or H₂DTT, respectively, in methanol. Compounds 1 and 2 had already been obtained by Luijten and van der Kerk⁵ by mixing R_3 SnOH and H_2 ADC and distilling the mixture with benzene to remove water formed in the reaction azeotropically. Yields were 68 and 59% respectively. To prepare $(R_3M)_2TER$ (M = Sn, Pb; R = Me, Ph) and $(Ph_4Sb)_2TER$ it was found that higher yields are obtained by reacting R_3MCl or Ph_4SbCl dissolved in methanol with K_2TER , the potassium salt of terephthalic acid, in a methanol/water mixture than by neutralization. All compounds are colorless. The antimony derivatives 5 and 10 are soluble in methanol, CHCl₃ or DMSO, the types (R₃M)₂DTT are appreciably soluble in CHCl₃, less in methanol and poorly in DMSO. All other compounds prepared are only slightly soluble, the solubility decreasing in the series DMSO > methanol > $CHCl_3$.

The solid-state structures of 1 and 6 were determined by X-ray structure determination. The crystal data are listed in Table II, atomic coordinates and equivalent isotropic

Table II Crystal data of 1 and 6.

	1 (Me ₃ Sn) ₂ ADC	6 (Me ₃ Sn) ₂ TER
Crystal system	monoclinic	monoclinic
Space group	P21	C2/c
Z	2	4
a (Å)	6.738(7)	13.220(9)
b (Å)	9.960(9)	10.084(7)
c (Å)	11.454(9)	14.125(9)
β (degrees)	92.01(6)	97.49(6)
Unit cell volume (Å ³)	768(1)	1867(2)
$D_{\text{calc.}} (g \cdot \text{cm}^{-3})$	1.901	1.749
Radiation (graphite monochromated)	AgKa	AgKα
λ (A)	0.56087	0.56087
$\mu (mm^{-1})$	1.70	1.40
Crystal dimensions (mm)	$0.10 \times 0.26 \times 0.30$	$0.18 \times 0.18 \times 0.19$
<i>T</i> (°K)	291(1)	291(1)
<i>F</i> (000)	420	952
$\omega/2\theta$ Scan. Scan speed (deg min ⁻¹)	4	2.5
Lattice parameters from least-squares fit with 25 reflections up to $2\theta =$	37.5°	38°
θ range (deg)	$1^{\circ} \leq \theta \leq 22^{\circ}$	$1^{\circ} \leq \theta \leq 20^{\circ}$
N° of standard intensity reflections measured at $2\frac{1}{2}$ h intervals (only random deviations)	5	5
Least-squares refinement based on	F	5 F
N° of measured reflections	4077	3770
Part of reciprocal space measured	-9 < h < 9	-16 < h < 16
Ture of toopfood, space measured	$0 \le k \le 13$	$0 \le k \le 12$
	-15 5</td <td>-17 < l < 17</td>	-17 < l < 17
N° of unique reflections after averaging	2013	1751
Refined parameters	145	92
N° reflections with $I \ge 3\sigma(I)$	1710	1360
R	0.016	0.018
max./min. transmission	1.00/0.82	1 00/0 94
Systematic absences	(0k0) k = 2n + 1	(hkl) h + k = 2n + 1
-,		(h0l) l = 2n + 1
Weighting scheme (w^{-1})	$[\sigma^2(I) + (0.04 \cdot F_0^2)^2]^{1/2}$	$[\sigma^2(I) + (0.075 \cdot F_0^2)^2]^{1/2}$
S	0.81	0.70
Max. Δ/σ	< 0.005	< 0.005
Largest peak in final ΔF map $(e \cdot Å^{-3})$	0.4(2)	0.4(2)
R R	0.020	0.023
<i>R</i>	0.025	0.031
.		

Fig. 1. $(Me_3Sn)_2ADC$ (1): General view of a molecule, showing the atom numbering scheme. The symmetry code is given in Table IV.

Table III Atomic coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses of 1 and 6 $[U_{\rm eq} = \frac{1}{3}(U_{11} + U_{22} + U_{33})].$

	x	y	Z	U_{eq}/U
			<u>├</u> ──── [─] ────	
1				}
Sn(1)	0.61914(5)	0.47580(0)	01968(3)	34
Sn(2)	10010(5)	0.30809(4)	0.53342(3)	38
O(11)	0.4749(6)	0.2809(4)	0.0685(3)	48
O(12)	0.2427(5)	0.1397(4)	0.1231(3)	48
O(21)	0.0030(6)	0.5015(4)	0.4260(3)	50
O(22)	0.2003(6)	0.6503(4)	0.3452(4) = 0.1127(5)	56
C(12)	0.3407(8)	0.4874(8)	0.1435(5)	63
C(12)	0.8327(9)	0.3355(7)	-0.0713(6)	62
C(14)	0.3294(8)	0.2514(5)	0.1259(4)	38
C(15)	0.2496(9)	0.3519(6)	0.2061(5)	46
C(21)	-0.283(1)	0.4494(7)	0.6184(6)	71
C(22)	0.2020(9)	0.2922(7)	0.5845(5)	61
C(23)	-0.21/(1)	0.2182(7)	0.3/80(6)	08
C(24)	0.1230(9)	0.3343(0) 0.4341(5)	0.3340(4) 0.2710(5)	45
H(111)	0.34751(0)	0.56252(0)	16377(0)	110
H(112)	0.32637(0)	0.40764(0)	15697(0)	110
H(113)	0.24266(0)	0.49731(0)	05949(0)	110
H(121)	0.73791(0)	0.65304(0)	0.13204(0)	110
H(122)	0.55536(0)	0.58078(0)	0.18191(0)	110
H(123)	0.76268(0)	0.51300(0)	0.19003(0)	
H(131)	0.93060(0)	0.3/981(0)	11491(0) 00396(0)	110
H(132)	0.89390(0)	0.29329(0)	-11825(0)	110
H(133) H(211)	35765(0)	0.40460(0)	0.67547(0)	110
H(212)	20192(0)	0.51618(0)	0.65526(0)	110
H(213)	37087(0)	0.49045(0)	0.56245(0)	110
H(221)	0.22072(0)	0.21679(0)	0.63444(0)	110
H(222)	0.27900(0)	0.28135(0)	0.51724(0)	110
H(223)	0.242/6(0)	0.3/141(0)	0.62492(0)	
H(232)	-31694(0)	0.13317(0) 0.27430(0)	0.39371(0) 0.34400(0)	110
H(233)	11318(0)	0.20690(0)	0.32454(0)	110
()				
6				
Sn(1)	0.70996(2)	0.07460(2)	0.21133(2)	35
O(1)	0.6236(2)	0.2169(2)	0.1220(2)	46
O(2)	0.7009(2)	0.3920(3)	0.1905(2)	52
C(1)	0.6387(5)	-0.0/9/(4)	0.1251(4)	60
C(2)	0.0442(3)	0.1228(0)	0.3334(3) 0.1834(3)	67
C(3)	0.6361(3)	0.3417(3)	0.1308(3)	37
C(5)	0.5655(3)	0.4249(3)	0.0633(2)	31
C(6)	0.4828(3)	0.3656(4)	0.0092(3)	36
C(7)	0.5825(3)	0.5583(3)	0.0535(3)	37
H(11)	0.66387(0)	16311(0)	0.14925(0)	164
H(12)	0.56690(0)	07604(0)	0.1259/(0)	164
H(13) H(21)	0.05322(0) 0.67321(0)	00920(0)	0.00134(0) 0.38684(0)	164
H(22)	0.65731(0)	0.21347(0)	0.35114(0)	164
H(23)	0.57258(0)	0.10835(0)	0.32405(0)	164
H(31)	0.90632(0)	0.07507(0)	0.21872(0)	164
H(32)	0.86108(0)	0.12100(0)	0.11704(0)	164
H(33)	0.86914(0)	0.22032(0)	0.20173(0)	164
H(61)	0.47091(0)	0.27303(0)	0.01510(0)	164
н(/1)	0.63969(0)	0.29886(0)	0.09004(0)	164

thermal parameters U_{eq} are given in Table III*, and bond lengths and bond angles in Table IV. The structures of these

* Lists of the structure factors and anisotropic thermal parameters have been deposited with the editorial office of Recueil as Supplementary Publication No. Recl. 00. Copies may be obtained from editorial office Recueil, P.O. Box 90613, 2509 LP The Hague.

Table IV Bond distances (Å) and angles (°) with e.s.d.'s in parentheses.

 $a = 1 - x, \ 0.5 + y, \ -z$ $b = -x, \ -0.5 + y, \ 1 - z$

a = 1 - x, 1 - y, -zb = 1.5 - x, -0.5 + y, 0.5 - z

compounds are shown in Figures 1 and 2, and stereoviews (also demonstrating the unit cell) in Figures 3 and 4.

In both compounds each Sn atom has a distorted trigonal bipyramidal environment, three Me groups being only slightly shifted out of the equatorial plane (Table V). The apical positions are occupied by O atoms of asymmetrically bridging carboxylate groups. In this way each Me₃Sn group links two dicarboxylate moieties, each of which in turn coordinates four Me₃Sn units. The resulting two-dimensional polymer is composed of puckered rings, each containing four Me₃Sn units, two 'internal' dicarboxylate moieties and two bridging carboxylate groups of 'external' dicarboxylate moieties. In the case of 1 the ring is 22-membered (Fig. 3), in the case of 6 26-membered (Fig. 4).

Some differences in the structures of 1 and 6 should be noted. The smaller size of ADC compared to that of TER allows a more dense packing in 1 (Table II). The molecular units of 1 are, in contrast to 6, unsymmetrical, the Sn atoms having slightly different environments. The C₃Sn planes of 1

Fig. 2. $(Me_3Sn)_2TER(6)$: General view of a molecule, showing the atom numbering scheme. The symmetry code is given in Table IV.

Fig. 3. Stereoscopic view of a fragment of a layer in the crystal structure of 1, showing also the unit cell.

form an angle of $8.3(6)^\circ$, while in **6** these planes are coplanar. Also the angles formed by the planes of the C₃Sn and CCOO units in **1** are different: $67.7(5)^\circ$ and $69.1(5)^\circ$, respectively; the corresponding angles in **6** are identical and measure $87.2(4)^\circ$ (Table V). Also a larger dihedral angle of the carboxylate groups is observed in **6** [23.2(4)°] than in **1** [10.1(5)°]. In **1** the distances between Sn(1) and O(11a) [3.150(4)Å] and between Sn(2) and O(21b) [3.154(4) Å] are appreciably shorter than the sum of the *van der Waals* radii (3.56Å¹⁸) suggesting a weak interaction. The corresponding distances in **6** are however a little larger [3.214(4) Å]; since the angle C(2)-Sn(1)-C(3) opposite to O(2) is enlarged, in 6 a weak interaction between Sn(1) and O(2) can not be excluded.

The structural data of the phenyl ring in **6** correspond fully to those reported for $H_2 TER^{19}$ and $Et_2 TER^{20}$. However, the dihedral angle of the phenyl skeleton and the carboxylate group in **6** [11.6(3)°] is remarkably larger than in $H_2 TER$ [5.2(5)°¹⁹] or in $Et_2 TER$ (coplanar²⁰). The distance C(15)-C(25) in **1** of 1.167(8) Å corresponds to the bond lengths of 1.168(2) Å and 1.174(2) Å observed in the free acid^{21,22}.

Table V Equations of best planes, deviations from these planes (Å 10^3) and dihedral angles (°) of 1 and 6; e.s.d.'s in parentheses.

Equation of plane	Plane No	Atoms of plane and deviations	Dihedral angle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I II III IV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I/II 8.3(5) I/III 67.7(5) II/IV 69.1(5) III/IV 10.1(5)
$ \begin{array}{rcl} 6 & - 0.398x + 0.733y - 0.552z = & 4.790 \text{ \AA} \\ 0.751x - 0.022y - 0.660z = & -4.848 \text{ \AA} \\ 0.666x - 0.194y - 0.720z = & -3.430 \text{ \AA} \end{array} $	I II III	$\begin{array}{llllllllllllllllllllllllllllllllllll$	I/II 87.2(4) II/III 11.6(4)

Fig. 4. Stereoscopic view of fragments of layers in the crystal structure of 6, showing also the unit cell. The methyl groups bound to tin are omitted for clarity.

In the IR spectra of the title compounds the carboxylate bands are observed in the characteristic regions²³: $v_{as}(CO_2)$ between 1631 and 1555 cm⁻² and $v_s(CO_2)$ between 1369 and 1298 cm⁻¹ (Table VI). On the basis of the difference Δv $[v_{as}(CO_2) - v_s(CO)_2]^{23}$ the compounds can be divided in two classes: the bis(triphenylmetal) terephthalates 7 and 9 and the bis(tetraphenylantimony) dicarboxylates 5 and 10 show high Δv values (between 283 and 333 cm⁻¹), while all other compounds, including 1 and 6 show Δv values between 207 and 229 cm⁻¹ (Table VI). We therefore assume that the carboxylate bonding pattern in the compounds 2, 3, 4, and 8 is analogous to that in 1 and 6, in which according to the X-ray structure determination (see above) the carboxylate groups are bridging. In this context it should be noted that $v_{as}(MC)$ and $v_{s}(MC)$ are observed both in the IR and in the Raman spectra of the trimethyllead compound 8 (3 decomposes during Raman measurements) as well as in the spectra of both trimethyltin compounds 1 and 6, but $v_{as}(MC)$ shows a higher intensity in the IR and $v_s(MC)$ a higher intensity in the Raman spectrum (Table VI). This excludes a regular trigonal planar arrangement of the MC₃ skeleton and therefore also unidentate carboxylate bonding.

The strikingly higher Δv values for 5, 7, 9 and 10 are an indication of a carboxylate bonding different from that in the compounds 1 to 4, 6 and 8. Since in acetates unidentate carboxylate groups show distinctly higher Δv values than bidentate carboxylate groups²³ we propose that in 5, 7, 9 and 10 unidentate carboxylate groups are present. This would imply that the central atom Sb in 5 and 10 is pentacoordinated, in agreement with previous findings that hexacoordination of Sb in tetraorganoantimony carboxylates is unusual^{4,24}. The structural differences between the triphenylmetal derivatives 2 and 4 (bridging COO groups) and 7 and 9 (unidentate COO groups) in the solid state might be correlated with the assumption²⁵ that α -substitution in carboxylate ligands is to a large extent responsible for the preference of unidentate bonding of the COO group in such cases.

The correlation of a bridging type of carboxylate bonding with a Δv value higher than 200 cm⁻¹ needs a short comment. A very thorough comparison of vibrational spectra of acetates of which X-ray structure determinations were available²³ demonstrated that compounds with bridging carboxylate groups exhibit Δv values below about 200 cm⁻¹, while those with unidentate acetate ligands have

Table VI Characteristic IR frequencies for $(R_3M)_2X$ (M = Sn, Pb; R = Me, Ph; X = ADC, TER, DTT), $(Ph_4Sb)_2X$ (X = ADC, TER), K_2ADC and K_2TER (in cm^{-1}).

Compound	$v_{as}(CO_2)$	v _s (CO ₂)	$\Delta v(CO_2)$	v _{as} (MC) ^a	v _s (MC) ^a
1 ^b	1596s/1582s	1363s,br	226°	555m [555m]	519m [530w, 525vs]
2	1560vs	1350s	210)
3 ^d	1586s/1570vs	1349s	229°	500s ^[e]	470vw ^[e]
4	1555s	1339s	216		,
5	1631vs	1298s	333		
K ₂ ADC	1620vs	1368s	252		
6	1595vs/1582vs	1368vs	221°	^f [550w]	f [518vs]
7	1630vs	1339s	291		
8	1582vs/1570vs	1369vs	207°	498m [495w]	470vw [470vs]
9	1620vs	1337vs	283		
10	1630vs	1310vs	320		
K,TER	1575vs	1395vs	180		
11	(1619vs) ⁸	(898vs) ^h	-	540m [540m]	518w [520s]
12	(1618vs) ⁸	(893vs) ^h	-		
13	(1595vs) ⁸	(910vs) ^h	-	494m [495w]	468vw [470vs]
14	(1612vs) ⁸	(892vs) ^h	-		

^a Raman frequencies in []. ^b $v(C \equiv C)$ 2380 cm⁻¹. ^c Mean value. ^d $v(C \equiv C)$ 2305 cm⁻¹. ^e Decomposition during measurement. ^f Overlapping bands. ^g v(C=O). ^h v(CS).

higher Δv values. The study of the present compounds and similar observations on triorganotin and triorganolead methyl oxalates²⁶ show, however, that the limiting Δv value for bridging and unidentate COO groups in dicarboxylates is higher than in acetates, possibly at or slightly above 230 cm⁻¹. It also should be emphasized that the structural classification of acetates on the basis of Δv values²³ cannot be generalized for predicting bonding types of carboxylate groups in derivatives of other carboxylic acids other than acetic acid.

The appearance of $v(C\equiv C)$ in the IR spectra of 1 and 3 (Table VI) gives weight to the proposal that both compounds have analogous structures. Moreover, it indicates a lowering in symmetry of the ADC moiety. This is in accordance with the finding that two different carboxylate groups are present in 1 (see above). In the other H₂ADC derivatives $v(C\equiv C)$ was not observed, suggesting a higher symmetry of the ADC link of the phenylmetal groups. The fact that in the spectra of the compounds 2, 4 and 5 - in contrast to 1 and 3 - $v_{as}(CO_2)$ and $v_s(CO_2)$ are not split, points in the same direction. In the case of 5, in which unidentate carboxylate groups are assumed (see above), the absence of $v(C\equiv C)$ might possibly indicate *anti* configuration of the two COOSbPh₄ ligands attached to the ethynyl group.

The IR absorptions of the H₂DTT derivatives 11 to 14 between 1619 and 1595 cm⁻¹ (Table VI) can be assigned to v(C=O) and those between 910 and 892 cm⁻¹ to $v(C-S)^{27}$. Since no absorptions appear in the ranges characteristic for v(C-O) or $v(C=S)^{28}$, bonding of R_3M to S and not to O of the thiocarboxylate group can be safely assumed. This would be consistent with findings for some trimethyltin thioxarboxylates $Me_3SnSC(O)C_6H_4X^{27}$. The slightly lower value of v(C=O) and the slightly higher value of v(C-S) in the spectrum of 13 compared to the values for 11, 12 and 14 should indicate differences in the structures of these compounds. Additionally, the intensities of v(MC) of 13 in the IR and Raman spectra are distinctly different from those of 11 (Table VI). These observations would be consistent with the assumption that in 11, 12 and 14 the central atoms have tetrahedral configuration and unidentate M-S bonding, while in 13 additional coordination of O(carboxyl) to Pb and appropriate adjustment of the Me₃Pb moiety in the direction of a trigonal bipyramid occurs.

It was possible to prepare solutions of 5 and 10 to 14 in $CHCl_3$ of a sufficiently high concentration for IR measurements. The spectra, except that of 13, were not significantly

different from the solid-state spectra, and therefore we assume 5, 10 to 12 and 14 to be present in solution as molecular species in which the organometal moiety is tetrahedral and ADC or DTT, respectively, bond unidentately. In the spectrum of 13, v(C=O) is shifted to 1615 cm⁻¹ and v(C-S) to 896 cm⁻¹, corresponding to the appropriate band positions found for 11, 12 and 14. We therefore assume that 13 dissociates on dissolution in CHCl₃ to form species which are structured like those of 11, 12 and 14.

Results of ¹H NMR measurements in CDCl₃ are consistent with this interpretation. The coupling constants ${}^{2}J(MH)$ of 11 and 13 (Table VII) are in the range of tetracoordinated species^{29,30}. The same is true for 1. The data in Table VII demonstrate furthermore that the δ values shift to a higher field and the ${}^{2}J(SnH)$ values increase when CDCl₃ is substituted by CD_3OD or DMSO- d_6 , indicating an increase in the coordination number with increasing donor strength of the solvent. From the coupling constants ${}^{2}J(SnH)$ of 1 obtained from solutions of 1 in the above solvents the scharacter of the Sn-C bonds is calculated³⁰ to be 27.7 in CDCl₃, 30.9 in CD₃OD and 32.0% in DMSO-d₆, corresponding to transition from tetrahedral to trigonalbipyramidal coordination of Sn by increasing coordination of solvent molecules. The values of ${}^{2}J(PbH)$ of 3 and 8 of 83.2 and 84.0 Hz, respectively, obtained in DMSO- d_{6} also correspond to established values of solutes with pentacoordinated Pb²⁹. Considering the lower value of ${}^{2}J(PbH)$ of 8 in CD₃OD (80.0 Hz) a relationship between solvent donor strength and coordination analogous to that in the Me₃Sn derivatives is proposed.

Acknowledgement

Financial assistance from the Fonds der Chemischen Industrie is gratefully acknowledged.

References

 N. W. Alcock and R. E. Timms, J. Chem. Soc. A, 1873 (1968); H. Chih and B. R. Penfold, J. Cryst. Mol. Struct. 3, 285 (1973); G. M. Sheldrick and R. Taylor, Acta Cryst. B31, 2740 (1975); K. C. Molloy, T. G. Purcell and K. Quill, J. Organometal. Chem. 267, 237 (1984); H. Preut, P. Röhm and F. Huber, Acta Cryst. C42, 657 (1986).

² N. W. Alcock and R. E. Timms, J. Chem. Soc. A, 1876 (1968).

Table VII ¹H NMR chemical shift data (in ppm) of the title compounds in different solvents.

Compound	$\delta(CH_3 - M)$	$\delta(-C_6H_4-)$	$^{2}J(\mathrm{M}^{1}\mathrm{H})$	Solvent ^a	Compound	$\delta(C_6H_5) \delta(-C_6H_4-)$	Solvent ^a
1	0.40 s	-	69.0	A	2	7.8–7.1 m –	Α
	0.54 s	-	67.6	B			
	0.60 s	-	63.6	C	4	7.9–7.0 m –	A
3	1.38 s	-	83.2	A	5	7.9–7.2 m –	A
6	0.46 s	7.96 s	69.3	A	10	7.9 – 7.0 m	A
	0.52 s	8.32 s	66.4	В			
8	1.34 s	7.55 s	84.0	A	12	8.6 – 7.6 m	С
	1.44 s	8.03 s	80.0	В	}		
11	0.91 s	8.40 s	68.0	Α	14	7.6 – 8.7 m	С
	0.54 s	8.00 s	62.0	В]		
	1.02 s	8.55 s	58.0	С			
13	1.71 s	8.33 s	65.0	С			

^a A = DMSO- d_6 , B = CD₃OD, C = CDCl₃.

- ³ C. Gaffney, P. G. Harrison and T. J. King, J. Chem. Soc., Dalton Trans. 1061 (1982).
- ⁴ S. P. Bone and D. B. Sowerby, J. Chem. Res. S, 82 (1979).
- ⁵ J. G. A. Luijten and G. J. M. van der Kerk, Rec. Trav. Chim. Pays-Bas 83, 295 (1964).
- ⁶ J. G. A. Luijten, Rec. Trav. Chim. Pays-Bas 82, 1179 (1963).
- ⁷ E. Krause and E. Pohland, Ber. Dtsch. Chem. Ges. 55, 1282 (1922).
- ⁸ B. Kushlefsky, I. Simmons and A. Ross, Inorg. Chem. 2, 187 (1963).
- ⁹ A. L. Beauchamp, M. J. Bennett and F. A. Cotton, J. Am. Chem. Soc. 91, 297 (1969).
- ¹⁰ K. A. Kocheshkov, Ber. Dtsch. Chem. Ges. 66, 1661 (1933).
 ¹¹ B. C. Pant and W. E. Davidsohn, J. Organometal. Chem. 39, 295
- (1972). ¹² G. Bähr, Z. Anorg. Chem. **256**, 107 (1948).
- ¹³ P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declerq and M. M. Woolfson, MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Univs. of York, England, and Louvain, Belgium, 1980.
- ¹⁴ International Tables for X-ray Crystallography, Vol. IV, Tables 2.2B and 2.3.1, Kynoch Press, Birmingham, England, 1974.
- ¹⁵ B. A. Frenz, Enraf-Nonius Structure Determination Package, 4th ed., Version 18, 1981.
- ¹⁶ M. Nardelli, PARST. A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis, Univ. of Parma, Italy, 1982.
- ¹⁷ G. M. Sheldrick, SHELXTL PLUS (Release 2) for Nicolet

R3m/V Crystallographic Systems for Solving, Refining, and Displaying Crystal Structures from Diffraction Data, Univ. of Göttingen, FRG, 1987.

- ¹⁸ A. Bondi, J. Phys. Chem. 68, 441 (1964).
- ¹⁹ M. Bailey and C. J. Brown, Acta Cryst. 22, 387 (1967).
- ²⁰ M. Bailey, Acta Cryst. 2, 120 (1949).
- ²¹ V. Benghiat, L. Leiserowitz and G. M. J. Schmidt, J. Chem. Soc., Perkin II 1769 (1972).
- ²² A. C. Larson and D. T. Cromer, Acta Cryst. B29, 1579 (1973).
 ²³ G. B. Deacon and R. J. Phillips, Coord. Chem. Rev. 33, 227 (1980).
- ²⁴ M. Domagala, F. Huber and H. Preut, unpublished.
- ²⁵ B. F. E. Ford, B. V. Liengme and J. R. Sams, J. Chem. Soc. Chem. Comm., 1333 (1986); id., J. Organometal. Chem. **19**, 53 (1969); B. F. E. Ford and J. R. Sams, J. Organometal. Chem. **21**, 345 (1970).
- ²⁶ A. Glowacki, F. Huber and H. Preut, J. Organometal. Chem. 306, 9 (1986).
- ²⁷ S. Kato, W. Akada, M. Mizuta and Y. Ishii, Bull. Chem. Soc. Japan 46, 244 (1973).
- ²⁸ B. Bak, L. Hansen-Nygaard and C. Pedersen, Acta Chem. Scand. **12**, 1451 (1958); L. J. Bellamy and P. E. Rogasch, J. Chem. Soc. 2218 (1960).
- ²⁹ D. de Vos, D. C. van Beelen and J. Wolters, Bull. Soc. Chim. Belg. 89, 791 (1980).
- ³⁰ G. Matsubayashi, Y. Kawasaki, T. Tanaka and R. Okawara, Bull. Chem. Soc. Japan 40, 1566 (1967).
- ³¹ J. R. Holmes and H. D. Kaesz, J. Am. Chem. Soc. 83, 3909 (1961).