Contents lists available at SciVerse ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Original article

Efficient synthesis of unsymmetrical diaryl thioethers *via* TBAF-mediated denitrative substitution of nitroarenes with PhSTMS under mild and neutral conditions

Xiao-Chun Yu, Bo Li, Bao-Hua Yu, Qing Xu*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

ARTICLE INFO

Article history: Received 23 January 2013 Received in revised form 28 March 2013 Accepted 8 April 2013 Available online 17 May 2013

Keywords: Phenylthiotrimethylsilane Nitroarenes Denitrative substitution Unsymmetrical diaryl thioethers Nucleophilic aromatic substitution

ABSTRACT

Tetrabutylammonium fluoride (TBAF) effectively facilitated a denitrative substitution reaction of electron-deficient nitroarenes with phenylthiotrimethylsilane (PhSTMS) under mild and base-free neutral conditions at room temperature, providing a practical and efficient synthesis of useful unsymmetrical diaryl thioethers. Nitroarenes bearing *ortho-* and *para*-positioned electron-withdrawing groups are the most reactive substrates, indicating that this reaction most possibly proceeded *via* the nucleophilic aromatic substitution (S_NAr) mechanism.

© 2013 Qing Xu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

1. Introduction

The formation of carbon-heteroatom bonds via arylation reactions has attracted much interest in recent years. These methods have also been applied in diaryl thioether synthesis since they are also a class of useful intermediates in synthesis and key building blocks in natural products and biologically and pharmaceutically active compounds [1,2]. One common method for diaryl thioether preparation is the classic, copper-assisted Ullmann reactions [3-5]. However, this method usually requires a high reaction temperature and large amounts of copper reagent, which may lead to the generation of undesirable wastes and other problems upon scaling-up of the reactions. Thus, in recent years to overcome these limitations, various new methods have been developed for the reactions of aryl halides and sulfur nucleophiles, such as the palladium-catalyzed reactions [6,7], improved copper-catalyzed Ullmann reactions [4,5,8-10], as well as iron [11], nickel [12] and other transition metal-catalyzed methods. Despite the advances in metal-catalyzed methods, nucleophilic aromatic substitution (S_NAr) reactions of electrondeficient aryl halides are still attractive alternatives in synthesis of thioethers and other C-heteroatom compounds due to the relatively milder conditions and environmentally benign features of the reactions [13–16]. In comparison with the reactions of the corresponding aryl halides, the C-heteroatom bond formation via S_NAr reactions of the readily available nitroarenes by displacement of the nitro groups were much less known processes [17]. Recently, Oshima [18], Beier [19], and Wu [20] independently reported C-O, C-S and C-C coupling reactions of electron-deficient nitroarenes with thiols, alkali alkoxides, alkane thiolates, and arylboronic acids. However, drawbacks still remain because these methods usually use excess amounts of nucleophiles, large amounts of base resulting in strong basic conditions, high reaction temperatures, and the generation of large amounts of wastes. In our previous studies, we have developed a mild and efficient method for the synthesis of diaryl thioethers by tetrabutylammonium fluoride (TBAF)-catalyzed S_NAr reactions of aryl fluorides and phenylthiotrimethylsilane (PhSTMS) under base-free neutral conditions [21,22]. In comparison with conventional S_NAr reactions [13-16], the advantages of using TBAF as the catalyst and trimethylsilyl-activated PhSTMS as the sulfur nucleophile include comparatively lower reaction temperatures (e.g., at room temperature), base-free neutral conditions, and high tolerance of the reactive functional groups, which also implied that this method may have broader applications in synthesis. Herein we continue to report on a mild and efficient TBAF-mediated denitrative substitution reaction of electron-deficient nitroarenes with PhSTMS, providing a simple and practical alternative for the synthesis of useful unsymmetrical diaryl thioethers.

^{*} Corresponding author. E-mail address: qing-xu@wzu.edu.cn (Q. Xu).

^{1001-8417/\$ –} see front matter © 2013 Qing Xu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. http://dx.doi.org/10.1016/j.cclet.2013.04.011

2. Experimental

Unless otherwise noted, reactants and catalyst were purchased and used without further purification. In reactions carried out under air, commercial solvents were directly used. In reactions carried out under N₂, degassed solvents were used. The reactions were then monitored by TLC. Products were purified by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent. ¹H NMR and ¹³C NMR spectra were measured on a Bruker Avance-III 500 instrument (500 MHz for ¹H NMR and 125.4 MHz for ¹³C NMR spectroscopy) or a Bruker Avance 300 instrument (300 MHz for ¹H NMR and 75 MHz for ¹³C NMR spectroscopy) using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard. IR spectra were recorded on a Bruker Vector-55 instrument. Mass spectra were measured on a Shimadzu GC-MS-QP2010 Plus spectrometer (EI). HRMS (EI) analysis was performed by the Analytical Center at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

General procedure for the synthesis of unsymmetrical diaryl thioethers (3) by denitrative substitution reaction of nitroarenes (2) with PhSTMS (1): The mixture of nitroarene 2 (1.0 mmol), PhSTMS 1 (1.2 mmol, 1.2 equiv.), and TBAF (1.2 mmol, 1.2 equiv.) in degassed acetonitrile (2 mL) was stirred at room temperature under N₂ for 2 h and the reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated under reduced pressure and the residue purified by flash column chromatography on silica gel to give **3**.

6-(*Phenylthio*)*benzo*-[1,3]*dioxole*-5-*carbaldehyde* (**3c**): ¹H NMR (300 MHz, CDCl₃): δ 10.30 (s, 1H), 7.29 (s, 1H), 7.23–7.18 (m, 5H), 6.67 (s, 1H), 5.95 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 189.7, 152.9, 148.2, 135.6, 135.5, 130.7, 129.5, 127.5, 112.9, 108.3, 102.4; IR (KBr, cm⁻¹): ν 3717, 2910, 1683, 1582, 1472, 1252, 1037; MS (EI): *m/z* (%) 258 (M⁺), 241, 199, 171, 148, 120, 95, 69, 51; HRMS Calcd. for C₁₄H₁₀O₃S: 258.0351; found: 258.0353. *2*,4-*Bis*(*phenylthio*)*benzaldehyde* (**3d**): ¹H NMR (300 MHz, CDCl₃): δ 10.22 (s, 1H), 7.68 (d, 1H, *J* = 8.2 Hz), 7.38–7.28 (m, 10H), 7.00 (d, 1H, *J* = 8.2 Hz), 6.61 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 190.4, 147.6, 143.3, 134.7, 134.1, 132.7, 131.6, 130.1, 129.8, 129.4, 128.9, 125.9, 123.4; IR (KBr, cm⁻¹): ν 3747, 3430, 2801, 1683, 1575, 1205, 752, 691; MS (EI): *m/z* (%) 322 (M⁺), 244, 212, 184, 152, 109, 77, 51; HRMS Calcd. for C₁₉H₁₄OS₂: 322.0486; found: 322.0483.

For the known products, their spectral data are in agreement with the literature [21–27].

3. Results and discussion

In previous studies [21,22], we noticed that contrary to the usual behavior of halo-substituted nitroarenes, those nitroarenes bearing electron-withdrawing groups (EWGs), such as formyl, as substrate, the formyl-retained and nitro-displaced product could be obtained under similar conditions. This interesting result encouraged us to further explore the denitrative reactions of nitroarenes with PhSTMS in detail. Thus, the reaction of PhSTMS (1) and 2-nitrobenzaldehyde (2a) was investigated to optimize the reaction conditions (Table 1). As in the previous studies, the reaction was initially carried out under atmospheric conditions using 1.2 equiv. of both 1 and TBAF in acetonitrile. The reaction proceeded rapidly even at room temperature (2 h), but only with a moderate yield of product 3a (entry 1). No higher yield of the product could be achieved despite large excessive amounts of **1** and TBAF (2 equiv.) under the identical condition (entry 2). During the study, we noticed that variant amounts of diphenyl disulfide (PhSSPh) and other unidentified byproducts were detected in the reactions under air. Realizing that oxygen may Table 1

Condition optimization for denitrative substitution of 2-nitrobenzal dehyde with $\mbox{PhSTMS.}^{\rm a}$

Entry	Fluorides (equiv.)	PhSTMS (equiv.)	Solvent	Yield of $\mathbf{3a}$ (%) ^b
1 ^c	TBAF (1.2)	1.2	CH₃CN	73
2 ^c	TBAF (2.0)	2.0	CH ₃ CN	83
3	TBAF (1.2)	1.2	CH ₃ CN	95
4	TBAF (1.2)	1.2	Toluene	Trace
5	TBAF (1.2)	1.2	THF	Trace
6	TBAF (1.2)	1.2	Dioxane	Trace
7	TBAF (1.2)	1.2	DMF	55
8	TBAF (1.2)	1.2	DMSO	61
9	CsF (1.2)	1.2	CH ₃ CN	48
10	KF (1.2)	1.2	CH ₃ CN	15
11	NaF (1.2)	1.2	CH ₃ CN	trace

^a Unless otherwise specified, the reactions were carried out using **1**, **2a** (1 mmol), and a fluoride source in a degassed solvent (2 mL) under N_2 at room temperature (25–30 °C). The reactions were monitored by TLC.

^b Isolated yields.

^c The reactions were conducted under air.

oxidize **1** to PhSSPh and **2a** to the corresponding acid when the reaction was conducted under air, we next performed the reaction under nitrogen and degassed solvents. Thus, by carrying out the reaction under nitrogen, 1.2 equiv. of **1** and TBAF could successfully afford a high yield of target **3a** (entry 3). To further optimize the reaction conditions, various solvents such as toluene, THF, DMF, DMSO, dioxane (entries 4–8) and fluoride salts (entries 9–11) were screened under the same condition, indicating acetonitrile was the best solvent and TBAF the most effective fluoride salt for the reaction (entry 3).

The optimized condition was then employed to investigate the utility of the method. As shown in Table 2, the reaction of nitroarene analogs bearing EWGs, such as formyl, acetyl, benzoyl, and cyano groups at ortho- or para-positions similar to 2a (entry 1), usually proceeded efficiently to give high yields of the nitro-displaced, unsymmetrical diaryl thioethers (entries 2-11). However, ortho-acetyl- and ortho-benzoyl nitrobenzenes **2** g and **2i** did not react under this condition (entries 7 and 9). Since the para-isomers of 2g and 2i (2f and 2h in entries 6 and 8) and another ortho-substituted nitrobenzene 2j (entry 10) bearing the smaller cyano group, all reacted efficiently to give high yields of the corresponding products, the reason for the failure of 2g and 2i to react may be attributed to steric hindrance of the ortho-acetyl and -benzoyl groups, because these bulky groups may prevent the similarly bulky phenylthio group from approaching the ortho-nitro groups. In the case of 5fluoro-2-nitrobenzaldehyde 2b, the fluoro is usually regarded as a better leaving group than nitro group [13,17,28], possibly because the nitro group is activated by both the ortho-formyl and *para*-fluoro groups while the fluoro is only activated by the para-nitro group, the nitro group, another good leaving group, accordingly become more reactive than fluoro, and thus the reaction finally gave the fluorine-retained, but nitro-replaced product 5-fluoro-2-(phenylthio)benzaldehyde 3b (entry 2). For dinitrobenzene 2d, a double-sulfenylated product 3d could result as the major product in high yield when an excess of 2.4 equiv. of 1 and TBAF was used (entry 4). As shown in Table 2, the reactions under nitrogen (results outside the parentheses) were always more efficient than those under air (results in

Table 2

TBAF-mediated denitrative substitution reactions of various nitroarenes with PhSTMS

Entry	Nitroarenes	Products	Yield % ^a	
1	o-NO ₂ C ₆ H ₄ CHO (2a)	o-PhSC ₆ H ₄ CHO (3a)	95 (73)	
2	F CHO (2b)	F CHO (3b)	98 (74)	
3	$ \bigvee_{O}^{O} \bigvee_{NO_2}^{CHO} (2c) $	$\langle O $	93 (23)	
4 ^b	NO ₂ CHO (2d)	PhS SPh CHO (3d)	93 (30)	
5	<i>p</i> -NO ₂ C ₆ H ₄ CHO (2e)	p-PhSC ₆ H ₄ CHO (3e)	91 (31)	
6	$p-NO_2C_6H_4COCH_3$ (2f)	$p-PhSC_6H_4COCH_3$ (3f)	94 (91)	
7	o-NO ₂ C ₆ H ₄ COCH ₃ (2g)	o-PhSC ₆ H ₄ COCH ₃ (3g)	-	
8	$p-NO_2C_6H_4COPh$ (2h)	p-PhSC ₆ H ₄ COPh (3h)	89 (50)	
9	o-NO ₂ C ₆ H ₄ COPh (2i)	o-PhSC ₆ H ₄ COPh (3i)	-	
10	o-NO ₂ C ₆ H ₄ CN (2j)	o-PhSC ₆ H ₄ CN (3j)	96 (85)	
11	$p-NO_2C_6H_4CN$ (2k)	p-PhSC ₆ H ₄ CN (3k)	95 (81)	
12 ^c	$p-NO_2C_6H_4CO_2CH_3$ (21)	p-PhSC ₆ H ₄ CO ₂ CH ₃ (31)	34 (27)	
13 ^c	$p-NO_2C_6H_4CO_2C_2H_5$ (2m)	p-PhSC ₆ H ₄ CO ₂ C ₂ H ₅ (3m)	37 (35)	
14	$m-NO_2C_6H_4CHO(2n)$	m-PhSC ₆ H ₄ CHO (3n)	_	
15	$C_6H_5NO_2$ (20)	C_6H_5SPh (30)	-	
16	$p-NO_2C_6H_4CH_3$ (2p)	p-PhSC ₆ H ₄ CH ₃ (3p)	-	

^a Isolated yield from reactions under nitrogen were shown outside the parentheses (yields obtained from reactions under air were shown in the parentheses).

^b 2.4 equiv. of **1** and TBAF were used.

^c The reaction was conducted at 75 °C.

parentheses) (entries 1–11), especially in the case of **2c–e** (entries 3–5), which afforded much higher product yields under nitrogen. Worth noting is that, under the current mild, TBAF-mediated, base-free neutral conditions, the reactive formyl, acetyl, benzoyl, and cyano groups can be retained. For comparison, under conventional strong basic conditions using less reactive protonic nucleophiles, side reactions of these reactive functional groups usually occur to give undesired byproducts.

In contrast with above efficient reactions, the reactions of methyl- and ethyl-4-nitrobenzoates were ineffective under the standard conditions. When heated at an elevated temperature of 75 °C, low yields of the target products were obtained, and the reactions under nitrogen failed to yield much better results (entries 12–13). In these reactions, some unidentified byproducts were observed both under air and under nitrogen, but the reasons are still not clear at present.

In addition, *meta*-formyl nitrobenzene (**2n**), unsubstituted nitrobenzene (**2o**), and a substituted nitrobenzene with an electron-donating group at the *para*-position (**2p**) were also investigated (Table 2, entries 14–16). However, no reaction occurred at all and no target product could be detected under the standard condition. Based on the great difference of these inert substrates to the previous reactive ones, it can be concluded that the present reaction is a nucleophilic aromatic substitution (S_NAr) reaction, in which the leaving nitro group is activated by the *para*-or *ortho*-EWGs, as with the aryl halides in our previous systems. Therefore, the present reactions most possibly proceeded *via* a typical S_NAr mechanism.

4. Conclusion

In summary, we have developed a mild and efficient TBAFmediated denitrative substitution reaction of electron-deficient nitroarenes with PhSTMS for the synthesis of useful unsymmetrical diaryl thioethers. Due to the wide availability of the nitroarenes, high tolerance of the reactive functional groups under the base-free neutral conditions, fast transformation under the mild conditions, and higher efficiency of the reactions than those of the corresponding aryl halides [21,22], the present method may provide a potentially useful alternative for the synthesis of unsymmetrical diaryl thioether from nitroarenes.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 20902070), Natural Science Foundation of Zhejiang Province (No. Y4100579), and Qianjiang Talents Program of Zhejiang Province (No. QJD0902004) for financial supports.

References

- L. Liu, J.E. Stelmach, S.R. Natarajan, et al., SAR of 3,4-dihydropyrido[3,2-d]pyrimidone p38 inhibitors, Bioorg. Med. Chem. Lett. 13 (2003) 3979–3982.
- [2] G. Liu, J.R. Huth, E.T. Olejniczak, et al., Novel p-arylthio cinnamides as antagonists of leukocyte function-Associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties, J. Med. Chem. 44 (2001) 1202–1210.
- [3] F. Ullmann, Ueber eine neue Darstellungsweise von Phenyläthersalicylsäure, Chem. Ber. 37 (1904) 853–854.

- [4] S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)-0, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. 42 (2003) 5400– 5449.
- [5] I.P. Beletskaya, A.V. Cheprakov, Copper in cross-coupling reactions. The post-Ullmann chemistry, Coord. Chem. Rev. 248 (2004) 2337–2364.
- [6] D. Prim, J. Campagne, D. Joseph, B. Andrioletti, Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles, Tetrahedron 58 (2002) 2041–2075.
- [7] J.F. Hartwig, Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides, Acc. Chem. Res. 41 (2008) 1534–1544.
- [8] F.Y. Kwong, S.L. Buchwald, A general, efficient, and inexpensive catalyst system for the coupling of aryl iodides and thiols, Org. Lett. 4 (2002) 3420–3517.
- [9] A.K. Verma, J. Singh, R. Chaudhary, A general and efficient Cul/BtH catalyzed coupling of aryl halides with thiols, Tetrahedron Lett. 48 (2007) 7199–7202.
- [10] S. Jammi, S. Sakthivel, L. Rout, et al., CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism, J. Org. Chem. 74 (2009) 1971–1976.
- [11] A. Correa, A. Carril, C. Bolm, Iron-catalyzed S-arylation of thiols with aryl iodides, Angew. Chem. Int. Ed. 47 (2008) 2880–2883.
- [12] S. Jammi, P. Barua, L. Rout, P. Saha, T. Punniyamurthy, Efficient ligand-free nickelcatalyzed C–S cross-coupling of thiols with aryl iodides, Tetrahedron Lett. 49 (2008) 1484–1487.
- [13] J.F. Bunnett, R.E. Zahler, Aromatic nucleophilic substitution reactions, Chem. Rev. 49 (1951) 273–412.
- [14] J. Zhu, S_NAr based macrocyclization via biaryl ether formation: application in natural product synthesis, Synlett (1997) 133–144.
- [15] J.S. Sawyer, Recent advances in diaryl ether synthesis, Tetrahedron 56 (2000) 5045-5065.
- [16] J.S. Sawyer, E.A. Schmittling, J.A. Palkowitz, W.J. Smith III., Synthesis of diaryl ethers, diaryl thioethers, and diarylamines mediated by potassium fluoride–alumina and 18-crown-6: expansion of scope and utility, J. Org. Chem. 63 (1998) 6338–6343.

- [17] J.R. Beck, Nucleophilic displacement of aromatic nitro groups, Tetrahedron 34 (1978) 2057–2068.
- [18] A. Kondoh, H. Yorimitsu, K. Oshima, Nucleophilic aromatic substitution reaction of nitroarenes with alkyl- or aryl-thio groups in dimethyl sulfoxide by means of cesium carbonate, Tetrahedron 62 (2006) 2357–2360.
- [19] P. Beier, T. Pastýříková, N. Vida, G. lakobson, S_NAr reactions of nitro-(pentafluorosulfanyl)bnezenes to generate SF₅ aryl ethers and sulfides, Org. Lett 13 (2011) 1466–1469.
- [20] X. Zheng, J. Ding, J. Chen, et al., The coupling of arylboronic acids with nitroarenes catalyzed by rhodium, Org. Lett. 13 (2011) 1726–1729.
- [21] B. Yu, X. Zang, X. Yu, Q. Xu, TBAF-catalysed facile synthesis of unsymmetrical diaryl thioethers via mild S_NAr reactions, J. Chem. Res. 34 (2010) 351–353.
- [22] C. Liu, X. Zang, B. Yu, X. Yu, Q. Xu, Microwave-promoted TBAF-catalyzed S_NAr reaction of aryl fluorides and ArSTMS: an efficient synthesis of unsymmetrical diaryl thioethers, Synlett (2011) 1143–1148.
- [23] J.Y. Lee, P.H. Lee, Palladium-catalyzed carbon-ulfur cross-coupling reactions with indium tri(organothiolate) and its application to sequential one-pot processes, J. Org. Chem. 73 (2008) 7413–7416.
- [24] Y.C. Wong, T.T. Jayanth, C.H. Cheng, Cobalt-catalyzed aryl-sulfur bond formation, Org. Lett. 8 (2006) 5613-5616.
- [25] H. Gilman, F.J. Webb, The metalation of some sulfur-containing organic compounds, J. Am. Chem. Soc. 71 (1949) 4062–4066.
- [26] H. Xu, X. Zhao, J. Deng, Y. Fu, Y. Feng, Efficient C-S cross coupling catalyzed by Cu₂O, Tetrahedron Lett. 50 (2009) 434-437.
- [27] N. Taniguchi, Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S–S, Se–Se, or Te–Te bond by a copper catalyst, J. Org. Chem. 72 (2007) 1241–1245.
- [28] R.E. Parker, T.O. Read, The mechanism of displacement reactions. Part III. Kinetics of the reactions of the four 2-halogeno-1,3-dinitrobenzenes and 1,2,3-trinitrobenzene with aniline in ethanol, J. Chem. Soc (1962) 3149–3153.