LETTERS

Copper-Catalyzed Regio- and Stereoselective Iodocyanation and Dicyanation of Alkynes with Cyanogen Iodide

Naoki Sakata, Kohei Sasakura, Gaku Matsushita, Kazuhiro Okamoto,*® and Kouichi Ohe*®

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Supporting Information

ABSTRACT: *anti*-Selective iodocyanation and dicyanation of various internal alkynes has been developed by means of a simple copper catalyst system. The selectivity of the products was switched by tuning the reaction conditions. Mechanistic studies have revealed all of the stepwise pathways including diiodide formation, selective monocyanation, and second cyanation processes.

D ifunctionalization of alkynes is one of the most efficient ways of constructing complex olefinic moieties in short steps.¹ Of these reactions, metal-catalyzed direct addition of X– CN bonds (X = C, B, Si, Br, etc.) into alkynes has been extensively studied for decades in terms of its conceptual novelty, regio- and stereoselectivity, and product utility (Scheme 1, eq 1).^{2–9} However, almost all of the cyanofunction-

alization methods have provided only *syn*-selectivity. Therefore, development of *anti*-cyanofunctionalization methods is important for the diversity of stereodefined adducts.

During the course of our concurrent investigations based on the unique reactivities of cyanogen halides, our research interest has recently focused on the difference between cyanogen bromide (BrCN)^{9a} and cyanogen iodide (ICN).¹⁰ Cyanogen bromide serves as an electrophilic cyanation reagent and is effectively activated in the presence of Lewis acidic metals such as GaCl₃ (Scheme 1, eq 2).^{9b,c} By contrast, cyanogen iodide does not work well as an electrophilic cyanation agent but can be used in combination with a copper catalyst. We have found that a copper catalyst was effective for the reaction of cyanogen iodide with alkynes giving alkynyl cyanides, and that the alkynyl cyanides were obtained through the formation of alkynyl iodides as an intermediate (Scheme 1, eq 3).¹¹ In this contribution, we report a copper-catalyzed *anti*-selective iodocyanation and dicyanation of alkynes using cyanogen iodide, in which the two reactions were switched simply by changing the reaction conditions (Scheme 1, eq 4).^{12,13}

First, ester-containing alkyne 1a was reacted with cyanogen iodide in the presence of 10 mol % of copper(I) acetate and 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) as a ligand in methanol at 80 °C for 20 h (Table 1, entry 1). Then the corresponding regioselective anti-iodocyanation product 2a was obtained in 62% yield together with small amounts of dicyanide 3a and diiodide 4a. Two cyanation products were fully characterized by NMR and X-ray analysis (see Supporting Information). In the absence of the ligand and in a higher concentration, generation of dicyanation product 3a was favored, and 3a was obtained with high selectivity (Table 1, entries 2 and 3). When the reaction temperature was lowered to 60 °C, the major product formed then changed to iodocyanation product 2a (Table 1, entry 4). The solvent was a key factor for the product selectivity, and a reaction in toluene selectively afforded the iodocyanation product 2a (Table 1, entry 5). Finally, the copper catalyst could be changed into the more accessible copper(II) acetate, and the catalyst loading was lowered to 5 mol %. Under the optimized conditions using toluene or methanol as solvents, iodocyanation product 2a was obtained in 89% isolated yield, and dicyanation product 3a was obtained in 75% isolated yield (Table 1, entries 6 and 7). By contrast, the major product was diiodide 4a in the absence of any copper catalysts, which indicates that the cyanation proceeds only in the presence of a copper catalyst (Table 1, entry 8).¹⁴

Various alkynes were applied to the present iodocyanation under the optimized reaction conditions (Table 2). Estercontaining alkynes were especially effective and gave the iodocyanation products regio- and stereoselectively. Methyl,

Received: May 8, 2017

Table 1. Copper-Catalyzed Cyanation of Alkynes 1a with Cyanogen Iodide a

$Ph \longrightarrow CO_2Et$					
$\begin{array}{cccc} 1a & & cat. [Cu] & Ph & I & Ph & CN & Ph & I \\ + & & 10 \mod \%) & & & & \\ i - CN & & solvent & NC & CO_2Et & NC & CO_2Et & I & CO_2Et \\ (3.0 equiv) & & & 2a & 3a & 4a \end{array}$					
yield $(\%)^b$					
entry	[Cu]	2a	3a	4a	note
1	CuOAc	62	2	7	MeOH (0.5 M)
					with dtbpy (10 mol %)
2	CuOAc	22	67	0	MeOH (0.5 M)
3	CuOAc	9	84	0	MeOH (2.0 M)
4	CuOAc	83	13	0	MeOH (2.0 M), 60 $^\circ \mathrm{C}$
5	CuOAc	84	15	0	toluene (2.0 M)
6 ^{<i>c</i>,<i>d</i>}	$Cu(OAc)_2$	93(89) ^e	7	0	toluene (2.0 M)
7^c	$Cu(OAc)_2$	12	81(75) ^e	0	MeOH (2.0 M)
8 ^f	none	0	0	25	MeOH (2.0 M)

^{*a*}Conditions: ethyl 3-phenylpropiolate (**1a**, 0.4 mmol), cyanogen iodide (1.2 mmol), and copper catalyst (40 μ mol) at 80 °C for 20 h. ^{*b*}The yields were determined by ¹H NMR using 1,4-dioxane as an internal standard. ^{*c*}S mol % of Cu(OAc)₂ was used. ^{*d*}2.0 equiv of ICN were used. ^{*c*}Isolated yield. ^{*f*}32% conversion of **1a**. dtbpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine.

 Table 2. Copper-Catalyzed Iodocyanation of Directing-Group-Tethered Alkynes with Cyanogen Iodide^a

^{*a*}Conditions: alkyne **1** (0.40 mmol), cyanogen iodide (0.80 mmol), $Cu(OAc)_2$ (20 μ mol) in toluene (0.20 mL). ^{*b*}Cu(OAc)_2 (40 μ mol). ^{*c*}Cyanogen bromide (1.20 mmol) was used instead of cyanogen iodide.

ethyl, and isopropyl esters all reacted to give iodocyanation products $2\mathbf{a}-\mathbf{c}$ in high yields. The reaction of alkynes having various aromatic moieties or an alkyl group also proceeded efficiently to give the iodocyanation products $2\mathbf{d}-\mathbf{g}$. When \mathbb{R}^1 is a chloroalkyl group, the chloro group did not undergo the halogen exchange or cyanation (2h). Ketoalkyne 1i also reacted to give the product 2i in moderate yield. It is important that this reaction allows the use of alkynes without electrondeficient substituents. A methoxymethyl-group-substituted alkyne reacted to give adduct 2j selectively in addition, which indicates that the ester and methoxymethyl groups might affect the regioselectivity in the same way. *anti*-Bromocyanation was also achieved by using cyanogen bromide (5b).

For simple alkynes, the use of ethanol as a solvent was effective for the selective iodocyanation (Table 3). The reaction

"Conditions: alkyne 1 (0.40 mmol), cyanogen iodide (0.80 mmol), Cu(OAc)₂ (40 μ mol) in ethanol (0.20 mL). ^bThe reaction was performed at 120 °C. ^cToluene as a solvent.

of symmetric diphenylacetylene at 80 °C led to a single iodocyanation product 2k in 46% yield. Arylalkylacetylenes also reacted to give regioisomers of *anti*-iodocyanation products (2la/2lb and 2ma/2mb). Both regioisomers were characterized by X-ray crystallography (see Supporting Information). The steric bulkiness of alkyl moieties of R² seems to affect the regioselectivity of iodocyanation. When R² is *n*-butyl, the ratio of adducts **2na** and **2nb** was in a higher ratio (81:19). When R² is cyclohexylmethyl, the ratio of **20a** and **20b** reached 91:9.¹⁵

Table 4 summarizes the results of the dicyanation of alkynes using an excess amount of ICN. Alkynes having both a phenyl

Table 4. Copper-Catalyzed Dicyanation of Alkynes with Cyanogen $Iodide^a$

Conditions: any field (0.40 minor), cyanogen rounde (1.20 minor), Cu(OAc)₂ (20 μ mol) in methanol (0.2 mL). Isolated yields are shown. ^bCu(OAc)₂ (40 μ mol). ^cToluene as a solvent.

and an ester moiety all gave the *anti*-dicyanation products in high yields (3a-c). Even when the alkyne possesses a methoxymethyl group that can coordinate to the copper species, dicyanide 3j was obtained in moderate yield. Diethyl acetylenedicarboxylate (1q) was much more reactive even in toluene and yielded unusually electron-deficient tetrasubstituted alkene 3q in good yield.

The time-dependent reaction profile of the reaction of 1a with ICN was observed continuously using ¹H NMR (Scheme 2). The amount of alkyne 1a was gradually decreased after the 10 min induction period, generating iodocyanide 2a and diiodide 4a. While the yield of 2a was gradually increased, the yield of 4a increased and reached a ceiling at around 20%, and then decreased after 4 h. These observations indicate that the iodocyanide 2a was generated from the intermediate of diiodide 4a. Considering that the diiodination of alkynes could proceed

Scheme 2. Time-Dependent Distribution of the Recovered Reactant 1a and Products 2a and 4a in Copper-Catalyzed Cyanation of Alkynes with Cyanogen Iodide

at least partly without any copper catalyst, albeit quite slowly (Table 1, entry 8), alkynes would undergo diiodination via molecular iodine that is generated by two pathways: one, the noncatalytic comproportionation of ICN, and the other, copper-mediated ligand exchange as shown in Scheme 3.¹⁶

Scheme 3

[Cu] - I + I - CN \longrightarrow I₂ + [Cu] - CN

To gain insight into the mechanism generating each product **2a**, **3a**, and **4a**, a series of control experiments were conducted (Scheme 4). The reaction of alkyne **1a** with molecular iodine in

the absence of copper in toluene at 80 °C produced diiodide 4a in good yield (Scheme 4, eq 5).¹⁷ The reaction of diiodide 4a with a stoichiometric amount of copper(I) cyanide in toluene at 80 °C gave iodocyanide 2a as a sole product quantitatively, of which the regio- and stereoselectivity was ideal (Scheme 4, eq 6). The isolated 2a was further reacted with copper(I) cyanide in methanol at 80 °C, the dicyanide 3a being obtained in high yield (Scheme 4, eq 7). These experiments suggest that two cyanation products 2a and 3a are produced stepwise from diiodide 4a by cyanation with copper(I) cyanide.^{18–20}

A proposed catalytic cycle for the present cyanation reactions using ester-containing alkyne 1 as a typical substrate is described in Scheme 5.²¹ First, in situ generated low-valent copper iodide species **A** undergoes ligand exchange by cyanogen iodide to generate copper cyanide species **B** together with molecular iodine (Scheme 5, step 1). Molecular iodine is Letter

Scheme 5. A Proposed Catalytic Cycle for Copper-Catalyzed Iodocyanation and Dicyanation of Alkynes

then quickly consumed for diiodination of alkyne 1 to afford diiodide 4 (Scheme 5, step 2). Oxidative addition of diiodide 4 to copper cyanide B forms intermediate C in a high oxidation state (Scheme 5, step 3), which leads to the iodocyanation product 2 by reductive elimination of C, regenerating copper iodide A (Scheme 5, step 4). In methanol, probably because of the acceleration of cyanation by a polar solvent effect, the second cyanation of 2 with copper cyanide B occurs through the oxidative addition-reductive elimination sequence to give dicyanide 3, regenerating copper iodide A (Scheme 5, steps 5 and 6). The regioselectivity of the first cyanation of diodide 4 can be explained by assuming carbonyl oxygen-coordinating intermediate C. In intermediate C, the copper center in the higher oxidation state is highly stabilized by coordination of the internal carbonyl moiety, probably lowering the barrier for activation of cyanation compared with that from its regioisomer C'.

The reaction products could be transformed by taking advantage of the iodide substituents (Scheme 6). Iodocyanation

product **2b** was treated with a palladium catalyst and an arylstannane reagent to undergo the Stille coupling reaction with high efficiency, affording the tetrasubstituted alkene **6** in 88% yield. Similarly, Sonogashira–Hagihara coupling with an arylalkyne gave the enyne 7 in 87% yield.

In summary, we have developed regio- and stereoselective copper-catalyzed iodocyanation and dicyanation reactions of alkynes with cyanogen iodide. The stepwise mechanism for the formation of iodocyano- and dicyanoalkene has been revealed from NMR observations and stoichiometric experiments. Obtained products could be useful as synthetic intermediates and further elaborated with high stereospecificity.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b01378.

Experimental procedures, additional experimental data, and compounds characterization data (PDF)

X-ray crystallographic analysis of compound 2b (CIF)

X-ray crystallographic analysis of compound **2ma** (CIF) X-ray crystallographic analysis of compound **2mb** (CIF)

X-ray crystallographic analysis of compound 3a (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: kokamoto@scl.kyoto-u.ac.jp. *E-mail: ohe@scl.kyoto-u.ac.jp.

ORCID ©

Kazuhiro Okamoto: 0000-0001-8562-3167 Kouichi Ohe: 0000-0001-8893-8893

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported financially partly by JSPS KAKENHI Grant Number 26410119. K. Okamoto also thanks the Kyoto Technoscience Center, the Society of Iodine Science, and Nippo Chemicals Co., Ltd. for financial support.

REFERENCES

(1) For reviews, see: (a) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (b) Shimizu, Y.; Kanai, M. Tetrahedron Lett. 2014, 55, 3727. (c) Zhu, X.; Chiba, S. Chem. Soc. Rev. 2016, 45, 4504.

(2) X = H: (a) Arpe, H.-J. In Industrial Organic Chemistry, 5th ed.; Wiley-VCH: Weinheim; 2010; p 312. (b) Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W. Comprehensive Organic Functional Group Transformations; Pergamon: Oxford, 1995; Vol. 3, p 614. (c) Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds; VCH: Weinheim, 1996; Vol. I, p 476. (d) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed.; Wiley-VCH: Weinheim; 2004; p 151.

(3) X = C: (a) Nozaki, K.; Sato, N.; Takaya, H. J. Org. Chem. 1994, 59, 2679. (b) Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904. (c) Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 8146. (d) Kobayashi, Y.; Kamisaki, H.; Yanada, R.; Takemoto, Y. Org. Lett. 2006, 8, 2711. (e) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428. (f) Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964. (g) Nakao, Y.; Hiyama, T. 2012, 85, 731.

(4) X = Si: Chatani, N.; Hanafusa, T. J. Chem. Soc., Chem. Commun. 1985, 838. (b) Chatani, N.; Takeyasu, T.; Horiuchi, N.; Hanafusa, T. J. Org. Chem. 1988, 53, 3539.

(5) X = Ge: Chatani, N.; Horiuchi, N.; Hanafusa, T. J. Org. Chem. 1990, 55, 3393.

(6) Obora, Y.; Baleta, A. S.; Tokunaga, M.; Tsuji, Y. J. Organomet. Chem. 2002, 660, 173.

(7) X = B: (a) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. **2003**, 125, 6358. (b) Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem., Int. Ed. **2005**, 44, 2380. Letter

L. S. Org. Lett. 2006, 8, 4331. (c) Lee, Y. T.; Choi, S. Y.; Chung, Y. K. Tetrahedron Lett. 2007, 48, 5673.
(9) (a) Morris, J.; Kovács, L.; Ohe, K. Cyanogen Bromide. In Encyclopedia of Reagents for Organic Synthesis; VCH: New York, 2015.

(b) Murai, M.; Hatano, R.; Kitabata, S.; Ohe, K. *Chem. Commun.* 2011, 47, 2375.
(c) Okamoto, K.; Watanabe, M.; Murai, M.; Hatano, R.; Ohe, K. *Chem. Commun.* 2012, 48, 3127.

(10) (a) Moreau, P.; Commeyras, A. J. Chem. Soc., Chem. Commun. 1985, 21, 817. (b) Liepins, R.; Walker, C. Ind. Eng. Chem. Prod. Res. Dev. 1971, 10, 401.

(11) (a) Okamoto, K.; Watanabe, M.; Sakata, N.; Murai, M.; Ohe, K. Org. Lett. **2013**, *15*, 5810. (b) Okamoto, K.; Sakata, N.; Ohe, K. Org. Lett. **2015**, *17*, 4670.

(12) (a) Arai, S.; Sato, T.; Koike, Y.; Hayashi, M.; Nishida, A. Angew. Chem., Int. Ed. 2009, 48, 4528. (b) Arai, S.; Sato, T.; Nishida, A. Adv. Synth. Catal. 2009, 351, 1897. (c) Kiyokawa, K.; Nagata, T.; Hayakawa, J.; Minakata, S. Chem. - Eur. J. 2015, 21, 1280.

(13) Recently, iron-catalyzed cyanotriflation of alkynes has been reported. See: Wang, X.; Studer, A. J. Am. Chem. Soc. **2016**, 138, 2977.

(14) Other metal catalysts including Pd, Rh, Ni, Co, Fe, and Mn were examined, but only trace amounts of cyanation products were obtained.

(15) The copper-catalyzed reaction of (4-methylphenyl)acetylene (1p) with cyanogen iodide gave a mixture of iodocyanation product, diiodide, dicyanide, and the corresponding ketone as hydration product.

(16) CuI may be formed via initial ligand exchange of $Cu(OAc)_2$ by treatment of ICN forming CuI_2 followed by the decomposition of CuI_2 forming CuI and 1/2 I₂. The latter step is a well-known characteristic of copper iodide. See: Lee, J. D. *Concise Inorganic Chemistry*, 5th ed.; Wiley-Blackwell: Hoboken, NJ, 1998.

(17) For examples of diiodination of alkynes, see: (a) Uemura, S.;
Okazaki, H.; Okano, M. J. Chem. Soc., Perkin Trans. 1 1978, 1, 1278.
(b) Pavlinac, J.; Zupan, M.; Stavber, S. Org. Biomol. Chem. 2007, 5, 699. (c) Larson, S.; Luidhardt, T.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35. (d) Tveryakova, E. N.; Miroshnichenko, Y. Y.; Perederina, I. A.; Yusubov, M. S. Russ. J. Org. Chem. 2007, 43, 152. (e) Duan, J.; Dolbier, W. R., Jr.; Chen, Q.-Y. J. Org. Chem. 1998, 63, 9486.

(18) Conversions from 4a into 2a and from 2a into 3a were also observed under the copper-catalyzed conditions using ICN (see the Supporting Information).

(19) For examples of copper-catalyzed cyanation of alkenyl iodides, see:
(a) Pradal, A.; Evano, G. Chem. Commun. 2014, 50, 11907.
(b) Nitelet, A.; Zahim, S.; Theunissen, C.; Pradal, A.; Evano, G. Org. Synth. 2017, 93, 163.

(20) For examples of other transition-metal-catalyzed cyanation of alkenyl iodides, see: (a) Sakakibara, Y.; Yadani, N.; Ibuki, I.; Sakai, M.; Uchino, N. Chem. Lett. **1982**, *11*, 1565. (b) Sakakibara, Y.; Enami, H.; Ogawa, H.; Fujimoto, S.; Kato, H.; Kunitake, K.; Sasaki, K.; Sakai, M. Bull. Chem. Soc. Jpn. **1995**, *68*, 3137. (c) Funabiki, T.; Hosomi, H.; Yoshida, S.; Tarama, K. J. Am. Chem. Soc. **1982**, *104*, 1560. (d) Funabiki, T.; Kishi, H.; Sato, Y.; Yoshida, S. Bull. Chem. Soc. Jpn. **1983**, *56*, 649. (e) Yamamura, K.; Murahashi, S.-I. Tetrahedron Lett. **1977**, *18*, 4429. (f) Alterman, M.; Hallberg, A. J. Org. Chem. **2000**, *65*, 7984. (g) Li, L.-H.; Pan, Z.-L.; Duan, X.-H.; Liang, Y.-M. Synlett **2006**, 2006, 2094. (h) Powell, K. J.; Han, L.-C.; Sharma, P.; Moses, J. E. Org. Lett. **2014**, *16*, 2158.

(21) For general reviews on the copper-catalyzed coupling reactions involving mechanistic studies, see: (a) Evano, G.; Blanchard, N.; Toumi, M. *Chem. Rev.* **2008**, *108*, 3054. (b) Beletskaya, I.; Cheprakov, A. V. *Organometallics* **2012**, *31*, 7753.