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A series of benzoylferrocene derivatives were synthesized and their third-order nonlinear optical (NLO)
properties were evaluated in N,N-dimethyl-formamide at 800 nm using femtosecond degenerate four-
wave mixing. The third-order NLO susceptibilities of synthesized compounds were 3.065e7.859 � 10
�13 esu, with the response times in 49e70 fs. The second-order hyperpolarizabilities of the molecules of
the compounds were 1.018e2.611 � 10�31 esu. The Density Functional Theory was used to calculate these
benzoylferrocene derivatives. The theoretical study showed that the third-order NLO properties were
increased with the increasing electron-withdrawing ability, which is accordance with the decreasing
energy gap between the highest occupied and the lowest unoccupied molecular orbital. With the
increasing of electron-withdrawing ability, the transferred charge to the substituent was increased and
the affection on the electronic reallocate was increased. The experiment and theoretical results showed
that the benzoylferrocene derivatives had potential nonlinear optical applications.

Crown Copyright � 2014 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Design and synthesis of the excellent performance of the three
order nonlinear optical (NLO) materials is a hot research topic in
recent years [1]. Organic materials had been investigated as alter-
natives to inorganic species due to their low cost, fast and large
nonlinear response over a broad frequency range, inherent syn-
thetic flexibility, low dielectric constant, high optical-damage
threshold, and intrinsic tailorability [2,3]. Nonlinear optical
response of organic materials comes from the molecular polariz-
ability of nonlocalized p-electron under the light field, which is
different from inorganic materials. Because the movement of
nonlocalized p-electron is easy and not affected by lattice vibra-
tions, the NLO response of organic materials are stronger and faster
than that of inorganic materials [4]. To date, many kinds of organic
NLO materials have been synthesized, such as DeA pushepull
structure of azo compounds [5,6], squaric acid [7], heterocyclic
compounds [8,9], tetrathiafulvalene derivatives [10], schiff base
complex [11], metal phthalocyanine compounds [12], and ferrocene
derivatives [13]. Among them, metal complexes with potential NLO
014 Published by Elsevier Ltd. All
properties, good thermal and photochemical stability, and redox
switching abilities have caused considerable interests.

Ferrocene, with its unique electrical, magnetic, optical, redox,
and crystal properties, as well as its high thermal and chemical
stability, is a very useful building block in the construction of
various functional materials and has been used in numerous me-
dicinal and bioorganometallic chemistry applications [14e16]. In
this context, we have been involved in the study of NLO properties
of ferrocene derivatives. We had previously reported that ferro-
cene, as an electron donor and/or an acceptor was an excellent
building block for the construction of organic NLO materials [17e
21]. These studies had focused on the important role of ferrocene
substituents enhancing third-order NLO properties of such mate-
rials. In addition, most process for synthesis of benzoylferrocene
derivatives require extremely low temperature (�78 �C) [22],
strong corrosive reagent (triflic acid) [23], or abnormal reagent [24].
In the present work we found a simple and efficient method for the
synthesis of benzoylferrocene derivatives (Fig. 1). The third-order
NLO properties of these materials had been measured and
compared with the data calculated by the Density Functional
Theory (DFT) of quantum chemistry. The NLO properties were
illustrated well with the energy of the highest occupied molecular
orbital (HOMO), the energy of the lowest unoccupied molecular
orbital (LOMO), the HOMO and LUMO gap (Egap), the natural charge,
and MOs. This is the first study on the NLO properties for
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Fig. 1. Synthetic routes of benzoylferrocene derivatives.
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benzoylferrocene derivatives by experiments combined with
quantum chemistry.

2. Experimental section

2.1. Materials

Unless otherwise stated, starting materials were used as pur-
chased without further purification. The dimethylformamide
(DMF) was distilled from CaH2.

2.2. Instruments

The 1H nuclear magnetic-resonance (1H MNR) spectra were
obtained on a Varian XL-200 spectrometer. Ultravioletevisible
(UVevis) spectra were recorded on a Shimadzu UV-2550 UVe
visible spectrophotometer using a quartz cuvette with a 1 cm path
length. Low-resolution MS was obtained using EI ionizations.
Melting points weremeasured with micro melting point apparatus.

2.3. Synthesis

2.3.1. General procedure for syntheses of benzoylferrocene
derivatives

A mixture of 10.0 mmol benzoic acid derivatives 1, 50.0 mL
chloroform,1 to 2 drops of DMFas catalyst, and oxalyl chloride (1.90
g, 15.0 mmol) was stirred at room temperature for 3.0e4.0 h. The
solvent and excess oxalyl chloride were removed by rotary evapo-
ration to produce crude benzoyl chloride derivatives 2.
Ferrocene (1.86 g, 10.0 mmol) was combined with chloroform
(50.0mL) and stirred at 0e5 �C. Afterward, the above crude benzoyl
chloride derivatives was dissolved in 15.0 mL chloroform and
added slowly. Anhydrous aluminum chloride (8.0 g, 60.0 mmol)
was added in batches. The mixture was warmed to room temper-
ature for at least 1.0 h. The reaction was quenched with the ice
water (100 mL), and then the mixture was shaken, standing and
demixed. The organic layer was evaporated to dryness by rotary
evaporation after washing with alkali and water. The residue was
purified by chromatography on silica gel to afford benzoylferrocene
derivatives 3.

2.3.2. Benzoylferrocene (3a)
Red powder; yield 64.9%, m.p. 109e110 �C. 1H NMR (500 MHz,

CDCl3) d¼ 7.92e7.90 (m, 2H, AreH), 7.57e7.56 (m,1H, AreH), 7.50e
7.48 (m, 2H, AreH), 4.93e4.92 (t, J ¼ 2.0 Hz, 2H, CpeH), 4.61e4.60
(t, J ¼ 2.0 Hz, 2H, CpeH), 4.23 (s, 5H, CpeH), MS (EI), m/z: 291.0
(Mþ).

2.3.3. 2-Chlorobenzoylferrocene (3b)
Red powder; yield 67.7%, m.p. 99e100 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 7.53e7.51 (d, J ¼ 7.5 Hz, 1H, AreH), 7.48e7.46 (d,
J ¼ 8.0 Hz, 1H, AreH), 7.43e7.41 (t, J ¼ 6.5 Hz, 1H, AreH), 7.39e7.36
(t, J ¼ 7.0 Hz, 1H, AreH), 4.775 (s, 2H, CpeH), 4.626 (s, 2H, CpeH),
4.308 (s, 5H, CpeH), MS (EI), m/z: 325.5 (Mþ).

2.3.4. 3-Chlorobenzoylferrocene (3c)
Red powder; yield 52.4%, m.p. 102e103 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 7.73 (s, 1H, AreH), 7.65e7.63 (d, J ¼ 7.5 Hz, 1H, AreH),



Fig. 2. Optical path of DFWM.
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7.52e7.48 (t, J ¼ 9.5 Hz, 1H, AreH), 7.39e7.33 (t, J ¼ 7.0 Hz, 1H, Are
H), 4.80 (s, 2H, CpeH), 4.63 (s, 2H, CpeH), 4.31 (s, 5H, CpeH), MS
(EI), m/z: 325.5 (Mþ).

2.3.5. 4-Chlorobenzoylferrocene (3d)
Red powder; yield 41.9%, m.p. 122e123 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 7.87e7.58 (d, J ¼ 8.5 Hz, 2H, AreH), 7.46e7.44 (d,
J ¼ 8.5 Hz, 2H, AreH), 4.88 (t, J ¼ 2.0 Hz, 2H, CpeH), 4.61e4.60 (t,
J¼ 1.5 Hz, 2H, CpeH), 4.202 (s, 5H, CpeH), MS (EI),m/z: 325.5 (Mþ).

2.3.6. 2-Methoxybenzoylferrocene (3e)
Red powder; yield 61.2%, m.p. 138e139 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 7.45e7.42 (m, 2H, AreH), 7.03e7.00 (m, 2H, AreH), 4.76
(t, J ¼ 2.0 Hz, 2H, CpeH). 4.55e4.54 (t, J ¼ 2.0 Hz, 2H, CpeH), 4.237
(s, 5H, CpeH), 3.85 (s, 3H, OCH3), MS (EI), m/z: 321.0 (Mþ).
Fig. 3. The photo of phase-conjugated beam and input beam.
2.3.7. 3,5-Dimethoxybenzoylferrocene (3f)
Red powder; yield 18.3%, m.p. 84e85 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 7.07e7.06 (d, J ¼ 2.5 Hz, 2H, AreH), 6.66e6.65 (t,
J¼ 2.0 Hz,1H, AreH), 4.95e4.94 (t, J¼ 2.0 Hz, 2H, CpeH). 4.61e4.60
(t, J ¼ 2.0 Hz, 2H, CpeH), 4.237 (s, 5H, CpeH), 3.875 (s, 6H, OCH3),
MS (EI), m/z: 351.0 (Mþ).

2.3.8. 2,3,4,5-Tetrafluorobenzoylferrocene (3g)
Red powder; yield 21.0%, m.p. 81e83 �C. 1H NMR (500 MHz,

CDCl3), d¼ 7.27e7.23 (m,1H, AreH), 4.819 (s, 2H, CpeH), 4.69e4.68
(t, J ¼ 2.0 Hz, 2H, CpeH), 4.254 (s, 5H, CpeH), MS (EI), m/z: 363.0
(Mþ).

2.3.9. 4-Nitrobenzoylferrocene (3h)
Red powder; yield 10.8%, m.p. 189e190 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 8.37e8.35 (m, 2H, AreH), 8.31e8.30 (m, 2H, AreH),
4.62e4.61 (t, J ¼ 4.0 Hz, 2H, CpeH), 4.292 (s, 5H, CpeH), 4.07e4.06
(t, J ¼ 4.0 Hz, 2H, CpeH), MS (EI), m/z: 336.1 (Mþ).
Fig. 4. The UVevis spectrum of 3ae3l in DMF.



Fig. 5. DFWM signal versus delay time for 3ae3l in DMF solution.
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Table 1
The values of c(3), g, n2, and the respond times for 3ae3l.

Compound I n c(3)

(10�13 esu)
n2
(10�12 esu)

g

(10�31 esu)
Response
time s(fs)

3a 2.51656 1.4309 3.857 7.098 1.281 55.64
3b 2.2077 1.4300 3.608 6.648 1.199 51.15
3c 2.18091 1.4306 3.589 6.607 1.192 51.15
3d 2.30618 1.4303 3.689 6.795 1.226 54.20
3e 1.9277 1.4306 3.374 6.212 1.121 56.56
3f 1.59033 1.4307 3.065 5.642 1.018 50.84
3g 4.83337 1.4302 5.340 9.836 1.774 66.10
3h 10.46603 1.4303 7.859 14.475 2.611 69.42
3i 3.18123 1.4304 4.333 7.980 1.440 65.59
3j 2.34178 1.4310 3.721 6.847 1.236 49.71
3k 3.69335 1.4308 4.672 8.599 1.552 68.64
3l 3.17254 1.4303 4.327 7.969 1.437 63.03
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2.3.10. 4-Methylbenzoylferrocene (3i)
Red powder; yield 42.1%, m.p. 129e130 �C. 1H NMR (500 MHz,

CDCl3) d¼ 8.17 (d, J¼ 8.0 Hz, 2H, AreH), 8.06 (d, J¼ 8.5 Hz, 2H, Are
H), 4.80 (s, 2H, CpeH), 4.54e4.42 (s, 2H, CpeH), 4.24 (s, 5H, CpeH),
2.36 (s, 3H, CH3), MS (EI), m/z: 305.0 (Mþ).

2.3.11. 4-Methoxybenzoylferrocene (3j)
Red powder; yield 63.8%, m.p. 125e126 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 8.25e8.08 (d, J ¼ 8.0 Hz, 2H, AreH), 7.89 (d, J ¼ 7.0 Hz,
Fig. 6. The geometries optimize
2H, AreH), 4.77 (s, 2H, CpeH), 4.45 (s, 2H, CpeH), 4.23 (s, 5H, Cpe
H), 3.86 (s, 3H, OCH3), MS (EI), m/z: 321.0 (Mþ).

2.3.12. 4-Fluorobenzoylferrocene (3k)
Red powder; yield 46.2%, m.p. 114e116 �C. 1H NMR (500 MHz,

CDCl3) d¼ 8.47e8.34 (d, J¼ 7.5 Hz, 2H, AreH), 7.16 (d, J¼ 7.0 Hz, 2H,
AreH), 4.76e4.78 (m, 2H, CpeH), 4.42 (s, 2H, CpeH), 4.25 (s, 5H,
CpeH), MS (EI), m/z: 309.0 (Mþ).

2.3.13. 4-Bromobenzoylferrocene (3l)
Red powder; yield 39.7%, m.p. 117e119 �C. 1H NMR (500 MHz,

CDCl3) d ¼ 8.25e8.08 (d, J ¼ 8.5 Hz, 2H, AreH), 7.89 (d, J ¼ 7.5 Hz,
2H, AreH), 4.77 (S, 2H, CpeH), 4.45 (s, 2H, CpeH), 4.23 (s, 5H, Cpe
H), MS (EI), m/z: 369.9 (Mþ).

2.4. Nonlinear optical measurements

The third-order NLO properties were measured by DFWM with
the 80 fs laser pluses (800 nm) generated by a Ti: sapphire laser
with repetition rate of 1 kHz. The experiments were performed at
22 �C in DMF solutions using a 1 mm-thick quartz cell. As a refer-
ence, the optical nonlinearity of the standard sample (CS2) was also
observed.

The input beam was split into two beams (k1 and k2) of nearly
equal energies using a beam splitter. The input beam, k2, passed
d by B3LYP/6-31G(d) level.



Table 2
Parts of bond length (in�A) and the dihedral angle (in �) in isomers at B3LYP/6-31G(d)
level. The number of C is shown in Fig 7.

Compound C1eC2 C1eC3 C1eO :C1eC2eC6eC7 :C1eC3eC4eC5

3a 1.485 1.501 1.229 174.4 176.7
3b 1.479 1.511 1.223 174.4 175.7
3c 1.483 1.504 1.228 174.8 176.8
3d 1.483 1.502 1.228 174.3 176.6
3e 1.481 1.506 1.228 173.5 176.6
3f 1.485 1.504 1.228 173.7 177.0
3g 1.475 1.512 1.227 173.5 175.6
3h 1.479 1.507 1.227 174.3 176.3
3i 1.486 1.499 1.229 174.1 176.7
3j 1.487 1.494 1.230 174.2 177.0
3k 1.485 1.499 1.229 174.3 176.6
3l 1.483 1.501 1.229 173.9 176.7

Fig. 7. The structure schematic of carbonyl-type ferrocene. The numbers are construed
respectively as the carbon atoms.

Fig. 8. The energies of the frontier molecular orbitals in the eight isomers at the
B3LYP/6-31G(d) level.
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through a delay line driven by a stepping motor so that the optical
path length difference between the k2 and k1 beams could be
adjusted during the measurement. The angle between the beams
was about 5�. When the beams were overlapped spatially in the
sample, the generated signal beam (the phase-conjugated beam
k3) passed through an aperture, which was recorded by a photo-
diode, and then analyzed by a lock-in amplifier and computer (as
shown in Figs. 2 and 3).

2.5. Calculated method

The ground-state geometry of all isomers was optimized at the
B3LYP level [25]. And the basis set of 6-31G (d) was used to opti-
mize the geometries. Then the vibrational frequencies were
calculated at the B3LYP/6-31G (d) level. The optimized geometries
were locating at the local lowest point on the potential energy
surface because that all the predicated vibrational spectra had no
imaginary frequency [26]. Then the MOs and natural charge ana-
lyses at the same level of theory were carried out for some isomers.
All the calculations were performed within the Gaussian 09
quantum chemical package [27].
Table 3
The energy (in eV) of the HOMO, LUMO, and HOMO-LUMO gap (EHOMO, ELUMO, Egap in
eV) of compounds 3a, 3b, 3e, 3h, and 3i calculated at the B3LYP/6-31G(d) level.

Compound EHOMO ELUMO Egap

3a �1.500 �5.431 3.930
3b �1.474 �5.507 4.033
3c �1.236 �5.303 4.067
3d �2.770 �5.756 2.986
3e �1.412 �5.414 4.002
3. Results and discussion

Among the 12 benzoylferrocene derivatives, 3f and 3g are new
compounds. The compounds were synthesized by the Friedele
Crafts reaction from benzenecarbonyl chloride derivatives and
ferrocene, as illustrated in Fig. 1.

The linear UVevis absorption spectra of the 12 benzoylferrocene
derivatives in DMF solutions are shown in Fig. 4. These compounds
exhibited absorption peaks between 250 and 800 nm. The laser
wavelength (800 nm) used in the DFWM experiment was far from
their resonant bands. Thus, the third-order NLO susceptibilities c(3)

of the compounds were off-resonant nonlinear responses.
The third-order NLO susceptibility, c(3), is calculated by

comparing the measured signal for the sample with that for CS2
under the same experimental condition. The c(3) is obtained ac-
cording to the following formula [28]:

cð3Þs ¼
�
IS
Ir

�1=2Lr
Ls

�
ns
nr

�2aL expðaL=2Þ
1� expð�aLÞc

ð3Þ
r

where I is the intensity of the phase-conjugated beam, L is the
sample path length, n is the linear refractive index, and a is the
linear absorption coefficient. The subscripts ‘s’ and ‘r’ refer to the
sample and CS2, respectively. The values of cr(3) and nr for CS2 are
6.7 � 10�14 esu and 1.632, respectively [29e31].

The temporal response of the phase conjugate signal as a
function of the delay time of the input beam is shown in Fig. 5. The
response times of the samples could be obtained from this function.

The values of c(3), n2, g and response times for the samples
deduced and calculated from the experimental results are listed in
Table 1.

The benzoylferrocene derivatives 3ae3l possess a highly delo-
calized p-conjugated electron system. The g values of the ben-
zoylferrocene derivatives are higher than that of the other third-
order NLO materials, such as organobimetallic Ru(II)eRe(I) 4-
ethynylpyridyl complexes [32], which is about 6 � 10�34 esu, and
are also higher than that of ferrocene, which is 1.6 � 10�35 esu [33].

The fully optimized geometries of the twelve compounds were
shown in Fig. 6. The atoms of cyclopentadiene ring (Cp) and the
benzene ring (Ph) are all at the plane, respectively. The C of the
Table 4
The Natural charge of some atoms in the compounds 3a, 3b, 3e, 3h, and 3i calculated
at the B3LYP/6-31G(d) level. (Unit: e).

3a 3b 3e 3h 3i

Fe_2Cp 0.006 0.023 0.012 0.031 0.006
CO �0.004 0.026 0.009 0.004 �0.009
R0 0.238(dui) 0.009 �0.195 �0.246 0.039



Fig. 9. The charge differential density of the 3a, 3b, 3e, 3h, and 3i.
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carbonyl group is almost on the Cp planewith the smallest dihedral
angle (173.5�) in the compound 3e and 3g as shown in Table 2. At
the same time, the C of the carbonyl group is almost on the Ph plane
with the smallest dihedral angle (175.6�) in the 3g as shown in
Fig. 10. The frontier molecular orbita
Table 2. The dihedral angle formed by the Cp and Ph is about 45� in
all the twelve complexes. And the ferrocene almost unchange the
symmetry of D2d in the 12 complexes. The substitutions of eNO2, e
Cl, and e4F shorten the bond lengths of the C1 and C2 (The number
ls of the 3a, 3b, 3e, 3h, and 3i.
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of C is shown in Fig 7) and the bond length of C1eC3 as shown in
Table 3. The electron-withdrawing eNO2 decreases the energy of
HOMO and HOMO-LUMO gap obviously as shown in Table 3 and Fig
8. The lower energy of LUMO illustrates the electron injection was
improved. The lower Egap illustrates these compounds with
electron-withdrawing substitutional aryl would have larger three-
order NLO which accord with the above experiment as well.

These derivatives contain electron-withdrawing substituents
aryl radical groups and electron-donating ferrocenyl in the form of
a DepeA structure, resulting in a stronger intermolecular charge
transfer. Then the natural charges of some complexes were calcu-
lated listed in Table 4. Electron-withdrawing substituents such as
the eNO2 in 3h has higher natural charge values (�0.246 e) than
others as shown in Table 4. And the electron-donating ferrocenyl
has the largest natural charge value of 0.031 e in 3h. The natural
charge of the eCOe bridge is very small in all the calculated
compounds. The transferred charges to the substituents are accord
with the g values of these compounds in experiment from Table 4.
The net charge of eNO2 in 3hwith �0.246 is much lower than that
of eCH3 with 0.039 in 3i. The charge differential density (shown in
Fig 9) of these five compounds also shown that the eNO2 has larger
effect on the charge density in the 3h than other compounds.
Therefore, the charge transfer to eNO2 is more than others ac-
cording with the result from the natural charge. The stronger is the
electron-withdrawing ability of the substituents of the aryl groups,
the higher are the g values.

The frontier molecular orbitals (FMOs) of 3a, 3b, 3e, 3h, and 3i
compounds are listed in Fig. 10. The FMOs (LUMOþ2, LUMOþ1,
LUMO, HOMO, HOMO�1, and HOMO�2) of the five calculated
isomers are similar to each other in principal character. The elec-
tronic density of HOMO�1 mainly located on the ferrocene, espe-
cially the d atomic orbital (AO) of Fe atom. The HOMO is similar to
the HOMO�1 in every compound. It is worthwhile to refer to that
the p AOs of C and O of theeCOe bridges had some contributions to
the LUMO en the five compounds. The electronic density of LUMO is
mainly composed by the d AO of Fe, theeCOe, and the Ph in the 3a,
3b, 3e, and 3i. Different with these compounds, the d AO of Fe has
small contribution to LUMO in 3h. This is maybe the main reason
why the 3h with larger third-order polarizability than others.

4. Conclusions

In this study we have described the synthesis, the third-order
NLO properties and the DFT study on a serial of benzoylferrocene
derivatives possessing DepeA structures. The third-order NLO
properties in the femtosecond range were investigated using the
DFWM technique at 800 nm. The third-order NLO susceptibilities of
the compounds were 3.065e7.859 � 10�13 esu. The second-order
hyperpolarizabilities of the molecules were 1.018e
2.611 � 10�31 esu. These compounds possess ultrafast response
times of <70 fs. The DFT study showed that the third-order NLO
properties were increased with the increasing electron-
withdrawing ability in accordance with the decreasing Egap. With
the increasing ability of attract electron, the transferred charge to
the substituent is increasing, especially in the 3h. And the affection
on the electronic reallocate is increasing with the increasing
electron-withdrawing ability.
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