STEREOSELECTIVE SYNTHESIS OF 6-FLUOROPENICILLANIC ACIDS ANALOGUES OF β -LACTAMASE INHIBITORS.

E.G. Mata, G. Danelon, C.J. Salomon and O.A. Mascaretti Instituto de Química Orgánica de Síntesis (CONICET-UNR)-Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531, 2000 Rosario, Argentina.

Our primary interest in introducing a fluorine atom at specific sites of the penicillin molecule was due to the knowledge that replacement of hydrogen atoms in organic compounds by fluor-ine atoms will not have significant steric consequences at enzyme binding sites. However, fluorine with its very high electronega-tivity, will alter the acidity of geminal carbon 6 hydrogen and the acylatin reactivity of the vecinal β -lactam carbonyl group. Furthermore, the gem difluoro group (-CF₂-) has a steric profile similar to that of the methylene group but has a very different polarity and a drastically altered reactivity.

In this communication we will present the stereoselective synthesis of 6β -bromo- 6α -fluoro- and 6β -fluoro- 6α -bromopenicillanic acids (la-b); 6β -fluoro- and 6α -fluoropenicillanic acids (2a-b); 6β -fluoro- and 6α -fluoropenicillanic acid 1,1-dioxide (3a) and (3b) respectively and our attempts of preparation of 6β -iodo- 6α -fluoropenicillanic acid (4), 6,6-difluoropenicillanic (5) and 6,6-difluoropenicillanic acid 1,1-dioxide (6).

> 1a 1b 2a 2b 3a 3b 4 5 6

	,		•	
Х	= B r	Y = F	n =	0
Х	=F	Y = Br	n =	0
Х	= F	Y = H	n =	0
Х	. ≃ H	Y = F	n =	0
Х	= F	Y = H	n =	2
Х	(= H	Y = F	n ≈	2
Х	= I	Y = F	n =	0
Х	= Y = F		n =	0
Х	X = Y = F		n =	2