Non-iterative Asymmetric Synthesis of C₁₅ Polyketide Spiroketals

by Kai Meilert^a)¹), George R. Pettit^b), and Pierre Vogel*^a)

 ^a) Laboratoire de glycochimie et de synthèse asymétrique Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne-Dorigny (tel.: 0216939371; fax: 0216939375; e-mail: pierre.vogel@epfl.ch)
^b) Cancer Research Institute, Arizona State University Tempe, Arizona 85287-2404, USA

The 2,2'-methylenebis[furan] (1) was converted to 1-{(4R,6S))-6-[(2R)-2,4-dihydroxybuty]-2,2-dimethyl-1,3-dioxan-4-yl}-3-[(2R,4R)-tetrahydro-4,6-dihydroxy-2*H*-pyran-2-yl)propan-2-one ((+)-18) and its (4*S*)-epimer (-)-19 with high stereo- and enantioselectivity (*Schemes 1 – 3*). Under acidic methanolysis, (+)-18 yielded a single spiroketal, (3*R*)-4-{(1R,3S,4'R,5R,6'S,7R)-3',4',5',6'-tetrahydro-4'-hydroxy-7-methoxyspiro[2,6-dioxabicy-clo[3.3.1]nonane-3,2'-[2*H*]pyran]-6'-yl}butane-1,3-diol ((-)-20), in which both O-atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (-)-20 (methyl pyranoside formation). Compound (-)-19 was converted similarly into the (4'S)-epimeric tricyclic spiroketal (-)-21 that also adopts a similar (3*S*)-configuration and conformation. Spiroketals (-)-20, (-)-21 and analog (-)-23, *i.e.*, (1*R*,3*S*,4'*R*,5*R*,6'*R*)-3',4',5',6'-tetrahydro-6'-[(2*S*)-2-hydroxybut-3-enyl]-7-methoxyspiro[2,6-dioxabicyclo[3.3.1]-nonane-3,2'-[2*H*]pyran]-4'-ol, derived from (-)-20, were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)-21 showed evidence of cancer-cell-growth inhibition (P388, *ED*₅₀: 6.9 µg/ml).

Introduction. – A great variety of natural products of biological interest contain spiroketal subunits [1]. The 1,7-dioxaspiro[5.5]undecane and 1,6-dioxaspiro[4.5]decane ring systems are known in nature as simple derivatives [2a] (see also [2b], or, more frequently, the spiroketal is more highly oxidized, as exemplified by the milbemycin-avermectins [3], the polyether ionophores, and the phyllanthocin and related metabolites [4]. While the literature abounds in methods for the synthesis of such spiroketals and their thermodynamic aspects have been extensively studied [5], particular interest has been focused during the last decade on the two *AB* and *CD* spiroketal units found in the spongistatin class of compounds (see, *e.g.*, spongistatin 1) [6]. They appear to be the crucial pharmacophores for the unprecedented anticancer activity of these marine macrolides [7]²).

We have published an approach to the EF rings of spongistatins embodying the trienic side chain [8]. In the present paper, we disclose a non-iterative approach to direct precursors of the AB and CD spiroketal moieties of spongistatins, based on our new methodology towards long-chain polyols [9]. Additionally, the newly synthesized spiroketals were evaluated against a mouse-leukemia cell line (P388) and six types of human-cancer cell lines [10].

We have shown that the chemistry developed by *Lautens* and co-workers (see, *e.g.*, [11]), *Hoffmann* and co-workers (see, *e.g.*, [12]), and later *Kaku* and co-workers [13],

Actual address: Department of Organic and Medicinal Chemistry, University of Auckland, 23 Symonds Street, Auckland, New Zealand.

²) For the biological activity of the bis-tetrahydropyran, see [7h].

who converted 8-oxabicyclo[3.2.1]oct-6-en-3-one into C_7 1,3-polyols and analogues [14], can be extended to the synthesis of a large number of stereoisomeric pentadecane-1,3,5,7,9,11,13,15-octols [9]. We have used also 8-oxabicyclo[3.2.1]oct-6-en-3-one derivatives in the stereoselective synthesis of *C*-disaccharides [15] and analogues of sialyl Lewis^x acid [16].

Results and Discussion. – As already reported, *meso-3* can be derived readily from 2,2'-methylenebis[furan] (1) via 2 (Scheme 1). The desymmetrization of *meso-3* was realized applying the *Sharpless* asymmetric dihydroxylation [17]. With *AD-mix(a)* (five times more concentrated than in the initially published *Sharpless* procedure [9]), we obtained (+)-6 and (+)-7 in 79% yield (*Scheme 2*). ¹⁹F-NMR spectroscopy (¹³C-¹⁹F satellites) of *Mosher*'s esters **6M** and **7M** derived from (α S)- α -methoxy- α -(trifluor-omethyl)benzeneacetyl chloride [18] showed (+)-6 to have 98.4% ee and (+)-7 4% ee. Changing the substitution pattern of the carbocycles such as in **4** and **5** did not increase the diastereoisomeric diols (77% yield), and **5** a 1:1 mixture (22% yield) of diastereoisomeric diols. The absolute configuration of (+)-6 was assumed to be opposite to that of the diol obtained with *AD-mix(* β) (5×), as the optical rotation was

 $PMBz = 4-MeOC_6H_4CO$, $TBDMS = 'BuMe_2Si$

PMBz = 4-MeOC₆H₄CO, DMP = 2,2-dimethoxypropane, PPTS = pyridinium *p*-toluenesulfonate

of similar magnitude but of opposite sign. The relative configuration of the two diastereoisomers (+)-6 and (+)-7 was determined by the 2D ¹H-NMR NOESY experiments of acetonide (-)-9, which was obtained in two steps by deacetylation of (+)-6 to tetrol (-)-8, followed by acetonide formation under standard conditions (*Scheme 2*). The ¹H-NMR spectrum of (-)-9 implied a dipolar coupling of H-C(4') with H-C(2'), which indicated clearly that, in the major diastereoisomer (+)-6, the C=C bond has been dihydroxylated from the face *cis* with respect to the (4-methoxybenzoyl)oxy group, in agreement with expectation [19].

Deacetylation of (+)-6 with Mg(OMe)₂ in MeOH $(\rightarrow (-)$ -8), followed by treatment with NaIO₄ gave a mixture of anomeric hemiacetals (+)-10 (*Scheme 3*). As already shown with the opposite series of enantiomers [9], hemiacetal (+)-10 was reduced to *anti*-diol (+)-11 (70%) under *Evans*'s conditions [20]. To increase the versatility of our methodology, the 1,3-syn diastereoisomer (-)-13 was prepared by application of the *Narasaka–Prasad–Shapiro* method [21]. Acetonides (+)-12 and (+)-14 derived from (+)-11 and (-)-13, respectively, showed ¹³C-NMR signals expected for these products [22].

Reduction of (+)-12 with DIBAL-H (diisobutylaluminium hydride) gave tetrol (+)-15. Dihydroxylation with OsO₄ (cat.) and *N*-methylmorpholine *N*-oxide (NMO),

 $PMBz = 4-MeOC_6H_4CO$, DMP = 2,2-dimethoxypropane, PPTS = pyridinium p-toluenesulfonate, DIBAL-H = diisobutylaluminium hydride, NMO = N-methylmorpholine N-oxide

followed by treatment with lead tetraacetate furnished (+)-18 (1,3-*trans*). In a similar way, (+)-14 was converted to (+)-17 and then to (+)-19 (1,3-*cis*). The crucial steps of spiroketalization of (+)-18 and (-)-19 were performed in pure MeOH/CH₂Cl₂ under acidic catalysis (TsOH). By ¹H-NMR, the reactions were complete after a few minutes at room temperature, and no change in products was observed after prolonged standing at 20° or heating to 60°. The ¹H-NMR spectra of the crude reaction mixtures showed that they contained a mixture of anomeric methyl acetals, their proportions varying slightly with the concentration of acid catalyst and the temperature of reaction. Flash chromatography allowed us to isolate pure (-)-20 (68%) from the reaction of (+)-18 (1,3-*trans*) and (-)-21 (65%) from the reaction of (-)-19 (1,3-*cis*). To the best of our knowledge, such tricyclic systems have never been reported before. The side chain of (-)-20 was modified in the following way. Treatment of (-)-20 with an excess of 2-NO₂-C₆H₄-SeCN and Bu₃P led to selective selenation of the primary-alcohol

function with formation of **22**, which underwent oxidative elimination with *m*-CPBA (3-chloroperbenzoic acid) [24] giving allylic alcohol (-)-**23** (*Scheme 4*).

The structure of (-)-20 was assigned as follows (see *Fig.*). The protons of cycle *C* and *B* were assigned through a 2D-NMR COSY-45 experiment. Due to its anomeric position, the proton H–C(7) is strongly deshielded (δ (H) 4.65, δ (C) 104.8) and can, thus, be easily identified. Starting from H–C(7), the other proton signals were assigned and their identities further confirmed by selective irradiation techniques. The remaining protons were assigned in a similar way. From the coupled ¹³C-NMR spectra, the C(1") center was identified unambiguously as the unique *t* in the *C*HOH region ($68 > \delta$ (C) > 53) at δ (C) 61.0 (*t*, ¹*J* = 139). A 2D-NMR HMQC experiment allowed us to find the corresponding protons CH₂(1") at δ (H) 3.73 (*t*, ³*J* = 7.5, 2 H). Again, the 2D-NMR COSY-45 experiment allowed the assignments of the other protons of the side chain (CH₂(2"), H–C(3"), CH₂(4")) and those from cycle *A* (H–C(6'), CH₂(5'), H–C(4'), CH₂(3')). Selective irradiations were helpful to confirm these assignments. The absolute configuration (3S) of (–)-20 could thus be determined by the 2D-NMR NOESY correlations (*Fig.*).

Two absolute configurations around the spiro center ((3R) or (3S)) are possible for the *AB* rings of (-)-**20**. For each absolute configuration, different conformations of the three cycles are possible *a priori*. Correlations of one of the H-C(9) protons with CH₂(3') and H-C(4') of cycle *A* are consistent with only the (3S) configuration. No dipolar couplings of H-C(8) or H-C(7) with CH₂(3') and H-C(4') (what would have been consistent with the opposite configuration (3*R*)) were observed (*Fig.*). Additionally, the correlations between H-C(5), H-C(1), H-C(3'), H-C(4), and

Figure. Representations of spiroketal 20 in its (3S)- (preferred) and (3R)-configuration

H-C(6') are possible only for the (3*S*)-configuration (*Fig.*). While the correlation between H-C(5) and H-C(3') would have been possible in the (3*R*)-configuration, the dipolar couplings between H-C(4) and H-C(6') and between H-C(1) and H-C(3') are not possible, as the corresponding protons point to opposite regions of space.

The conformation of the bicyclic moiety *BC* and cycle *A* of (–)-**20** could be established by H,H coupling constants between vicinal protons. For cycle *A*, the coupling constants indicate an axial-axial relationship between H–C(6'), 1 H–C(5'), H–C(4'), and 1 H–C(3') (${}^{3}J(6', 5') = 11.8$ Hz and ${}^{3}J(5', 4') = {}^{3}J(4', 3') = 11.3$ Hz). Thus, cycle *A* in (–)-**20** adopts a chair conformation. For the bicyclic system *BC*, two characteristic ${}^{3}J(H,H)$ coupling constants indicate a boat conformation for both the *B* and *C* rings. ${}^{3}J(4,5) = 11.3$, ${}^{3}J(1,8) = 11.3$ Hz are only consistent with dihedral angles φ (H–C(1), H–C(8)) = φ (H–C(4), H–C(5)) $\approx 0^{\circ}$, possible only for boat conformations [23]).

Substituted 1,7-dioxaspiro[5.5]undecanes can adopt different conformations; the relative populations of the different conformers depend on steric factors, anomeric and related effects, and intramolecular H-bonding. In the case of spiroketal (–)-20, both endocyclic O-atoms are disposed in equatorial position (e) relative to the other cycle (see *Fig.*) and, therefore, this structure is not stabilized by a conformational anomeric effect. The conformation (3S)-20' that disposes both endocyclic O-atoms in an axial positions (a) and which is stabilized by a double conformational anomeric effect would imply chair-chair conformation for its *AB* bicyclic moiety. This conformation is impeded by steric factors that override the stabilized anomeric effect, as both substituents on cycle *A* are disposed in unfavorable axial positions, and, additionally, the side chain of cycle *A* is subject to severe steric interaction with the *BC* moiety. The

formation of cycle C (pyranoside) seems to control the configuration of the spiroketal. The NMR data of (-)-21 confirmed that this spiroketal adopts also the (3S)-configuration and a conformation similar to that of (-)-20.

The spiroketals (-)-20, (-)-21, (-)-23, and (\pm)-21 were tested against the murine P388 lymphocytic leukemia cell line and six human cancer cell lines (pancreas (BXPX-3), breast (MCF-7), CNS Gliobl (SF268), lung (NCI-H460), colon (KM20L2), and prostate (DU-145)). None of these displays any growth inhibition (GI_{50}) against the human cancer cell lines. While the enantiomerically pure (-)-20, (-)-21, and (-)-23 were also inactive against the mouse leukemia cell line, the racemic mixture (\pm)-21³) displayed an effective median dose (ED_{50}) of 6.90 µg/ml, indicating potential activity of ED_{50} 3.45 µg/ml for (+)-21.

Conclusions. – Our non-iterative approach to the synthesis of long-chain polyols has now been adapted to the synthesis of precursors of the spiroketals of spongistatins. The versatility of our approach was further extended by the asymmetric dihydroxylation of *meso-3* with *AD-mix(a)* ($5 \times$) and the 1,3-*syn* diastereoselective reduction of hemiacetal (+)-10 (\rightarrow (-)-13). Unfortunately, and, as for simpler spiroketals [7a], the new tricyclic systems prepared in this study do not present significant anticancer activities.

We thank the Swiss National Science Foundation and the Office Fédéral de l'Enseignement et de la Recherche (Bern, European COSTD28/004/02 action) for financial support. We thank also Mr. Martial Rey and Francisco Sepúlveda for technical help. One of us (G. R. P.) also wishes to thank for financial support Grant RO1-CA90441-02-03 with the Division of Cancer Treatment and Diagnosis, National Cancer Institute, Department of Health and Human Services the Arizona Disease Control Research Commission, Dr. Alec D. Keith, the Robert B. Dalton Endowment Fund and for other assistance, Dr. Jean-Charles Chapuis.

Experimental Part

General. See [24]. Flash column chromatography (FC): *Merck* silica gel (230–400 mesh, No. 9385). TLC: silica gel (*Merck* aluminium foils). ¹H- and ¹³C-NMR Spectra: assignments confirmed by coupled ¹³C-NMR, 2D-COSY, HMQC, or HSQC, and when required, by 2D-NOESY; δ in ppm, J in Hz.

Cancer Assays. See [25].

(1\$,6\$)-6-(Acetyloxy)-4-{{(1ℝ,2\$,4\$,6\$)-6-(acetyloxy)-1,2-dihydroxy-4-{(4-methoxybenzoyl)oxy}cyclohept-tyl]methyl]cyclohept-3-en-1-yl 4-Methoxybenzoate ((+)-6) and (1\\$,6\\$)-6-(Acetyloxy)-4-{{(1\$,2ℝ,4\$,6\$)-6-(acetyloxy)-1,2-dihydroxy-4-{{(4-methoxybenzoyl)oxy}cyclohept})methyl]cyclohept-3-en-1-yl 4-Methoxybenzoate ((+)-7). A soln. of meso-3 (14.5 g, 0.023 mol) and MeSO₂NH₂ (2.19 g, 0.023 mol) in 290 ml of H₂O/BuOH 1:1 with 10% of MeCN was cooled to 0° and AD- $mix(\alpha)$ (5×) (34.7 g, 1490 mg per mmol) was added portionwise under vigorous mechanical stirring. After 24 h stirring (TLC, CH₂Cl₂/MeOH 95:5), the mixture was diluted with AcOEt (200 ml) and quenched by addition of Na₂SO₃ (2.89 g, 0.023 mmol). After 1 h stirring, the aq. layer was extracted with AcOEt (3 × 400 ml). After drying (MgSO₄) of the org. phase, FC (silica gel, CH₂Cl₂/AcOEt 4:1) afforded starting material *meso*-3 (493 mg) and (+)-6/(+)-7 4:1 (12.9 g, 79%) that was further separated by column chromatography (silica gel): 8.62 g of pure (+)-6, 1.39 g of (+)-6/(+)-7, and 1.86 g of pure (+)-7).

Data of (+)-6: $[a]_{589}^{25} = +56$; $[a]_{577}^{25} = +60$; $[a]_{346}^{25} = +67$; $[a]_{435}^{25} + 122$; $[a]_{405}^{25} = +156$ (c = 0.20, CHCl₃). UV (MeCN): 255 (21500), 207 (22300). IR (KBr): 3500, 2940, 2360, 1735, 1710, 1605, 1510, 1370, 1255, 1170, 1100, 1025, 770, 695, 615. ¹H-NMR (400 MHz, CDCl₃): 7.98 (m, 1 MeOC₆H₄CO); 6.91 (m, 1 MeOC₆H₄CO); 5.63 (t, $^{3}J = 6.5$, H–C(3)); 5.38 (dddd, $^{3}J = 10.5$, 8.7, 6.0, 1.8, H–C(4')); 5.27 (m, H–C(1)); 5.19 (dddd, $^{3}J = 10.5$, 9.0, 6.1, 2.6, H–C(6')); 5.11 (m, H–C(6)); 3.85, 3.82 (2s, 2 $MeOC_{6}H_{4}CO$); 3.72 (br. d, $^{3}J = 10.7$, H–C(2')); 2.65 (m, H–C(2)); 2.64 (m, H–C(7)); 2.57 (d, $^{2}J = 13.3$, 1 H, CH₂–C(4)); 2.48 (dd, $^{2}J = 15.0$, $^{3}J = 6.5$, H–C(2));

³) Prepared as (-)-21, but by using OsO₄/NMO in the oxidative step meso-3 \rightarrow (±)-6.

2.30 (m, 1 H - C(3'), 1 H - C(5), 1 H - C(7'); 2.27 $(d, {}^2J = 13.3, 1 \text{ H}, \text{CH}_2 - \text{C}(4)$; 2.20 (m, H - C(5); 2.10 (m, H - C(7'); 2.05, 2.01 (2s, 2 MeCO); 2.03 (m, 1 H - C(5'), 1 H - C(3'); 1.81 $(dd, {}^2J = 14.7, {}^3J = 10.5, 1 \text{ H} - \text{C}(5')$. ${}^{13}\text{C} - \text{NMR}$ (100.6 MHz, CDCl₃): 170.6, 170.2 (2s, MeCO); 165.5 $(s, 2 \text{ C}, \text{MeOC}_6\text{H}_4\text{CO})$; 163.4, 163.3 $(2s, 2 \text{ C}, \text{MeOC}_6\text{H}_4\text{CO})$; 136.9 (s, C(4)); 131.6 $(d, {}^1J = 163, 4 \text{ C}, \text{MeOC}_6\text{H}_4\text{CO})$; 127.3 $(d, {}^1J = 162, \text{C}(3))$; 122.6, 122.5 $(2s, 2 \text{ C}, \text{MeOC}_6\text{H}_4\text{CO})$; 113.6 $(d, {}^1J = 161, 4 \text{ C}, \text{MeOC}_6\text{H}_4\text{CO})$; 74.3 (s, C(1')); 73.0 $(d, {}^1J = 141, \text{C}(2'))$; 68.7 $(d, {}^1J = 154, \text{C}(1))$; 68.2 $(d, {}^1J = 137, \text{C}(6))$; 68.1 $(d, {}^1J = 149, \text{C}(6'))$; 66.9 $(d, {}^1J = 147, \text{C}(4'))$; 55.4 $(q, {}^1J = 145, 2 \text{ C}, \text{MeOC}_6\text{H}_4\text{CO})$; 50.8 $(t, {}^1J = 127, \text{CH}_2 - \text{C}(4))$; 41.5, 40.9, 39.0, 38.6, 37.7 (5t, C(5), C(5'), C(7), C(7'), C(3')); 32.3 $(t, {}^1J = 127, \text{C}(2))$; 21.3 $(q, {}^1J = 130, 2 \text{ C}, \text{MeCO})$. CI-MS (NH_3) : 673 $(41, [M + \text{NH}_4]^+)$, 655 $(8, [M + \text{H}]^+)$, 595 (8), 503 (18), 443 (11), 337 (13), 135 (100), 106 (2), 78 (26). Anal. calc. for C₃₅H₄₂O₁₂ (654.71): C 64.21, H 6.47, O 29.32; found: C 62.45, H 6.47 (corresponding to C₃₅H₄₂O₁₂ · H₂O: C 62.49, H 6.59).

Data of (+)-7: $[a]_{589}^{25} = +1; \ [a]_{577}^{25} = +1; \ [a]_{546}^{25} = +4; \ [a]_{435}^{25} + 13; \ [a]_{405}^{25} = +15$ (c = 0.11, CH₂Cl₂). UV (MeCN): 254 (34800), 208 (34500). IR (KBr): 3500, 2940, 1730, 1705, 1605, 1515, 1370, 1255, 1170, 1100, 1025, 845, 770, 610. ¹H-NMR (400 MHz, CDCl₃): 7.99 (m, 1 MeOC₆ H_4 CO); 6.92 (m, 1 MeOC₆ H_4 CO); 5.64 (t, ³J = 6.2, H-C(3); 5.47 (m, H-C(4')); 5.31 (m, H-C(1)); 5.10 (br. t, ${}^{3}J=9.4$, H-C(6)); 4.98 (br. t, ${}^{3}J=9.4$, H-C(6')); 3.87, 3.86 (2s, 2 $MeOC_6H_4CO$); 3.85 (m, H-C(2')); 2.74-2.56 (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.5, 1.56) (m, 2 H-C(5), 1 H-C(2)); 2.61 (d, ²J=13.56) (m, 2 H-C(5), 1 H-C(5)); 2.61 (d, ²J=13.56) (m, 2 H-C(5)); 2.61 (d, ²J=13.56) (m, 2 H-C(5)); 2.61 (d, ²J=13.56) (m, 2 H-C(5)) (m, 2 H-C(5)); 2.61 (d, ²J=13.56) (m, 2 H-C(5)) (m, 2 H-C(5)); 2.61 (d, ²J=13.56) (m, 2 H-C(5)) (m, 2 H-C(5)); 2.61 (d, ²J=13.56) (m, 2 H-C(5)) (m, 2 H-C(5 1 H, $CH_2-C(4)$; 2.48 (m, 1H-C(2)); 2.46 (d, ²J = 13.5, 1 H, $CH_2-C(4)$); 2.38-2.34 (m, 1H-C(7'), 1 H-C(7), 1 H-C(3')); 2.23-1.97 (m, 1 H-C(7), 1 H-C(3'), 2 H-C(5')); 2.04, 1.79 (2s, 2 MeCO); 1.91 (dd, ²J = 13.9, ³J = 10.4, H-C(7')). ¹³C-NMR (100.6 MHz, CDCl₃): 171.1, 170.0 (2s, 2 C, MeCO); 165.2 (s, 2 C, $MeOC_6H_4CO$; 163.4 (s, 2 C, $MeOC_6H_4CO$); 136.2 (s, C(4)); 131.7, 131.6 (2d, ¹J = 163, 4 C, $MeOC_6H_4CO$); 127.8 $(d, {}^{1}J = 159, C(3)); 122.5 (s, 2 C, MeOC_{6}H_{4}CO); 113.6, 113.5 (2d, {}^{1}J = 161, 4 C, MeOC_{6}H_{4}CO); 73.8 (s, C(1'));$ $71.1 (d, {}^{1}J = 141, C(2')); 68.8 (d, {}^{1}J = 149, C(1)); 68.2 (d, {}^{1}J = 149, C(6)); 67.6 (d, {}^{1}J = 149, C(4')); 66.4 (d, {}^{1}J = 149, C(4')); 68.8 (d, {}^{1}J = 149, C(4'))$ C(6'); 55.4 (q, ¹J = 143, 2 C, $MeOC_6H_4CO$); 47.7 (t, ¹J = 125, $CH_2-C(4)$); 43.1 (t, ¹J = 133, C(7')); 41.5 (t, ¹J = 125, $CH_2-C(4)$); 43.1 (t, ¹J = 133, C(7')); 41.5 (t, ¹J = 133, C(7')); 41 $20.9 (2q, {}^{1}J = 129, 2 \text{ C}, MeCO). \text{ CI-MS (NH_3): } 673 (3, [M + \text{NH}_4]^+), 655 (1, [M + \text{H}]^+), 595 (4), 443 (4), 337 (7), 655 (1, [M + \text{H}]^+), 655 (1, [M + \text{H}]^+),$ 185(7), 135(81), 106(100), 78(25). Anal. calc. for $C_{35}H_{42}O_{12}(654.71)$: C 64.21, H 6.47, O 29.32; found: C 62.44, H 6.44 (corresponding to $C_{35}H_{42}O_{12} \cdot H_2O$: C 62.49, H 6.59).

(1S,2R,4S,6S)-4-(Acetyloxy)-2-{[(4S,6S)-6-(acetyloxy)-4-[(4-methoxybenzoyl)oxy]cyclohept-1-en-1-y]methyl]-2-hydroxy-6-[(4-methoxybenzoyl)oxy]cycloheptyl (aR)-a-Methoxy-a-(trifluoromethyl)benzeneacetate (6M). To a soln. of (+)-6 (24.6 mg, 0.036 mmol) in dry CH_2Cl_2 (1 ml) was added dropwise Et_3N (10 μ l, 0.072 mmol), N,N-dimethylpyridin-4-amine (one crystal), and (+)-(S)MTPACl ((aS)-a-methoxy-a-(trifluoromethyl)benzeneacetyl chloride; 7 µl, 0.036 mmol). After 3 h (TLC, CH₂Cl₂/MeOH 95:5), the reaction was quenched with sat. NaHCO₃ soln. (2 ml). The aq. phase was extracted with Et_2O (2 × 2 ml) and the org. layers were dried (MgSO₄). The ee was measured on the crude, which was further purified by FC (silica gel, Et₂O/light petroleum ether 1:1): 6M (31 mg, 99%); 98.3% ee by ¹⁹F-NMR, 97.6% by ¹H-NMR (MeO s of the minor diastereoisomer compared with the ¹³C satellite peaks of the MeO s of the major diastereoisomer). $[a]_{559}^{25} = +12;$ $[a]_{577}^{25} = +48; \ [a]_{546}^{25} = +72; \ [a]_{435}^{25} = +110; \ [a]_{405}^{25} = +145 \ (c = 0.07, \ CH_2Cl_2). UV \ (MeCN): 265 \ (18800), 252 \$ (21300), 216 (15800). IR (KBr): 2955, 2845, 1780, 1715, 1605, 1580, 1520, 1450, 1420, 1370, 1315, 1260, 1170, 1100, 1025, 850, 770, 735, 700, 615. ¹H-NMR (400 MHz, CDCl₃): 7.98 (m, 1 MeOC₆H₄CO); 7.55 (m, 2 H, $PhC(CF_3)(MeO)CO);$ 7.38 (m, 3 H, $PhC(CF_3)(MeO)CO);$ 6.91 (m, 1 MeOC₆H₄CO); 5.43 (t, ³J = 6.3, H-C(6); 5.34 (m, H-C(1), H-C(4'); 5.21 (dddd, ${}^{3}J=2.3$, 6.3, 8.6, 10.4, 1 H-C(4)); 5.04 (m, H-C(6')); 5.01 $(dd, {}^{3}J = 2.8, 10.4, H - C(2'));$ 3.84, 3.87 $(2s, 2 MeOC_{6}H_{4}CO);$ 3.57 $(s, PhC(CF_{3})(MeO)CO);$ 2.65 - 1.70 (m, 2 H-C(3'), 2 H-C(5'), 2 H-C(7'), 2 H-C(7), 2 H-C(5), 2 H-C(3), CH₂-C(2)); 2.05, 2.03 (2s, 2 Me-CO). ¹³C-NMR (100.6 MHz, CDCl₃): 170.5, 170.3 (2s, 2 C, MeCO); 166.6, 166.3 (2s, 2 C, MeOC₆H₄CO); 165.4 $(s, PhC(CF_3)(MeO)CO);$ 163.6, 163.4 (2s, 2 C, MeOC₆H₄CO); 135.1 (s, C(1')); 132.3 (d, ¹J = 162, 4 C, $MeOC_{6}H_{4}CO$; 130 (d, ^{1}J = 161, 2 C, $PhC(CF_{3})(MeO)CO$); 128.4 (s, 1 C, $PhC(CF_{3})(MeO)CO$); 128.1 $(d, {}^{1}J = 162, 2 \text{ C}, PhC(CF_3)(MeO)CO); 128.0 (d, {}^{1}J = 162, C(2')); 127.6 (d, {}^{1}J = 162, 1 \text{ C}, PhC(CF_3)(MeO)CO);$ 124.3 (s, PhC(CF₃)(MeO)CO); 122.6, 122.2 (2s, 2 C, MeOC₆H₄CO); 113.6 (d, ${}^{1}J = 161, 4$ C, MeOC₆H₄CO); 78.3 $(d, {}^{1}J = 140, C(6')); 74.1 (s, C(2)); 68.8, 68.3 (d, {}^{1}J = 142, 140, C(6), C(4)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 142, 140, C(6), C(4)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 142, 140, C(6), C(4)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 142, 140, C(6), C(4)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 142, 140, C(6), C(4)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 142, 140, C(6), C(4)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 142, 140, C(6), C(4)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 151, C(1)); 68.0 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 151, C(1)); 66.1 (d, {}^{1}J = 151, C(1)); 68.0 (d, {}^{1}J = 151, C(1$ 149, C(4'); 55.1 (q, ${}^{1}J = 138$, 2 C, $MeOC_{6}H_{4}CO$); 48.9 (t, ${}^{1}J = 129$, $CH_{2} - C(2)$); 42.0, 40.8, 38.3, 38.0, 33.9, 31.4 (8t, C(3'), C(5'), C(7'), C(3), C(5), C(7)); 21.2 $(q, {}^{1}J = 162, 2 \text{ C}, MeCO).$ ${}^{19}\text{F-NMR}$ (376.7 MHz, CDCl₃+ CCl₃F): -71.36 (s, 3 F, CF₃); -71.54 (s, 3 F, CF₃) for the minor diastereoisomer. CI-MS (NH₃): 888 (100, [M+ $(H_4]^+$, 654 (21), 570 (12), 334 (31), 294 (16), 252 (89), 152 (29), 135 (53), 91 (23). Anal. calc. for $C_{45}H_{49}F_{3}O_{14}$ (870.87): C 62.06, H 5.67, F 6.55, O 25.72; found: C 61.97, H 5.65.

 $(1R,2S,4R,6R)/(1S,2R,4S,6S)-4-(Acetyloxy)-2-{{(4S,6S)/(4R,6R)-6-(acetyloxy)-4-[(4-methoxybenzoyl)oxy]-cyclohept-1-en-1-yl}methyl]-2-hydroxy-6-[(4-methoxybenzoyl)oxy]cycloheptyl (aR)-a-Methoxy-a-(trifluoro-methyl)benzeneacetate (7M). As described for 6M, with (+)-7 (20 mg, 0.029 mmol), CH₂Cl₂ (1 ml), Et₃N$

(8 µl, 0.058 mmol), DMAP (one cristal), and (+)-(*S*)-MTPACl (6 µl, 0.029 mmol): **7M** (31 mg, 99%); 4% ee by ¹⁹F-NMR; the data were also photocopied, and the traces cut and weighted: 1% ee. ¹H-NMR (400 MHz, CDCl₃): 8.07, 7.98 (2*m*, 8 H, MeOC₆*H*₄CO₃) 7.54 (2*m*, 4 H, *Ph*C(CF₃)(MeO)CO); 7.54 (2*m*, 6 H, *Ph*(CF₃)(MeO)CO); 6.94, 6.90 (2*m*, 8 H, MeOC₆*H*₄CO); 5.62, 5.53 (2*t*, ³*J* = 6.2, 6.2, 2 H, H–C(2')); 5.41, 5.34–5.26, 5.13–4.89 (3*m*, 8 H, H–C(4'), H–C(6), H–C(6'), H–C(4')); 3.86, 3.85, 3.85, 3.84 (4*s*, 12 H, *MeOC*₆*H*₄CO); 3.57, 3.52 (2*s*, 6 H, PhC(CF₃)(*MeO*)CO); 3.20–1.9 (*m*, 28 H, 7 CH₂); 2.02, 2.01, 1.80, 1.78 (4*s*, 12 H, MeCO). ¹⁹F-NMR (376.7 MHz, CDCl₃ + CCl₃F): -71.49 (*s*, 3 F, CF₃); -71.43 (*s*, 3 F, CF₃) for the minor diastereoisomer. CI-MS (NH₃): 888 (100, [*M*+NH₄]⁺), 654 (14), 570 (10), 334 (62), 294 (32), 252 (82), 170 (87), 135 (46), 105 (18), 91 (26), 77 (10).

(15,65)-6-Hydroxy-4-{{(1R,2S,4S,6S)-1,2,6-trihydroxy-4-{(4-methoxybenzoyl)oxy]cycloheptyl}methyl]cyclohept-3-en-1-yl 4-Methoxybenzoate ((-)-8). To a soln. of (+)-6 (4 g, 6.1 mmol) in anh. MeOH (200 ml) was added dropwise 0.65M Mg(OMe)₂ (76 ml, 49 mmol) in MeOH. The reaction was complete within 5 h (TLC, CH₂Cl₂/MeOH 95:5) and was quenched with oxalic acid (4.4 g, 49 mmol). The soln. was stirred for 10 min and, without stirring, cooled to 0° for 1 h. The soln. was filtered over a *Celite* pad and the filtrate evaporated: (-)-8 (3.34 g, 97%) as a white solid pure enough for the next step. For analysis, the product was purified by FC (silica gel, CH₂Cl₂/MeOH 92:8). $[a]_{589}^{25} = -9; [a]_{577}^{25} = -10; [a]_{546}^{25} = -10; [a]_{435}^{25} = -19; (c = 0.28, CH₂Cl₂). UV (MeCN): 254 (14500), 202 (11800). IR (KBr): 3510, 3335, 2940, 2845, 1705, 1695, 1605, 1510, 1460, 1420,$ 1320, 1285, 1255, 1170, 1120, 1105, 1020, 985, 845, 770, 695, 665, 605. ¹H-NMR (400 MHz, CD₃OD): 7.95 $(m, 1 \text{ MeOC}_6H_4\text{CO}); 6.98 \ (m, 1 \text{ MeOC}_6H_4\text{CO}); 5.63 \ (t, {}^3J = 6.7, 1 \text{ H} - \text{C}(3)); 5.25 - 5.19 \ (m, \text{H} - \text{C}(1)), (m, \text{H} - \text{C}(1)); 5.25 - 5.19 \ (m, \text{H} - \text{C}(1)); (m, \text{H} - \text{C}(1));$ H-C(4'); 4.25 (*dddd*, ${}^{3}J=9.5$, 5.0, 4.9, 2.7, H-C(6)); 4.12 (*m*, H-C(6')); 3.86, 3.84 (*s*, 2 *MeOC*₆ H_4CO); 3.53 $(dd, {}^{3}J = 10.9, 2.5, H - C(2')); 2.69 (dd, {}^{2}J = 14.8, {}^{3}J = 9.5, 1 H - C(5)); 2.66 (d, {}^{2}J = 12.7, 1 H, CH_{2} - C(4)); 2.61 - C(4); 2.61 - C$ 2.51 (m, 1 H - C(5), 2 H - C(2)); 2.34 $(ddd, {}^{2}J = 13.3, {}^{3}J = 10.9, 10.9, 1 \text{ H} - \text{C}(3'));$ 2.21 $(d, {}^{2}J = 12.8, 1 \text{ H}, 1.9);$ 2.51 $(d, {}^{2}J = 12.8, 1 \text{ H}$ $CH_2-C(4)$; 2.26–2.14 (m, 2 H–C(7), 1 H–C(7'), 1 H–C(5')); 2.03 (dd, ³J=8.2, 6.2, 1 H–C(7')); 1.98 (m, 1 H-C(3')); 1.61 $(dd, {}^{2}J = 14.5, {}^{3}J = 10.5, 1 \text{ H}-\text{C}(5')).$ {}^{13}C-NMR (100.6 MHz, CD₃OD): 165.5 (s, 2 C, 3) $MeOC_6H_4CO$; 165.1 (s, 2 C, $MeOC_6H_4CO$); 139.6 (s, C(4)); 132.5 (d, ${}^1J = 170$, 4 C, $MeOC_6H_4CO$); 127.6 $(d, {}^{1}J = 158, C(3)); 124.1 (s, 2 C, MeOC_{6}H_{4}CO); 114.8 (d, {}^{1}J = 162, 4 C, MeOC_{6}H_{4}CO); 76.0 (s, C(1')); 74.0$ $(d, {}^{1}J = 138, C(2')); 70.5, 70.4 (2d, {}^{1}J = 159, C(1), C(4')); 67.1 (d, {}^{1}J = 139, C(6')); 64.4 (d, {}^{1}J = 143, C(6)); 56.0 (d, {}^{1}J =$ $(q, {}^{1}J = 144, 2 \text{ C}, MeOC_{6}H_{4}CO); 50.8 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.0 (t, C(5')); 43.4 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.0 (t, C(5')); 43.4 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.0 (t, C(5')); 43.4 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.8 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.8 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.8 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.8 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.8 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 127, C(7)); 45.8 (t, {}^{1}J = 128, CH_{2} - C(4)); 45.8 (t, {}^{1}J = 128, CH_{$ 115, C(7')); 41.6 (*t*, C(5)); 38.5 (*t*, ¹*J* = 127, C(3')); 34.4 (*t*, ¹*J* = 127, C(2)). CI-MS (NH₃): 588 (7, [*M* + NH₄]⁺), 419 (3), 277 (25), 152 (44), 135 (100), 107 (36). Anal. calc. for $C_{31}H_{38}O_{10}$ (570.64): C 65.25, H 6.71, O 28.04; found: C 65.19. H 6.79.

 $(3a\$,55,75,8aR)-Hexahydro-7-hydroxy-8a-{{(4\$,6\$)-6-hydroxy-4-[(4-methoxy)benzoyl)oxy]cyclohept-1-1-1}}{cyclohept-1-1}-{cyclo$ en-1- yl/methyl]-2,2-dimethyl-4H-cyclohepta/d]-1,3-dioxol-5-yl 4-Methoxybenzoate ((-)-9). To a soln. of (-)-8 (20 mg, 0.037 mmol) was added pyridinium p-toluenesulfonate (PPTS; 1 mg, $3.7 \cdot 10^{-3}$ mmol) and a soln. of 20% 2,2-dimethoxypropane/acetone (1 ml). The reaction was complete after 4 h at 60° (TLC, CH₂Cl₂/MeOH 95:5). Evaporation and purification by FC (silica gel, CH₂Cl₂/MeOH 95:5) afforded (-)-9 (18 mg, 80%). White foam. $[a]_{589}^{25} = -18; [a]_{577}^{25} = -30; [a]_{546}^{25} = -34; [a]_{435}^{25} = -56; [a]_{405}^{25} = -65 (c = 0.11, CH₂Cl₂). IR (KBr):$ 3435, 2935, 1705, 1605, 1515, 1460, 1380, 1280, 1255, 1170, 1105, 1030, 850, 770, 730, 695, 610. UV (MeCN): 252 (40700), 207 (34200). ¹H-NMR $(400 \text{ MHz}, \text{CDCl}_3; \text{ numbering of } (-)-8)$: 8.04 $(d, {}^{3}J = 9.1, 2 \text{ H}, \text{MeOC}_{6}H_4\text{CO});$ 7.91 $(d, {}^{3}J = 8.6, 2 \text{ H}, \text{MeOC}_{6}H_{4}\text{CO}); 6.91 (d, {}^{3}J = 9.1, 2 \text{ H}, \text{MeOC}_{6}H_{4}\text{CO}); 6.89 (d, {}^{3}J = 8.6, 2 \text{ H}, \text{MeOC}_{6}H_{4}\text{CO});$ 5.75 $(dd, {}^{3}J = 5.4, 8.1, 1 \text{ H} - \text{C}(3))$; 5.37 (br. m, H - C(4')); 5.22 $(tt, {}^{3}J = 2.7, 9.7, \text{H} - \text{C}(1))$; 4.34 (br. $d, {}^{3}J = 8.6, \text{C}(4')$); 5.22 $(tt, {}^{3}J = 2.7, 9.7, \text{H} - \text{C}(1))$; 4.34 (br. $d, {}^{3}J = 8.6, \text{C}(4')$); 5.22 $(tt, {}^{3}J = 2.7, 9.7, \text{H} - \text{C}(1))$; 4.34 (br. $d, {}^{3}J = 8.6, \text{C}(4')$); 5.22 $(tt, {}^{3}J = 2.7, 9.7, \text{H} - \text{C}(1))$; 4.34 (br. $d, {}^{3}J = 8.6, \text{C}(4')$); 5.22 $(tt, {}^{3}J = 2.7, 9.7, \text{H} - \text{C}(1))$; 4.34 (br. $d, {}^{3}J = 8.6, \text{C}(4')$); 5.22 $(tt, {}^{3}J = 8.6, \text{C}(4'))$; 5.22 $(tt, {}^{3}J = 8.6, \text{C}(4'))$; 5.23 $(tt, {}^{3}J = 8.6, \text{C}(4'))$; 5.24 $(tt, {}^{3}J = 8.6, \text{C}(4'))$; 5.25 $(tt, {}^{3}J = 8.6, \text{C}(4'))$; 5.26 $(tt, {}^{3}J = 8.6, \text{C}(4'))$; 5.27 $(tt, {}^{3}J = 8.6, \text{$ H-C(6)); 4.23 (br. s, H-C(6')); 4.16 (d, ${}^{3}J = 6.4$, H-C(2')); 3.86 (2s, 2 MeOC₆H₄CH); 2.72 (t, ${}^{3}J = 6.4$, 2 H-C(3')); 2.68 (m, 1 H-C(5)); 2.53 (m, 2 H-C(2)); 2.56-2.32 (m, 1 H-C(7), 1 H-C(7'), 1 H-C(5'), CH₂-C(4)); 2.00-1.80 (*m*, 1 H-C(7), 1 H-C(5'), 1 H-C(5), 1 H-C(7')); 1.55, 1.44 (2*s*, Me₂CO₂). ¹³C-NMR (100.6 MHz, CDCl₃; numbering of (-)-8): 165.6, 165.4 (s, 2 C, MeOC₆H₄CO); 163.2 (2s, 2 C, MeOC₆H₄CO); 136.9 (s, C(4)); 131.8, 131.5 (2d, ${}^{1}J = 163$, 4 C, MeOC₆H₄CO); 127.3 (d, ${}^{1}J = 156$, C(3)); 123.1, 123.0 (2s, 2 C, 2), 123.1, 123.0 (2s, 2), 123.1, 123.1, 123.1, 123.1, 123.1, 123.1, 123.1, 123.1, 123.1, 123.1, 123.1, 123.1, 1 $MeOC_{6}H_{4}CO$; 113.5, 113.4 (2d, ¹J = 163, 4 C, $MeOC_{6}H_{4}CO$); 107.5 (s, $Me_{2}CO_{2}$); 83.6 (s, C(1')); 82.5 (d, ¹J = 163, 4 C) = 100 MeV_{2}CO $144, C(2'); 68.3 (d, {}^{1}J = 151, C(1)); 68.1 (d, {}^{1}J = 151, C(4')); 66.6 (d, {}^{1}J = 145, C(6')); 63.5 (d, {}^{1}J = 145, C(6)); 55.4 (d, {}^{1}$ $C(7), C(5'); 39.8 (t, {}^{1}J = 125, C(2)); 34.3 (t, {}^{1}J = 130, C(3')); 31.8 (t, {}^{1}J = 125, C(7')); 27.8, 26.2 (2q, {}^{1}J = 125, C(7')); 27.8 (110, 12); 27.8$ Me_2CO_2). CI-MS (NH₃): 629 (4, $[M + NH_4]^+$), 335 (13), 227 (6), 183 (23), 135 (100). Anal. calc. for $C_{34}H_{42}O_{10}$ (610.70): C 66.87. H 6.93. O 26.20: found: C 67.06. H 7.10.

(2R and 2S,4S,6S) Tetrahydro-2-hydroxy-6-[3-[(4S,6S)-6-hydroxy-4-[(4-methoxybenzoyl)oxy]cyclohept-1en-1-yl]-2-oxopropyl]-2H-pyran-4-yl 4-Methoxybenzoate ((+)-10). To a soln. of (-)-8 (1.77 g, 3.1 mmol) in dioxane (40 ml) was added a soln. of NaIO₄ (9 ml, 5.58 mmol) in H₂O (660 mg per 5 ml). After stirring overnight (TLC, CH₂Cl₂/MeOH 95:5), the soln. was diluted with sat. NaCl soln. (20 ml) and extracted with AcOEt $(3 \times 75 \text{ ml})$. The org. phase was dried (Na_2SO_4) and evaporated: 1.74 g (99%) of crude (+)-10. Purification by FC (silica gel, CH₂Cl₂/MeOH 98:2) afforded pure anomer mixture (+)-10 (1.55 g, 88%). White solid. $[a]_{589}^{25} = +35; [a]_{577}^{25} = +37; [a]_{546}^{25} = +40; [a]_{435}^{25} = +66; [a]_{405}^{25} = +79 (c = 0.13, CH_2Cl_2). UV (MeCN): 264$ (11100), 246 (12700), 214 (10400). IR (KBr): 3425, 2935, 1715, 1605, 1510, 1420, 1260, 1170, 1105, 1030, 850, 770, 700, 615. ¹H-NMR (400 MHz, CDCl₃)⁴): 7.99 (*m*, 1 MeOC₆*H*₄CO); 6.92 (*m*, 1 MeOC₆*H*₄CO); 5.71 (*t*, ³*J* = 6.6, H-C(2''); 5.50 (*m*, 2 H, $H-C(4)(\alpha/\beta)$, $H-C(2)(\alpha)$); 5.25 (*m*, 1 H, H-C(4'')); 5.16 (*tt*, ${}^{3}J=11.5$, 4.6, 1 H, $H-C(4)(\alpha/\beta)$; 4.89 (br. d, ${}^{3}J = 9.3, 1$ H, $H-C(2)(\beta)$); 4.65 (m, 1 H, $H-C(6)(\alpha/\beta)$); 4.16 (m, 1 H, H-C(6'')); $4.06 (m, 1 \text{ H}, \text{H}-\text{C}(6)(a/\beta)); 3.87, 3.85 (s, 6 \text{ H}, MeOC_6\text{H}_4\text{CO}); 3.37 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.32 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H}, \text{H}-\text{C}(1')); 3.33 (d, ^2J = 16.2, 1 \text{ H},$ 16.2, 1 H, H-C(1'); 2.94 (dd, ${}^{2}J = 15.5$, ${}^{3}J = 9.1$, 1 H, H-C(3'); 2.81 (dd, ${}^{2}J = 15.5$, ${}^{3}J = 9.5$, 1 H, H-C(3'); 2.60-2.44 (*m*, 4 H, H-C(3"), H-C(7")); 2.43-2.36 (*m*, 2 H, H-C(3)(*α/β*)); 2.34-2.07 (*m*, 6 H, H-C(5"), $H-C(5)(\alpha/\beta), H-C(3)(\alpha/\beta)); 1.74 (ddd, {}^{2}J=11.8, {}^{3}J=3.4, 3.4, H-C(5)(\alpha/\beta)); 1.61-1.43 (m, H-C(5)(\alpha/\beta));$ $H-C(3)(\alpha/\beta)$. ¹³C-NMR (100.6 MHz, CDCl₃)⁴): 208.5 (s, C(2')); 165.6, 165.5 (s, 2 C, MeOC₆H₄CO); 163.3 $(s, 2 \text{ C}, \text{MeOC}_{6}\text{H}_{4}\text{CO}); 133.7 (s, C(1'')); 131.6 (d, {}^{1}J = 163, 4 \text{ C}, \text{MeOC}_{6}\text{H}_{4}\text{CO}); 127.0 (d, {}^{1}J = 156, C(2'')); 123.0, 123.0 \text{ C}; 123.0 \text{ C}$ $C(2)); 68.7 (d, C(4)); 68.5 (d, C(4'')); 68.4 (d, C(6)(\beta)); 66.7 (d, C(4)); 65.7 (d, C(6'')); 64.3 (d, C(6)(\alpha)); 55.4 (d, C(6$ $(q, {}^{1}J = 145, 2 \text{ C}, MeOC_{6}H_{4}CO); 55.0, 54.6 (t, C(1')); 47.9, 47.4 (2t, {}^{1}J = 128, C(3')); 44.6 (t, {}^{1}J = 127, C(5'')); 39.6 (t, {}^{1}J = 127, {}^{1}C(5'')); 47.9, 47.4 (t, {}^{1}J = 128, {}^{1}C(5'')); 47.9, {}^{1}C(5''); 47.9, {}^{1}C(5'');$ NH_4^{+}), 568 (4, $[M + H]^+$), 399 (20), 301 (10), 251 (10), 229 (9), 170 (57), 135 (100).

(15,65)-6-Hydroxy-4-{(25,4R,6R)-2,4,8-trihydroxy-6-[(4-methoxybenzoyl)oxy]octyl]cyclohept-3-en-1-yl 4-Methoxybenzoate ((+)-11). To a soln. of (+)-10 (1.83 g, 3.2 mmol) in AcOH (40 ml) was added Me₄NBH(OAc)₃ (12.7 g, 48.2 mmol). After 24 h under stirring (TLC, CH₂Cl₂/MeOH 9:1), the AcOH was completely evaporated, and a mixture of H2O and crushed ice (50 ml) was added slowly to the residue. After 10 min under stirring, solid NaHCO₃ (4 g) was added portionwise, and the soln. was stirred for another 20 min. After extraction of the aq. phase with AcOEt (5×50 ml), the org. layer was dried (Na₂SO₄), and the product was deposited on silica gel. Purification by FC (silica gel, CH₂Cl₂/MeOH 95:5) afforded (+)-11 (1.28 g, 70%). White solid. $[a]_{589}^{20} = +22; [a]_{578}^{20} = +12; [a]_{546}^{20} = +13; [a]_{436}^{20} = +8; [a]_{365}^{20} = +8 (c = 0.14, CH_2Cl_2).$ UV (MeCN): 254 (45300), 201 (53000). IR (KBr): 3360, 2940, 1685, 1605, 1510, 1460, 1420, 1255, 1170, 1120, 1025, 845, 770, 695. ¹H-NMR (400 MHz, CD₃OD): 7.96 (m, 1 MeOC₆ H_4 CO); 6.90 (m, 1 MeOC₆ H_4 CO); 5.65 (t, ³J = 6.7, H–C(3)); 5.48 $(dddd, {}^{3}J = 8.6, 8.6, 5.2, 4.3, H - C(6'));$ 5.17 (m, H - C(1)); 4.68 (m, H - C(6)); 4.09 (m, H - C(2')); 3.98 (m, H-C(4')); 3.85, 3.83 $(s, 2 MeOC_6H_4CO);$ 3.76-3.62 (m, 2 H-C(8')); 2.59 $(dd, {}^2J = 14.8, {}^3J = 7.4, 3.8)$ 1 H-C(5); 2.50, 2.46 (m, 1 H-C(5), 2 H-C(2)); 2.29 (ddd, ${}^{2}J = 13.6$, ${}^{3}J = 6.2$, 3.4, 1 H-C(7)); 2.18 (dd, ²J = 13.1, ³J = 2.7, 1 H-C(1')); 2.07 (d, ²J = 13.1, 1 H-C(1')); 2.11-2.03 (m, 1 H-C(7'), 1 H-C(7)); 1.94 (*dddd*, ²*J* = 7.9, ³*J* = 5.2, 5.2, 5.2, 1 H – C(7')); 1.86 – 1.83 (*m*, 2 H – C(5')); 1.64 – 1.61 (*m*, 2 H – C(3')). ¹³C-NMR (100.6 MHz, CD₃OD): 167.4, 165.6 (2s, 2 C, MeOC₆H₄CO); 163.6, 163.3 (2s, 2 C, MeOC₆H₄CO); 139.2 (s, C(4)); 131.8, 131.5 (2d, ${}^{1}J = 164$, 165, 4 C, MeOC₆H₄CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 122.9, 122.1 (2s, 2 C, MeOC₆H₄-CO); 124.2 (d, ${}^{1}J = 155$, C(3)); 124.2 (d, {}^{1}J = 155, C(3)); 124.2 (d, {}^{1}J = 155 CO); 113.7, 113.5 (d, ${}^{1}J$ = 161, 4 C, MeOC₆H₄CO); 69.5 (d, ${}^{1}J$ = 145, C(2')); 69.4 (d, ${}^{1}J$ = 145, C(6')); 68.6 (d, ${}^{1}J$ = 151, C(1)); 66.2 $(d, {}^{1}J = 149, C(6))$; 65.2 $(d, {}^{1}J = 140, C(4'))$; 58.6 $(t, {}^{1}J = 140, C(8'))$; 55.4 $(q, {}^{1}J = 145, 2C, C(4'))$; 55.4 $(q, {}^{1}J = 145, 2C, C(4$ $MeOC_{6}H_{4}CO$; 48.4 (t, ¹J = 122, C(1')); 44.7 (t, ¹J = 122, C(7)); 42.8 (t, ¹J = 119, C(3')); 42.7 (t, ¹J = 122, C(5')); 39.6 $(t, {}^{1}J = 121, C(5));$ 38.0 $(t, {}^{1}J = 120, C(7'));$ 33.5 $(t, {}^{1}J = 122, C(2)).$ CI-MS $(NH_3):$ 590 $(10, [M + NH_4]^+),$ 573 $(69, [M + H]^+), 421 (6), 297 (25), 233 (18), 135 (100), 92 (25).$ Anal. calc. for $C_{31}H_{40}O_{10} (572.65)$: C 65.02, H 7.04, O 27.94; found: C 64.99, H 7.00.

 $(1S_6S)$ -6-Hydroxy-4-{[(4S_6R)-6-[(2R)-4-hydroxy-2-[(4-methoxybenzoyl)oxy]butyl]-2,2-dimethyl-1,3-dioxan-4-yl]methyl]cyclohept-3-en-1-yl 4-Methoxybenzoate ((+)-**12**). To a soln. of (+)-**11** (1.28 g, 2.23 mmol) in 50% 2,2-dimethoxypropane/acetone (40 ml), was added PPTS (56 mg, 0.22 mmol). After 24 h under stirring (TLC, CH₂Cl₂/MeOH 95:5), the soln. was evaporated, the crude product dissolved in CH₂Cl₂/MeOH 98:2 (20 ml), and PPTS added (56 mg, 0.22 mmol). The selective deprotection of the acetal at C(4''') was followed by TLC to keep the acetonide intact. The reaction was quenched by addition of solid NaHCO₃ (100 mg), and the product purified by FC (silica gel, CH₂Cl₂/MeOH 95:5): (+)-**12** (1.11 g, 81%). White foam. $[a]_{589}^{25} = +30;$ $[a]_{577}^{25} = +30; [a]_{546}^{25} = +37; [a]_{455}^{25} = +71; [a]_{405}^{25} = +92 (c = 0.18, CH₂Cl₂). UV (MeCN): 252 (20200), 210 (13400).$ IR (KBr): 3450, 2935, 1705, 1605, 1510, 1260, 1170, 1105, 1030, 850, 770, 695, 610. ¹H-NMR (400 MHz, CDCl₃):8.01 - 7.94 (m, 1 MeOC₆H₄CO); 6.94 - 6.88 (m, 1 MeOC₆H₄CO); 5.63 (t, ³J = 6.6, H-C(3)); 5.46 (dddd, ³J = 9.8,9.8, 3.2, 3.2, H-C(2''')); 5.16 (dddd, ³J = 9.7, 9.7, 3.9, 3.8, H-C(1)); 4.06 (m, H-C(6)); 3.99 (m, H-C(4''')); 3.91(m, H-C(6'')); 3.86, 3.84 (s, 2 MeOC₆H₄CO); 3.79 - 3.55 (m, 2 H-C(4''')); 2.91 (br. s, OH-C(4''')); 2.53 (br.

⁴) α refers to anomeric OH (axial) and β to anomeric OH (equatorial).

s, OH-C(6)); 2.51-2.42 (m, 2H-C(2), 2H-C(5)); 2.26-2.09 (m, 2H-C(7), 2H-C(1')); 1.98-1.87 (m, 1H-C(3'''), 1H-C(1''')); 1.81-1.72 (m, 1H-C(3'''), 1H-C(1''')); 1.64 (ddd, ${}^{2}J$ =21.7, ${}^{3}J$ =12.8, 8.9, 1H-C(5'')); 1.63 (ddd, ${}^{2}J$ =21.7, ${}^{3}J$ =12.8, 9.0, 1H-C(5'')); 1.31, 1.14 (s, Me₂C(2'')). 13 C-NMR (100.6 MHz, CDCl₃): 167.0, 165.5 (2s, 2 C, MeOC₆H₄CO); 163.5, 163.2 (2s, 2 C, MeOC₆H₄CO); 137.5 (s, C(4)); 131.6, 131.5 (2d, ${}^{1}J$ =164, 4 C, MeOC₆H₄CO); 102.9 (d, ${}^{1}J$ =167, C(3)); 123.1, 122.2 (2s, 2C, MeOC₆H₄CO); 113.7, 113.5 (d, ${}^{1}J$ =161, 4 C, MeOC₆H₄CO); 100.8 (s, C(2'')); 68.7 (d, ${}^{1}J$ =151, C(1)); 68.3 (d, ${}^{1}J$ =149, C(2''')); 66.9 (d, ${}^{1}J$ =143, C(4'')); 65.9 (d, ${}^{1}J$ =143, C(6)); 63.0 (d, ${}^{1}J$ =143, C(6'')); 58.2 (t, ${}^{1}J$ =140, C(4''')); 55.4 (q, ${}^{1}J$ =145, 2 C, MeOC₆H₄CO); 45.9 (t, ${}^{1}J$ =126, C(3''')); 41.9 (t, ${}^{1}J$ =128, C(2)); 24.4, 24.3 (2q, ${}^{1}J$ =128, C(5)); 38.4 (t, ${}^{1}J$ =126, C(5''')); 38.2 (t, ${}^{1}J$ =126, C(3''')); 33.1 (t, ${}^{1}J$ =128, C(2)); 24.4, 24.3 (2q, ${}^{1}J$ =128, 2 C, Me₂C(2'')). CI-MS (NH₃): 613 (15, [M+H]⁺), 555 (66), 401 (8), 279 (58), 135 (100). Anal. calc. for C₃₄H₄₄O₁₀ (612.72): C 66.65, H 7.24, O 26.11; found: C 66.64, H 7.19.

(15,6S)-6-Hydroxy-4-{(2R,4R,6R)-2,4,8-trihydroxy-6-[(4-methoxybenzoyl)oxy]octyl]cyclohept-3-en-1-yl 4-Methoxybenzoate ((-)-13). A soln. of (+)-10 (200 mg, 0.35 mmol) in anh. THF/MeOH 4:1 (2 ml) was cooled to -78° and a 1M Et₂BOMe in THF (1.75 ml, 1.75 mmol) was added dropwise. After 2 h, the soln, was allowed to warm to -20° , and NaBH₄ (40 mg, 1.05 mmol) was added. Two further amounts of NaBH₄ (40 mg, 1.05 mmol) were added every 2 h until the reaction was almost complete (TLC, CH₂Cl₂/MeOH 9:1). After dilution with AcOEt (8 ml), the reaction was quenched with AcOH (200 µl) and H₂O (8 ml). The soln, was neutralized by addition of NaHCO₃, the aq. layer extracted with AcOEt (4×4 ml), the org. soln. dried (Na₂SO₄), and the product deposited on silica gel. Purification by FC (silica gel, CH₂Cl₂/MeOH 95:5) afforded (-)-13 (130 mg, 65%). White solid. $[a]_{589}^{20} = -12; [a]_{578}^{20} = -16; [a]_{546}^{20} = -19; [a]_{436}^{20} = -25; [a]_{365}^{20} = -47$ (c = 0.03, CHCl₃). UV (MeCN): 265 (13000), 248 (14900), 214 (12200). IR (KBr): 3405, 2935, 1705, 1605, 1510, 1420, 1260, 1170, 1105, 1030, 850, 770, 700, 610. ¹H-NMR (400 MHz, CDCl₃): 7.97 (*m*, 1 MeOC₆H₄CO); 6.91 $(m, 1 \text{ MeOC}_6H_4\text{CO}); 5.70 \ (dd, {}^3J = 7.7, 5.9, \text{H} - \text{C}(3)); 5.48 \ (m, \text{H} - \text{C}(6')); 5.12 \ (dddd, {}^3J = 10.3, 10.3, 2.8, 2.8, 2.8, 2.8, 2.8); 5.70 \ (dd, {}^3J = 10.3, 10.3, 2.8, 2.8, 2.8, 2.8); 5.70 \ (dd, {}^3J = 10.3, 10.3, 2.8, 2.8, 2.8); 5.70 \ (dd, {}^3J = 10.3, 10.3, 2.8, 2.8); 5.70 \ (dd, {}^3J = 10.3, 2.8, 2.8); 5.70 \ (dd, {}^3J = 10.$ H-C(1)); 4.20 (br. s, H-C(6)); 4.05 (m, H-C(2')); 3.91 (m, H-C(4')); 3.86, 3.85 (2s, 2 MeOC₆H₄CO); 3.70 $(m, 2 H - C(8')); 2.45 (m, 2 H - C(5), 2 H - C(2), 1 H - C(7)); 2.10 (d, {}^{3}J = 6.7, 2 H - C(1')); 1.98 - 1.93 (d, {}^{3}J = 6.7, 2 H - C(1')); 1.93 (d, {}^{3}J = 6.7, 2 H - C(1')); 1.93 (d, {}^{3$ $(m, 2 H - C(7'), 1 H - C(7)); 1.81 (dd, {}^{3}J = 6.4, 6.4, 2 H - C(5')); 1.57 (m, 2 H - C(3')).$ CDCl₃): 167.1, 165.5 (2s, 2 C, MeOC₆H₄CO); 163.5, 163.2 (2s, 2 C, MeOC₆H₄CO); 137.4 (s, C(4)); 131.8, 131.5 (2d, ¹*J*=163, 4 C, MeOC₆H₄CO); 124.9 (d, ¹*J*=154, C(3)); 122.9, 122.2 (2s, 2 C, MeOC₆H₄CO); 113.6, 113.4 $(2d, {}^{1}J = 166, 4 \text{ C}, \text{MeOC}_{6}\text{H}_{4}\text{CO}); 69.2 (d, {}^{1}J = 147, \text{C(6')}); 68.5 (2d, {}^{1}J = 141, \text{C(4')}, \text{C(2')}); 68.2 (d, {}^{1}J = 152, \text{C(4')}); 69.2 (d, {}^{1}J = 152, \text{C(4')}); 69.2 (d, {}^{1}J = 160, \text{C(4')}); 69.2 (d, {}^{1}J$ C(1)); 65.9 (d, ${}^{1}J$ = 143, C(6)); 58.5 (t, ${}^{1}J$ = 143, C(8')); 55.4, 55.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2q, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (t, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2) (t, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2) (t, ${}^{1}J$ = 144, 2 C, $MeOC_{6}H_{4}CO$); 48.4 (t, ${}^{1}J$ = 143, C(8')); 57.4, 57.3 (2) (t, $MeOC_{6}H_{4}OC$); 57.4, 57.3 (2) (t, $MeOC_{6}H_{4}OC$); 58.5 $128, C(1'); 44.9 (t, {}^{1}J = 133, C(7)); 43.1 (t, {}^{1}J = 126, C(5')); 42.5 (t, {}^{1}J = 126, C(3')); 38.0 (t, {}^{1}J = 127, C(7')); 36.5 (t, {}^{1}J = 127, C(7')); 12.5 (t, {}^{1}J = 126, C(3')); 12.5 (t, {}^{1}J = 127, C(7')); 12.5 (t, {}^{1}J = 126, C(3')); 12.5 (t, {}^{1}J$ $(t, {}^{1}J = 123, C(5)); 34.1 (t, {}^{1}J = 126, C(2)). CI-MS (NH_3): 590 (23, [M + NH_4]^+), 573 (100, [M + H]^+), 421 (6), (100, [M + H]^+), 421 (6), (100, [M + H]^+), 421 (6), (100, [M + H]^+), (100, [M +$ 297 (17), 233 (7), 135 (74), 92 (19). Anal. calc. for C₃₁H₄₀O₁₀ (572.65): C 65.02, H 7.04, O 27.94; found: C 64.99, H 6.87

(15,65)-6-Hydroxy-4-{/{(4R,6R)-6-{(2R)-4-hydroxy-2-[(4-methoxybenzoyl)oxy]butyl]-2,2-dimethyl-1,3-dioxan-4-yl]methyl]cyclohept-3-en-1-yl 4-Methoxybenzoate ((+)-14). To a soln. of (-)-13 (1.00 g, 1.74 mmol) in 50% 2,2-dimethoxypropane/acetone (10 ml) was added PPTS (44 mg, 0.17 mmol) at 0°. After stirring overnight (TLC, CH₂Cl₂/MeOH 95:5), the soln. was evaporated and the residue dissolved in CH₂Cl₂/MeOH 97:3 (10 ml) in the presence of additional PPTS (22 mg, 0.08 mmol). The selective deprotection of the acetal at C(4") was followed by TLC (CH₂Cl₂/MeOH 95:5) to avoid complete deprotection. After 10 min, the reaction was quenched with NaHCO₃ (80 mg), and the product was deposited on silica gel. Purification by FC (silica gel, $CH_2Cl_2/MeOH 95:5$) afforded (+)-14 (1.06 g, 78%). White foam. $[a]_{589}^{25} = +9; [a]_{577}^{25} = +5; [a]_{546}^{25} = +3; [a]_{455}^{25} = +3; [a]_{455}^{25} = +3; [a]_{546}^{25} = +3; [a]_{$ +3; $[a]_{405}^{25}$ = +2 (c = 0.20, CH₂Cl₂). UV (MeCN): 251 (37400), 209 (28900). IR (KBr): 3460, 1705, 1605, 1510, 1460, 1420, 1380, 1260, 1170, 1105, 1030, 975, 850, 770, 695, 615. ¹H-NMR (400 MHz, CDCl₃): 7.97 $(m, 1 \text{ MeOC}_{6}H_{4}\text{CO}); 6.92 \ (m, 1 \text{ MeOC}_{6}H_{4}\text{CO}); 5.64 \ (dd, {}^{3}J = 6.6, 6.6, H-C(3)); 5.48 \ (m, H-C(2'')); 5.16$ (dddd, ³J = 8.8, 8.8, 3.4, 3.4, 1 H-C(1)); 4.06 (m, H-C(6)); 3.99 (m, H-C(4"), H-C(6")); 3.86, 3.84 $(2s, 2 MeOC_{6}H_{4}CO); 3.69-3.57 (m, 2 H-C(4''')); 2.45 (m, 2 H-C(5), 2 H-C(2)); 2.29 (ddd, {}^{2}J=13.3, {}^{3}J=16.5)$ 6.2, 3.4, H-C(7); 2.21 ($dd, {}^{2}J=13.9, {}^{3}J=7.3, 1 H-C(1')$); 2.15 ($dd, {}^{2}J=13.9, {}^{3}J=4.8, 1 H-C(1')$); 2.05 $(ddd, {}^{2}J = 13.3, {}^{3}J = 8.8, 2.8, 1 H - C(7)); 1.95 (dddd, {}^{2}J = 14.4, {}^{3}J = 9.3, 5.6, 3.6, 1 H - C(3'')); 1.88 - 1.74 H - C(3''); 1.88 + 1.74 H - C(3'''); 1.88 + 1.74 H -$ $(m, 1 \text{ H}-\text{C}(5''), 1 \text{ H}-\text{C}(3''), 2 \text{ H}-\text{C}(1''')); 1.45 (ddd, {}^{2}J = 12.9, {}^{3}J = 2.5, 2.5, 1 \text{ H}-\text{C}(5'')); 1.36, 1.27$ (2s, Me₂C(2")). ¹³C-NMR (100.6 MHz, CDCl₃): 166.9, 165.4 (2s, 2 C, MeOC₆H₄CO); 163.6, 163.2 (2s, 2 C, MeOC₆H₄CO); 136.4 (s, C(4)); 131.7, 131.5 (2d, ${}^{1}J = 164, 4$ C, MeOC₆H₄CO); 125.3 (d, ${}^{1}J = 161, C(3)$); 123.1, 122.2 (2s, 2 C, MeOC₆H₄CO); 113.7, 113.5 (2d, ${}^{1}J = 161$, 4 C, MeOC₆H₄CO); 99.1 (s, C(2'')); 68.4 (d, ${}^{1}J = 125$, $C(1)); 68.3 (d, {}^{1}J = 133, C(2'')); 67.1 (d, {}^{1}J = 131, C(4'')); 65.8 (d, {}^{1}J = 135, C(6)); 65.5 (d, {}^{1}J = 141, C(6'')); 58.3 (d, {}^{1}J = 135, C(6)); 67.1 (d, {}^{1}J = 131, C(4'')); 67.1 (d, {}^{1}J = 131, C(4'$ $(t, {}^{1}J = 140, C(4''')); 55.4 (q, {}^{1}J = 145, 2 C, MeOC_{6}H_{4}CO); 46.8 (t, {}^{1}J = 121, C(1')); 44.8 (t, {}^{1}J = 120, C(7)); 41.6 (t, {}^{1$ $(t, {}^{1}J = 127, C(1'''));$ 38.8 $(t, {}^{1}J = 126, C(5));$ 38.2 $(t, {}^{1}J = 125, C(3'''));$ 36.8 $(t, {}^{1}J = 128, C(5''));$ 33.6 $(t, {}^{1}J = 126, C(5''));$ 37.6 $(t, {}^{1}J =$ C(2)); 29.9, 19.3 (2q, ^{1}J = 126, 123, 2 C, Me₂C(2")). CI-MS (NH₃): 613 (5, [M + H]⁺), 555 (30), 279 (70), 233 (7), 135 (100). Anal. calc. for C₃₄H₄₄O₁₀ (612.72): C 66.65, H 7.24, O 26.11; found: C 66.62, H 7.34.

(1S,3S)-5-{{(4S,6S)-6-[(2R)-2,4-Dihydroxybutyl]-2,2-dimethyl-1,3-dioxan-4-yl}methyl}cyclohept-5-ene-1,3diol ((+)-15). A soln. of CH₂Cl₂ (30 ml) containing (+)-12 (1.11 g, 1.81 mmol) was cooled to -78° , and 1m DIBAL-H in CH₂Cl₂ (5.1 ml, 5.10 mmol) was added dropwise over 10 min (the hydride supplied by Sigma-Aldrich gave better results than the one from Fluka). The same quantity of reagent was added two more times, after 1 h intervals, while the temp. rose to -30° . After 7 h overall reaction time, the mixture was cooled to -78° , and the reaction was quenched with MeOH (50 ml). The soln. was stirred for 1 h 20 and then evaporated. The product was left over silica gel. FC (silica gel, CH₂Cl₂/MeOH 9:1) afforded (+)-15 (548 mg, 88%). White solid. $[a]_{589}^{25} = +32; [a]_{577}^{25} = +32; [a]_{546}^{25} = +38; [a]_{435}^{25} = +63; [a]_{405}^{25} = +80 \ (c = 0.05, \text{ MeOH}). \text{ UV (MeCN): } 255$ (1200), 212 (2200). IR (KBr): 3380, 2935, 1690, 1605, 1510, 1445, 1380, 1260, 1225, 1165, 1095, 1035, 940, 905, 810, 735, 700. ¹H-NMR (400 MHz, CD₃OD): 5.54 (t, ³J = 6.9, H-C(6)); 4.10 (dtd, ³J = 2.5, 7.4, 10.4, H-C(4'')); $4.06 - 3.83 (m, H-C(1), H-C(3), H-C(6''), H-C(2''')); 3.78 (t, {}^{3}J = 6.4, 2 H-C(4'')); 2.40 (m, 2 H-C(4));$ 2.32 (m, 2 H - C(7)); 2.25 $(dd, {}^{3}J = 7.4, {}^{2}J = 13.8, 1 \text{ H} - \text{C}(1'))$; 2.17 $(dd, {}^{3}J = 5.9, {}^{2}J = 13.8, 1 \text{ H} - \text{C}(1'))$; 2.02 (*m*, 2 H–C(2)); 1.72–1.47 (*m*, 2 H–C(5"), 2 H–C(1"'), 2 H–C(3"')); 1.37, 1.35 (2s, Me₂C(2")). ¹³C-NMR $(100.6 \text{ MHz}, \text{CD}_3\text{OD}): 139.0 (s, C(2'')); 125.9 (d, {}^{1}J = 155, C(6)); 102.5 (s, C(5)); 67.7, 67.5, 67.3, 67.1 (4d, {}^{1}J = 144, C(10.6)); 102.5 (s, C(2)); 102.5$ 143, 144, 144, 4 C, C(3), C(1), C(6"), C(2"")); 65.7 (d, ${}^{1}J$ = 146, C(4")); 60.9 (t, ${}^{1}J$ = 140, C(4"")); 50.8 (t, C(2)); 48.5 $(t, {}^{1}J = 125, C(1'));$ 45.6 $(t, {}^{1}J = 123, C(5''));$ 42.4, 42.3 $(2t, {}^{1}J = 124, 124, C(4), C(3''));$ 40.4 $(t, {}^{1}J = 127, C(4), C(3''));$ 40.4 $(t, {}^{1}J = 127, C(4), C(4), C(4));$ 40.4 $(t, {}^{1}J = 127, C(4), C(4));$ 40.4 $(t, {}^{1}J = 127, C(4));$ 40.4 $(t, {}^{1}$ C(1'''); 37.3 (t_1 ¹J = 122, C(7)); 26.1, 26.0 (2q, ¹J = 126, 2 C, $Me_2C(2'')$). CI-MS (NH₃): 362 (32, $[M + NH_4]^+$), 345 $(100, [M + H]^+), 287 (79), 267 (27), 203 (11), 121 (34), 83 (17).$ Anal. calc. for $C_{18}H_{32}O_6$ (344.45): C 62.77, H 9.36, O 27.87; found: C 62.65, H 9.27.

 $(15,35) - 5 - \{ (4R,6S) - 6 - [(2R) - 2, 4 - Dihydroxybuty] - 2, 2 - dimethyl - 1, 3 - dioxan - 4 - yl \} methyl \} cyclohept - 5 - ene-cyclonept - 5 - ene-cyclonept$ 1,3-diol ((+)-17). As described for (+)-15, with (+)-14 (500 mg, 0.81 mmol), CH₂Cl₂ (15 ml), and 1M DIBAL-H in CH₂Cl₂ (2.2 ml, 2.2 mmol). After quenching with MeOH (25 ml), the soln. was stirred for 1 h at 20° in the presence of silica gel and then evaporated. FC (silica gel, CH₂Cl₂/MeOH 9:1) gave (+)-17 (231 mg, 83%). White foam. $[a]_{589}^{20} = +3; [a]_{578}^{20} = +5; [a]_{546}^{20} = +5; [a]_{436}^{20} = +15; [a]_{365}^{20} = +30$ (c = 0.04, MeOH). UV (MeCN): 201 (9200). IR (KBr): 3385, 2990, 2940, 1650, 1430, 1385, 1265, 1200, 1165, 1090, 1040, 980, 930, 870, 735. ¹H-NMR (400 MHz, CD₃OD): 5.50 (t, ³J = 6.5, H–C(6)); 4.15 (ddt, ³J = 2.9, 5.5, 11.3, H–C(4'')); 4.06 (dtd, ³J = 6.5, H–C(6)); 4.15 (ddt, ³J = 6.5 2.3, 6.4, 13.5, H-C(6''); 3.96-3.86 (*m*, H-C(1), H-C(3), H-C(2'''); 3.67 (*t*, ${}^{3}J=6.4$, 2H-C(4''')); 2.34 $(dd, {}^{3}J = 6.1, 14.5, 2 H - C(2)); 2.28 (t, {}^{3}J = 6.5, 2 H - C(7)); 2.20 (dd, {}^{3}J = 6.4, {}^{2}J = 13.5, 1 H - C(1')); 2.10 (dd, {}^{3}J = 6.4, {}^{3}J$ $(dd, {}^{3}J = 6.1, {}^{2}J = 13.5, 1 \text{ H} - \text{C}(1')); 1.97 (t, {}^{3}J = 5.6, 2 \text{ H} - \text{C}(4)); 1.62 (m, 2 \text{ H} - \text{C}(3''')); 1.51 (m, 2 \text{ H} - \text{C}(1'''));$ 1.46, 1.32 (2s, Me₂C(2")); 1.12 (m, 2 H-C(5")). ¹³C-NMR (100.6 MHz, CD₃OD): 137.2 (s, C(5)); 125.6 (d, ¹J= 155, C(6)); 100.0 (s, C(2'')); 67.7 (d, ${}^{1}J = 138$, C(6'')); 67.3 (d, ${}^{1}J = 142$, C(4'')); 66.7, 66.5, 66.0 (3d, ${}^{1}J = 141$, 144, 140, C(3), C(1), C(2'')); 60.1 $(t, {}^{1}J = 144, C(4''));$ 49.8 (t, C(1')); 49.2 (t, C(4)); 45.4 $(t, {}^{1}J = 125, C(1''));$ 41.5 $(t, {}^{1}J = 123, C(3''')); 41.2 (t, {}^{1}J = 125, C(2)); 38.5 (t, {}^{1}J = 126, C(5'')); 36.6 (t, {}^{1}J = 126, C(7)); 30.5, 20.2 (2q, {}^{$ $126, 2 \text{ C}, Me_2\text{C}(2'')\text{)}. \text{ CI-MS (NH_3): } 362 (47, [M+\text{NH}_4]^+), 345 (100, [M+\text{H}]^+), 305 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 305 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 305 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (23), 287 (72), 267 (19), 121 (100, [M+\text{H}]^+), 365 (1$ (26), 83 (22). Anal. calc. for C₁₈H₃₂O₆ (344.45): C 62.77, H 9.36, O 27.87; found: C 62.64, H 9.16.

1-{(4R,6S)-6-[(2R)-2,4-Dihydroxybuty]]-2,2-dimethyl-1,3-dioxan-4-yl]-3-[(2R,4R)-tetrahydro-4,6-dihydroxy-2H-pyran-2-yl]propan-2-one ((+)-18). To a soln. of (+)-15 (548 mg, 1.59 mmol) in acetone/H₂O 8:1 (30 ml) containing NMO (644 mg, 4.77 mmol) at 20° was added 0.1M OsO₄ in CCl₄ (6.36 ml, 0.64 mmol). After 24 h stirring, the soln. was quenched with Na₂SO₃ (600 mg, 4.77 mmol) and MeOH (5 ml). After 2 h stirring, the soln. was dried (Na₂SO₄) and evaporated. The residue, a 1:1 diastereoisomer mixture, was used without further purification for the next step.

To a soln. of the dihydroxylated product (601 mg, 1.59 mmol) in MeOH (30 ml) was added Pb(OAc)₄ (3.52 g, 7.95 mmol) at 20°. The reaction was complete after 10 min and quenched with NaHCO₃ (133 mg, 1.59 mmol) and Na₂SO₃ (200 mg, 1.59 mmol). After evaporation, the product was left over silica gel. FC (silica gel, CH₂Cl₂/MeOH 9 : 1) provided (+)-**18** (374 mg, 62%; over 2 steps) as a *ca*. 1 : 1 mixture of anomers. Whitishyellow foam. $[a]_{589}^{20} = +64$ (c = 0.02, MeOH). UV (MeCN): 200 (4390). IR (KBr): 3410, 2935, 1705, 1650, 1555, 1385, 1255, 1220, 1165, 1120, 1050, 985, 810, 765, 695. ¹H-NMR (400 MHz, CD₃OD): 5.26 (d, ³J = 2.7, 0.5 H, H_{eq}-C(6)); 4.64 (dd, ³J = 2.2, 9.7, 0.5 H, H_{ax}-C(6)); 4.28 (t, ³J = 5.9, 9.7, H-C(4'')); 4.11–4.02 (m, H–C(2''')); 4.04 (m, H–C(4)); 3.91–3.82 (m, H–C(6''), H–C(2)); 3.68 (t, ³J = 6.5, 2 H–C(4''')); 2.80–2.65 (m, 2 H–C(1')); 2.65–2.53 (m, 2 H–C(3'')); 2.10, 1.88 (m, 2 H–C(3')); 1.90–(5)); 1.70–1.54 (m, 2 H–C(5'')); 1.26–1.36 (m, 2 H–C(1''')); 1.32 (s, Me₂C(2'')). ¹³C-NMR (100.6 MHz, CD₃OD)⁴): 206.6 (s, C(2')); 102.6 (s, C(2'')); 66.2, 94.2 (2d, ¹J = 138, 139, C(4')($a(\beta)$); 70.1, 68.0 (2d, ¹J = 144, 143, C(2)($a(\beta)$)); 67.2 (d, ¹J = 143, C(6'')); 60.9 (ds, (2d, ¹J = 129, C(1')); 50.2 (t, ¹J = 127, C(3'')); 4.5.5 (t, ¹J = 124, C(4'')); 60.9 (t, ¹J = 144, C(4'')); 50.8 (t, ¹J = 129, C(1')); 50.2 (t, ¹J = 127, C(3'')); 45.5 (t, ¹J = 124, C(4'')); 60.9 (t, ¹J = 144, C(4'')); 50.8 (t, ¹J = 129, C(1')); 50.2 (t, ¹J = 127, C(3'')); 45.5 (t, ¹J = 124, C(4'')); 60.9 (t, ¹J = 124, C(4 $C(1'''); 43.9, 42.8 (2t, {}^{1}J = 126, 125, C(3)(\alpha/\beta)); 42.4 (t, {}^{1}J = 125, C(3''')); 41.8, 41.2 (2t, {}^{1}J = 125, 123, C(5)(\alpha/\beta)); 40.3 (t, {}^{1}J = 129, C(5'')); 25.9 (q, {}^{1}J = 127, Me_2C(2'')). CI-MS (NH_3): 394 (1, [M + NH_4]^+), 377 (1, [M + H]^+), 322 (6), 283 (10), 168 (5), 149 (4), 127 (11), 105 (12), 81 (100). Anal. calc. for C_{18}H_{32}O_8 (376.45): C 57.43, H 8.57, O 34.00; found: C 57.39, H 8.37.$

1-[(4S,6S)-6-[(2R)-2,4-Dihydroxybutyl]-2,2-dimethyl-1,3-dioxan-4-yl]-3-[(2R,4R)-tetrahydro-4,6-dihydroxy-2H-pyran-2-yl]propan-2-one ((-)-19). To a soln. of (+)-17 (60 mg, 0.17 mmol) in Me₂CO/H₂O 8:1 (3 ml) was added NMO (70 mg, 0.5 mmol) and 0.1M OSO₄ in CCl₄ (700 µl, 0.064 mmol). The reaction was complete after one night (TLC, CH₂Cl₂/MeOH 9:1). The mixture was diluted with MeOH (3 ml) and quenched by addition of Na₂S₂O₅ (58 mg, 0.35 mmol). After 2 h stirring, the soln. was dried (Na₂SO₄), filtered over a *Celite* pad, and evaporated.

To a soln. of the dihydroxylated product (65 mg, 0.17 mmol) in dry MeOH (3 ml) was added portionwise Pb(OAc)₄ (377 mg, 0.85 mmol). After 30 min (TLC, CH₂Cl₂/MeOH 9:1), the mixture was treated with NaHCO₃ (20 mg), and the product was deposited on silica gel. FC (silica gel, CH₂Cl₂/MeOH 9:1) gave (-)-19 (45 mg, 71%; over 2 steps) as a *ca*. 1:1 anomer mixture. Yellowish foam. $[a]_{589}^{20} = -30; [a]_{578}^{20} = -25; [a]_{546}^{20} = -20;$ $[a]_{436}^{20} = -15; [a]_{365}^{20} = -10 (c = 0.02, \text{MeOH}). \text{ IR (KBr): } 3385, 2940, 1710, 1575, 1385, 1265, 1200, 1165, 1095, 980, 1200, 1165, 1095, 980, 1200, 1165, 1095, 1005,$ 935, 875. ¹H-NMR (400 MHz, CD₃OD): 5.26 (d, ³J = 3.5, 0.5 H, H_{eq}-C(6)); 4.66 (dd, ³J = 1.7, 9.4, 0.5 H, $H_{ax} - C(6)$; 4.42 (m, H-C(6'')); 4.18 (ddt, ${}^{3}J = 2.3, 5.3, 8.2, H-C(4'')$); 4.07 (dddd, ${}^{3}J = 4.7, 9.4, 11.2, 11.8, 0.5, 12.2, 1$ H-C(4); 3.92 (dtd, ${}^{3}J=3.5$, 8.2, 12.3, H-C(2''')); 3.82 (m, H-C(2)); 3.75 (dtd, ${}^{3}J=4.3$, 10.8, 11.6, 0.5, 1 H-C(4); 3.66 (t, ${}^{3}J = 6.5, 2 H-C(4''')$); 2.79–2.58 (m, 2 H-C(1')); 2.56–2.48 (m, 2 H-C(3')); 2.07 (ddd, ${}^{3}J = 6.5, 2 H-C(4''')$); 2.79–2.58 (m, 2 H-C(1')); 2.56–2.48 (m, 2 H-C(3')); 2.07 (ddd, ${}^{3}J = 6.5, 2 H-C(4'')$); 2.79–2.58 (m, 2 H-C(1')); 2.56–2.48 (m, 2 H-C(3')); 2.07 (ddd, ${}^{3}J = 6.5, 2 H-C(4'')$); 2.79–2.58 (m, 2 H-C(1')); 2.56–2.48 (m, 2 H-C(3')); 2.79–2.58 (m, 2 H-C(3'2.2, 4.3, ${}^{2}J = 11.9$, 1 H - C(5); 1.95 (m, 1 H - C(3)); 1.87 (ddd, ${}^{3}J = 2.2$, 4.3, ${}^{2}J = 11.9$, 1 H - C(5)); 1.61 $(m, 2 H - C(3'')); 1.52 (m, 2 H - C(1'')); 1.46, 1.28 (2s, Me_2C(2'')); 1.52, 1.16 (2m, 2 H - C(5'')); 1.08$ $161, C(6)); 69.2 (d, {}^{1}J = 140, C(2)); 67.2, 63.8 (2d, {}^{1}J = 138, 140, C(4)); 67.1 (d, {}^{1}J = 138, C(4'')); 66.9, 65.2 (d, {}^{1}J = 138, 140, C(4)); 67.1 (d, {}^{1}J = 138, C(4'')); 66.9, 65.2 (d, {}^{1}J = 138, 140, C(4)); 67.1 (d, {}^{1}J = 138, C(4'')); 67.1 (d, {}^{1}J = 138, C($ 144, 142, C(6")); 66.0 (d, ^{1}J = 133, C(2")); 60.1 (t, ^{1}J = 137, C(4")); 50.7 (t, ^{1}J = 126, C(1')); 50.5 (t, ^{1}J = 1 $C(3'); 45.4 (t, {}^{1}J = 124, C(1'')); 43.0, 41.9 (2t, {}^{1}J = 129, 124, C(5)); 41.4 (t, {}^{1}J = 123, C(3'')); 40.9, 40.5 (2t, {}^{1}J = 123, C(3'')); 41.4 (t, {}^{1}J = 123, C(3'')); 41.4 (t$ 127, 130, C(3); $38.2(t, {}^{1}J = 128, C(5'')$; $30.5, 20.0(2q, {}^{1}J = 126, Me_2C(2''))$. CI-MS (NH₃): $394(8, [M + NH_4]^+)$, 376 (13, M⁺), 359 (62), 341 (47), 319 (53), 301 (68), 283 (100), 265 (43), 185 (21), 134 (47). Anal. calc. for C₁₈H₃₂O₈ (376.45): C 57.43, H 8.57, O 34.00; found: C 57.26, H 8.57.

(3R)-4-{(1R,3S,4'R,5R,6'S,7R)-3',4',5',6'-Tetrahydro-4'-hydroxy-7-methoxyspiro[2,6-dioxabicyclo[3.3.1]nonane-3,2'-[2H]pyran]-6'-yl]butane-1,3-diol ((-)-20). To a soln. of (+)-18 (50 mg, 0.13 mmol) in CH₂Cl₂/ MeOH 1:1 (1 ml) at 20° was added TsOH (2.9 mg, 0.013 mmol). After 1 h (TLC, CH₂Cl₂/MeOH 9:1), the reaction was quenched with NaHCO3 (30 mg), and the product was deposited on silica gel. FC (silica gel, CH₂Cl₂/MeOH 9:1) afforded (-)-20 (29 mg, 68%). White foam. $[a]_{589}^{25} = -53; [a]_{577}^{25} = -47; [a]_{546}^{25} = -29;$ $[a]_{435}^{25} = -27; [a]_{405}^{25} = -24 (c = 0.13, \text{MeOH}). \text{UV (MeCN}): 195 (550). \text{IR (KBr): } 3555, 2925, 2850, 1450, 1390, 1450, 1390, 145$ 1370, 1250, 1180, 1120, 1030, 965, 880, 805, 735.¹H-NMR (400 MHz, CD₃OD): 4.65 (*dd*, ³*J* = 3.2, 7.0, H-C(7)); 4.06 $(tt, {}^{3}J = 4.8, 11.3, H - C(4'));$ 4.03 (m, H - C(3'')); 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.88 $(ddt, {}^{3}J = 2.7, 4.3, 1.3, H - C(4'));$ 3.98 $(ddt, {}^{3}J = 2.7, 4.3, 1.3, H - C(4'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.88 $(ddt, {}^{3}J = 2.7, 4.3, 1.3, H - C(4'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.89 $(tt, {}^{3}J = 2.7, 4.3, 1.3, H - C(4'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.99 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 11.8, 3.2, H - C(6'));$ 3.90 $(tt, {}^{3}J = 1$ 11.3, H-C(5); 3.80 (ddt, ${}^{3}J = 2.7, 5.9, 11.3, H-C(1)$); 3.73 (t, ${}^{3}J = 7.5, 2 H-C(1'')$); 3.35 (s, MeO-C(7)); 2.00 $(m, 1 \text{ H}-\text{C}(5'), 1 \text{ H}-\text{C}(4'')); 1.91 \quad (m, 1 \text{ H}-\text{C}(3'), 1 \text{ H}-\text{C}(9)); 1.78, 1.71 \quad (2m, 2 \text{ H}-\text{C}(8)); 1.74$ (m, 2 H - C(2')); 1.64 (m, 1 H - C(4)); 1.55 (m, 1 H - C(4)); 1.30 $(t, {}^{2}J = {}^{3}J = 11.8, 1 H - C(4''));$ 1.29 $C(7)); 101.1 (s, C(3)); 67.5 (d, {}^{1}J = 161, C(6')); 67.3 (d, {}^{1}J = 162, C(5)); 67.0 (d, {}^{1}J = 142, C(1)); 65.9 (d, {}^{1}J = 144, C(1)); 67.0 (d, {}^{1}J = 142, C(1)); 67.0 (d, {}^{1}J = 144, C(1)); 67.0 (d, {}^{1}J = 142, C(1)); 67.0 (d, {}^{1}J = 144, C(1)); 67.0$ C(3''); 65.7 (d, ¹J = 142, C(4')); 61.0 (t, ¹J = 139, C(1'')); 53.9 (q, ¹J = 142, MeO - C(7)); 46.3 (t, ¹J = 127, C(4'')); $46.2 (t, {}^{1}J = 127, C(5')); 46.0 (t, {}^{1}J = 127, C(4)); 42.9 (t, {}^{1}J = 128, C(3')); 42.6 (t, {}^{1}J = 130, C(2'')); 42.5 (t, {}^{1}J = 128, C(3')); 42.6 (t, {}^{1}J = 128, C(3')); 42.7 (t, {}^{1}J = 128, C(3')); 42.8 (t, {}^{1}J = 128, C(3'$ C(9)); 40.5 (t, ${}^{1}J = 126$, C(8)). CI-MS (NH₃): 333 (7, $[M + H]^+$), 318 (25, $[M + H - Me]^+$), 301 (17, $[M - Me]^+$) MeO]⁺), 283 (76, [*M* – H₂O – MeO]⁺), 265 (55), 75 (100). Anal. calc. for C₁₆H₂₈O₇ (332.39): C 57.82, H 8.49, O 33.69; found: C 57.89, H 8.42.

(3R)-4-[(IR,3S,4'S,5R,6'R)-3',4',5',6'-Tetrahydro-4'-hydroxy-7-methoxyspiro[2,6-dioxabicyclo[3.3.1]no-nane-3,2'-[2H]pyran]-6'-yl]butane-1,3-diol ((-)-21). As described for (-)-20, with (-)-19 (24 mg, 0.063 mmol), CH₂Cl₂/MeOH 1:1 (500 µl), and TsOH (14.5 mg, 0.063 mmol) (quenching with NaHCO₃ (10 mg)): (-)-21 (13 mg, 65%). White solid. $[a]_{589}^{25} = -28; [a]_{577}^{25} = -32; [a]_{546}^{25} = -32; [a]_{435}^{25} = -59; [a]_{405}^{25} = -71 (c = 0.17, MeOH). UV (MeCN): 201 (750). IR (KBr): 3420, 2930, 2850, 1650, 1435, 1395, 1370, 1260, 1235, 1160, 1120, 1035, 965, 895, 840, 735. ¹H-NMR (400 MHz, CDCl₃)⁵): 4.65 (dd, ³J = 4.1, 5.9, H-C(7)); 4.22 (br. t, ³J = 10.5, H-C(5)); 4.08 (m, H-C(6')); 4.05 (m, H-C(3'')); 4.02 (m, H-C(1)); 3.99 (br. t, ³J = 11.4, H-C(4')); 3.73 (t, ³J = 6.2, 120)$

⁵) α refers to (7*R*) and β to (7*S*) configuration.

 $\begin{array}{l} 2 \ \mathrm{H-C}(1''); \ 3.36, \ 3.33 \ (2s, 3 \ \mathrm{H}, \ \mathrm{MeO-C}(7)(a/\beta); \ 1.99-1.83 \ (m, 1 \ \mathrm{H-C}(8), \ 1 \ \mathrm{H-C}(3'), \ 1 \ \mathrm{H-C}(5'), \\ 1 \ \mathrm{H-C}(4''); \ 1.75-1.45 \ (m, 2 \ \mathrm{H-C}(4), \ 1 \ \mathrm{H-C}(8), \ 2 \ \mathrm{H-C}(9), \ 2 \ \mathrm{H-C}(2''), \ 1 \ \mathrm{H-C}(3'); \ 1.25 \\ (m, 1 \ \mathrm{H-C}(4'')); \ 1.20 \ (q, {}^2J = {}^3J = 11.4, \ 1 \ \mathrm{H-C}(5')). \ {}^{13}\text{C-NMR} \ (100.6 \ \mathrm{MHz}, \ \mathrm{CDCl_3})^5): \ 104.2 \ (d, {}^{1}J = 161, \\ \mathrm{C}(7)); \ 100.2 \ (s, \mathrm{C}(3)); \ 67.1 \ (d, {}^{1}J = 143, \ \mathrm{C}(4')); \ 66.1, \ 66.0 \ (2d, {}^{1}J = 148, \ 143, \ \mathrm{C}(1), \ \mathrm{C}(3'')); \ 64.5 \ (d, {}^{1}J = 146, \\ \mathrm{C}(6')); \ 61.8 \ (d, {}^{1}J = 143, \ \mathrm{C}(5)); \ 60.0 \ (t, {}^{1}J = 142, \ \mathrm{C}(1'')); \ 54.1, \ 53.0 \ (2q, {}^{1}J = 143, \ MeO-C(7)(a/\beta)); \ 45.0, \ 44.9 \\ (2t, {}^{1}J = 125, \ 125, \ \mathrm{C}(9), \ \mathrm{C}(5')); \ 41.8, \ 41.6 \ (2t, {}^{1}J = 122, \ 130, \ \mathrm{C}(8), \ \mathrm{C}(3')); \ 41.0 \ (t, {}^{1}J = 129, \ \mathrm{C}(4'')); \ 39.4 \ (2t, {}^{1}J = 126, \ \mathrm{C}(4), \ \mathrm{C}(2'')). \ \mathrm{CI-MS} \ (\mathrm{NH}_3): \ 350 \ (16, \ [M + \mathrm{NH}_4]^+), \ 333 \ (40, \ [M + \mathrm{H}]^+), \ 318 \ (63, \ [M + \mathrm{H} - \mathrm{Me}]^+), \ 301 \ (56, \ [M - \mathrm{MeO}]^+), \ 283 \ (100, \ [M - \mathrm{H} - \mathrm{H}_2\mathrm{O} - \mathrm{MeO}]^+), \ 265 \ (48), \ 167 \ (9), \ 95 \ (18), \ 75 \ (71). \ \mathrm{Anal. \ calc. \ for } \ C_{16}\mathrm{H}_{28}\mathrm{O}_{7} \ 12 \ \mathrm{H}_{20}: \ \mathrm{C} \ 56.29, \ \mathrm{H} \ 8.56). \end{array}$

(1R,3S,4'R,5R,6'R)-3',4',5',6'-Tetrahydro-6'-[(2S)-2-hydroxybutyl-3-enyl]-7-methoxyspiro[2,6-dioxabicyclo[3.3.1]nonane-3,2'-[2H]pyran]-4'-ol ((-)-23). Under Ar, (-)-20 (25 mg, 0.075 mmol) and 2-nitrophenyl selenocyanate (170 mg, 0.75 mmol) were dissolved in dry THF (500 µl). At 20°, tributylphosphine (185 µl, 0.75 mmol) was added dropwise. After 6 h (TLC, CH₂Cl₂/MeOH 9:1), MeOH (1 ml) was added, and the solvents were evaporated. FC (silica gel, CH₂Cl₂/MeOH 98:2) afforded the selenated compound **22** (35 mg, 97%) as a deep yellow oil, contaminated with tributylphosphine. The phosphine could be removed by several FCs or eliminated by oxidation in the next step.

A soln. of the crude selenated compound 22 (20 mg, 0.038 mmol) in dry THF (500 μ l) was cooled to -78° , and Et₃N (10 µl, 0.076 mmol) was added dropwise, followed by 3-chloroperbenzoic acid (27 mg, 0.152 mmol). After 3 h, additional 3-chloroperbenzoic acid (27 mg, 0.152 mmol) was added. After 2 h (TLC, CH₂Cl₂/MeOH 95:5), the mixture was diluted with MeOH (1 ml) and treated with Na₂SO₃ (40 mg) and NaHCO₃ (40 mg) while the soln. was allowed to warm up to r.t. The product was deposited on silica gel and purified by FC (silica gel, CH₂Cl₂/MeOH 98:2 \rightarrow 95:5): (-)-**23** (10 mg, 86%). Slightly yellowish foam. $[a]_{589}^{25} = -12; [a]_{577}^{25} = -17; [a]_{546}^{25} = -17; [a]_{546}^{25} = -12; [a]_{577}^{25} = -12; [a]_{577}^{25} = -17; [a]_{546}^{25} = -12; [a]_{577}^{25} = -17; [a]_{5$ -19; $[a]_{435}^{25} = -20$; $[a]_{405}^{25} = -37$ (c = 0.10, MeCN). UV (MeCN): 249 (940). IR (KBr): 3420, 2925, 2865, 1705, $1650, 1605, 1515, 1430, 1380, 1260, 1170, 1100, 1030, 805, 735, 705. {^{1}H-NMR} (400 \text{ MHz}, \text{CDCl}_3)^{5}) : 5.90 (ddd, {^{3}J=100}) : 5.90 (d$ 5.4, 10.4, 16.2, H-C(3''); 5.30 (m, 1 H-C(4'')); 5.10 (dd, ${}^{3}J = 10.4$, ${}^{2}J = 1.7$, 1 H-C(4'')); 4.64 (m, H-C(7)); $4.36 (m, H-C(2'')); 4.12 (tt, {}^{3}J = 5.8, 10.8, H-C(4')); 4.05 (m, H-C(5)); 3.84 (m, H-C(6')); 3.71 (m, H-C(1)); 3.$ 3.33, 3.28 (2s, 3 H, MeO-C(7)(α/β)); 2.09 (m, 1 H-C(3'), 1 H-C(4)); 1.97 (m, 1 H-C(4)); 1.92 $(m, 1 \text{ H}-\text{C}(9), 1 \text{ H}-\text{C}(5')); 1.82-1.68 \quad (m, 2 \text{ H}-\text{C}(8), 1 \text{ H}-\text{C}(1'')); 1.61 \quad (m, 1 \text{ H}-\text{C}(1'')); 1.46 \quad (m, 1 \text{ H}-\text{C}(1''))$ $(m, 1 \text{ H}-\text{C}(3'')); 1.40-1.19 \ (m, 1 \text{ H}-\text{C}(5'), 1 \text{ H}-\text{C}(9)).$ ¹³C-NMR (100.6 MHz, CDCl₃)⁵): 140.7 $(d, {}^{1}J = 152, 12)$ C(3''); 114.0 ($t, {}^{1}J = 155, C(4'')$); 100.9, 100.7 (2 $d, {}^{1}J = 168, 168, C(7)(\alpha/\beta)$); 99.1 (s, C(3)); 68.6 ($d, {}^{1}J = 146, C(3)$); 69.6 ($d, {}^{1}J = 146, C(3)$); 69.6 ($d, {}^{1}J = 146, C(3)$); 69.6 ($d, {}^{1}J = 146, C(3)$); 69.7 (d, {}^{1}J = 146, C(3)); 69.7 (d, {}^{1}J $148, 148, MeO - C(7)(\alpha/\beta)); 44.4, 44.0 (2t, {}^{1}J = 126, 128, C(3'), C(5')); 42.6 (t, {}^{1}J = 132, C(1'')); 40.8, 40.6 (2t, {}^{1}J = 126, 128, C(3'), C(5')); 40.6 (2t, {}^{1}J = 126, 128, C(5')); 40.6 (2t, {}^{1}J = 128, C($ 128, 126, C(9), C(4); $37.7 (t, {}^{1}J = 127, C(8))$. CI-MS (NH₃): $316 (100, [M + D]^{+}), 300 (49, [M + H - Me]^{+}), 283$ $(28, [M - MeO]^+), 235 (29), 81 (26), 75 (69).$ HR-MS-ESI (MeOH): 369.1896 ($C_{16}H_{26}O_6 + MeOH + Na]^+$, C₁₇H₃₀NaO₇⁺; calc. 369.1889.

REFERENCES

- T. L. B. Boivin, *Tetrahedron* 1987, 43, 3309; F. Perron, K. F. Albizati, *Chem. Rev.* 1989, 89, 1617; V. Vaillancourt, N. E. Pratt, F. Perron, K. F. Albizati, *Total Synth. Nat. Prod.* 1992, 533; N. Haddad, Z. Abramovich, I. Ruhman, *Recent Res. Develop. Org. Chem.* 1997, 1, 35.
- [2] a) R. Baker, R. H. Herbert, Nat. Prod. Rep. 1984, I, 299; b) W. M. Kitching, J. A. Lewis, M. T. Fletcher, R. A. I. Drew, C. J. Moore, W. Francke, J. Chem. Soc., Chem. Commun. 1986, 853 and ref. cit. therein.
- [3] H. Mishima, M. Kurabayashi, C. Tamura, *Tetrahedron Lett.* 1975, 10, 711; R. W. Burg, B. M. Miller, J. Birnbaum, S. A. Currie, R. Hartman, Y. L. Kong, R. L. Monaghan, G. Olson, I. Putter, J. B. Tunac, H. Wallick, E. O. Stapley, R. Oiwa, S. Omura, *Antimicrob. Agents Chemother.* 1979, 15, 361; H. Mrozik, P. Eskola, M. H. Fisher, *Tetrahedron Lett.* 1982, 23, 2377.
- [4] S. M. Kupchan, E. J. La Voie, A. R. Branfman, B. Y. Fei, W. M. Bright, R. F. Bryan, J. Am. Chem. Soc. 1977, 99, 3199.
- [5] P. Deslongschamps, D. D. Rowan, N. Pothier, T. Sauve, J. Saunders, *Can. J. Chem.* 1981, 59, 1105; P. Deslongschamps, D. D. Rowan, N. Pothier, J. Saunders, *Can. J. Chem.* 1981, 59, 1122.
- [6] G. R. Pettit, Z. A. Cichacz, F. Gao, C. L. Herald, M. R. Boyd, J. Chem. Soc., Chem. Commun. 1993, 1116; G. R. Pettit, C. L. Herald, Z. A. Cichacz, F. Gao, J. M. Schmidt, M. R. Boyd, N. D. Christie, F. E. Boettner, J. Chem. Soc., Chem. Commun. 1993, 1805; G. R. Pettit, Z. A. Cichacz, F. Gao, C. L. Herald, M. R. Boyd, J. M. Schmidt, J. N. A. Hooper, J. Org. Chem. 1993, 58, 1302; G. R. Pettit, C. L. Herald, Z. A. Cichacz, F.

Gao, M. R. Boyd, N. D. Christie, J. M. Schmidt, *Nat. Prod. Lett.* **1993**, *3*, 239; G. R. Pettit, Z. A. Cichacz, C. L. Herald, F. Gao, M. R. Boyd, J. M. Schmidt, E. Hamel, R. Bai, *J. Chem. Soc., Chem. Commun.* **1994**, 1605; M. Kobayashi, S. Aoki, H. Sakai, N. Kihara, T. Saski, I. Kitagawa, *Chem. Pharm. Bull.* **1993**, *41*, 989; M. Kobayashi, S. Aoki, I. Katagawa, *Tetrahedron Lett.* **1994**, *35*, 1243; M. Kobayashi, S. Aoki, K. Gato, I. Kitagawa, *Chem. Pharm. Bull.* **1996**, *44*, 9714.

- [7] a) A. B. Smith, III, V. A. Doughty, C. Sfouggatakis, C. S. Bennett, J. Koyanagi, M. Takeuchi, Org. Lett. 2002, 4, 783; b) I. Paterson, M. J. Coster, Tetrahedron Lett. 2002, 43, 3285; c) M. T. Crimmins, J. D. Katz, D. G. Washburn, S. P. Allwein, L. F. McAtee, J. Am. Chem. Soc. 2002, 124, 5661; d) P. Quayle, Ann. Rep. Prog. Chem.: Org. Chem. 1999, 95, 235; e) J. Pietruszka, Angew. Chem., Int. Ed. 1998, 37, 2629 and ref. cit. therein; f) A. B. Smith, R. M. Corbett, G. R. Pettit, J.-C. Chapuis, J. M. Schmidt, E. Hamel, M. K. Jung, Bioorg. Med. Chem. Lett. 2002, 12, 2039; g) F. M. Uckun, C. Mao, A. O. Vassilev, S. T. Jan, H. Huang, Bioorg. Med. Chem. Lett. 2000, 10, 541; F. M. Uckun, S. T. Jan, C. Mao, H. Huang, Tetrahedron Lett. 2000, 14, 1699; F. M. Uckun, PCT/US99/14747, 2000, 1. F. M. Uckun, Curr. Pharm. Design 2001, 7, 1627; h) S. A. Hermitage, A. Murphy, S. M. Roberts, Bioorg. Med. Chem. Lett. 1998, 8, 1635; A. B. Smith III, Q. Lin, G. R. Pettit, J. C. Chapuis, J. M. Schmidt, Bioorg. Med. Chem. J. Hore, S. Med. Chem. Lett. 1998, 8, 567.
- [8] S. Lemaire-Audoire, P. Vogel, *Tetrahedron Lett.* 1998, 39, 1345; S. Lemaire-Audoire, P. Vogel, *J. Org. Chem.* 2000, 65, 3346.
- [9] a) M.-E. Schwenter, P. Vogel, Chem.-Eur. J. 2000, 6, 4091; b) M.-E. Schwenter, P. Vogel, J. Org. Chem. 2001, 66, 7869.
- [10] K. T. Meilert, M.-E. Schwenter, Y. Shatz, S. R. Dubbaka, P. Vogel, J. Org. Chem. 2003, 68, 2964.
- [11] M. Lautens, P. Chiu, Angew. Chem., Int. Ed. 1993, 32, 281; M. Lautens, R. Aspiotis, J. Am. Chem. Soc. 1996, 118, 10930; M. Lautens, S. Ma, Tetrahedron Lett. 1996, 37, 1727.
- [12] H. M. R. Hoffmann, R. Dunkel, *Tetrahedron* 1997, 53, 14929; H. Kim, H. M. R. Hoffmann, *Eur. J. Org. Chem.* 2000, 2195.
- [13] H. Kaku, M. Tanaka, Y. Norimine, Y. Miyashita, H. Suemune, K. Sakai, *Tetrahedron: Asymmetry* 1997, 8, 195.
- [14] J. Mann, Tetrahedron 1986, 42, 4611; A. Hosomi, Y. Tominga, '[4+3]-Cycloadditions', Ed. I. Fleming, Pergamon Press. Oxford, 1991; Vol. 5, p. 593; J. H. Rigby, C. F. Pigge, Org. React. 1997, 51, 351; C. P. Dell, J. Chem. Soc., Perkin Trans. 1. 1998, 3873; M. Harmata, Recent Res. Develop. Org. Chem. 1997, 1, 523; M. Harmata, Acc. Chem. Res. 2001, 34, 595; A. El-Wareth, A. O. Sarhan, Curr. Org. Chem. 2001, 5, 827.
- [15] D. Turner, P. Vogel, Synlett 1998, 304.
- [16] F. Carrel, P. Vogel, Tetrahedron: Asymmetry 2000, 11, 4661.
- [17] H. C. Kolb, M. S. Vannieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483.
- [18] J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. 1969, 34, 2543.
- [19] E. J. Corey, A. Guzmann-Perez, J. Am. Chem. Soc. 1995, 117, 10805; E. J. Corey, A. Guzman-Perez, Tetrahedron Lett. 1997, 38, 5941.
- [20] D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc. 1988, 110, 3560.
- M. J. Shapiro, S. Russel, *Helv. Chim. Acta* 1986, 69, 803; M. J. Shapiro, K. Prasad, *Tetrahedron Lett.* 1987, 28, 155; K. Narasaka, F.-C. Pai, *Tetrahedron*, 1984, 40, 2233.
- [22] S. D. Rychnovsky, B. N. Rogers, T. I. Richardson, Acc. Chem. Res. 1998, 31, 9.
- [23] A. P. Marchand, 'Stereochemical Applications of NMR Studies in Rigid Bicyclic Systems', Verlag Chemie International, Deerfield Beach, 1982; W. Simon, E. Pretsch, J. Seibl, 'Spectral Data for Structure Determination of Organic Compounds', Springer Verlag, 1989.
- [24] K. Kraehenbuel, S. Picasso, P. Vogel, Helv. Chim. Acta 1998, 81, 1439.
- [25] M. R. Boyd, Principles Practice Oncology 1989, 3, 1.

Received February 7, 2004