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Treatment of alkynylsilanes with triarylantimony diacetates in the presence of Pd2(dba)3�CHCl3 (5 mol%) and
CuI (10 mol%) in CH3CN at 50 �C for 5 h afforded aryl-substituted alkynes in good yield. Alternatively, direct
carbonylative coupling of triarylantimony diacetates with alkynylsilanes was accomplished under atmospheric
pressure of carbon monoxide.

The palladium-catalyzed cross-coupling reaction of terminal
alkynes with aryl or vinyl halides in the presence of a Pd(0)–
Cu() co-catalyst system, known as Sonogashira and Hagihara
coupling, 1 has been widely utilized as a practical synthetic
method for carbon–carbon bond formation in organic syn-
thesis. In synthesis, for the introduction of appropriate func-
tionalities, a terminal alkyne moiety is often protected with a
trimethylsilyl group. Thus the direct coupling of alkynylsilanes
should be more accessible. There have only been a few reports
of such direct coupling reactions of alkynylsilanes with aryl
halides; in the presence of fluoride ion by Hiyama et al.2 or
under basic conditions by Rossi 3 and Huang 4 and their
co-workers. Recently Hiyama et al.5 reported a copper()-salt
mediated direct Pd(0)-cross coupling reaction of alkynylsilanes
with triflates in the presence of CuCl in DMF. Nagasaka et al.6

also reported the direct silver-promoted cross-coupling of alky-
nylsilanes with aryl iodides to form aryl-substituted alkynes.
Alternatively, in order to synthesize alkynyl ketones CuCl-
catalyzed reaction of alkynylsilanes and acyl halides by one-pot
desilylation–coupling was reported by Hosomi et al.7. We have
investigated the use of triarylantimony() diacetates 8 in
palladium-catalyzed cross-coupling reactions; here we wish to
report the direct palladium-catalyzed cross-coupling and
carbonylative cross-coupling of alkynylsilanes with triaryl-
antimony diacetates to afford the aryl-substituted alkynes and
alkynyl ketones (Scheme 1).9

Triarylantimony() diacetates 2a 10 and 2b 11 were prepared by
reaction of triarylantimony() with PhI(OAc)2 by stirring in
CH2Cl2 at room temperature for 7 h (Scheme 2).

Scheme 1

Scheme 2

Results and discussion

1 Pd(0)–Cu(I)-catalyzed cross-coupling of alkynylsilanes with
organoantimony(V) compounds

The results of the palladium–copper catalyzed cross-coupling
of alkynylsilanes with triarylantimony diacetates are summar-
ized in Scheme 3 and Table 1.

The (phenylethynyl)trimethylsilane (1a) reacted with triphen-
ylantimony diacetate (2a) in the presence of Pd2(dba)3�CHCl3

(5 mol%) and CuI (10 mol%) in CH3CN at 50 �C for 5 h to
afford 1,2-diphenylacetylene (3a) in 81% yield (entry 1 in Table
1). No homocoupling reaction of alkynylsilanes 12 was observed
using Ar3Sb(OAc)2. The addition of CuI is critical and
improved the yield. Of the catalysts (Pd2(dba)3�CHCl3, PdCl2,
(π-allyl)2Pd2Cl2, Pd2(dba)3, PdCl2(PhCN)2) tested, Pd2(dba)3�
CHCl3 was the best choice. Among the solvents (DMF,
CH3CN, toluene and DME) tested, CH3CN was the most
suitable at 50 �C. Under the same conditions the reaction of 1a
with tri-p-tolylantimony diacetate (2b) gave 1-phenyl-2-p-tolyl-
acetylene (3b 13a) in 80% yield (entry 2). For the aryl-substituted
silanes 1b and 1c, triphenylantimony diacetate (2a) was success-
fully coupled to give 3c 12c and 3d 13b under the same conditions
in 73 and 70% yields, respectively (entries 3 and 4). The acetyl-
substituted ethynylsilane 1d was treated with 2a and 2b to
provide 3e and 3f in 85 and 82% yields, respectively (entries 5
and 6). When the 1,2-bis(trimethylsilyl)ethyne (1e) was reacted
with 2a and 2b, the disubstituted acetylene 3a and 3g 13c were
afforded in 80 and 77% yields, respectively (entries 7 and 8).
Finally for the 1,4-bis(trimethylsilanylethynyl)benzene (1f),
disubstituted product 3h 13d was obtained using Pd2(dba)3�
CHCl3 as a catalyst (entry 9). However, when PdCl2 was
employed as a catalyst, the mono-substituted product 3i 13e was
afforded in 42% yield (entry 10).

2 Pd(0)–Cu(I)-catalyzed carbonylative cross-coupling of
alkynylsilanes with organoantimony(V) compounds

This coupling was extended to carbonylative cross-coupling of
silanes with antimony() compounds. The results are summar-
ized in Scheme 4 and Table 2.

Scheme 3
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Table 1 Pd(0)–Cu()-catalyzed cross-coupling of alkynylsilanes with triarylantimony diacetates

Entry Silanes Triarylantimony diacetates Product Yieid (%)

1 Ph3Sb(OAc)2

2a
81

2 1a (p-Tol)3Sb(OAc)2

2b
80

3 2a 73

4 2a 70

5 2a 85

6 1d 2b 82

7 2a 77

8 1e 2b 80

9 2a 75

10 1f 2a 42

(3,3-Dimethylbut-1-ynyl)trimethylsilane (1g) was treated
with triphenylantimony diacetate (2a) in the presence of
Pd2(dba)3�CHCl3 (5 mol%) and CuI (10 mol%) under atmos-
pheric pressure of carbon monoxide in CH3CN to give ynone
4e 13f in 80% yield (entry 6 in Table 2). Under the same con-
ditions phenylethynylsilane (1a) reacted with 2a to afford benz-
oyl substituted alkynone 4a 13g in 62% yield (entry 1). For the
substituted arylethynylsilanes 1b and 1c, the reactions with
triphenylantimony diacetate (2a) provided the carbonylated
coupled products 4b 13h and 4c in 65 and 68% yields, respectively
(entries 2 and 3). The bis-silyl substituted 1e and 1f were readily
coupled with 2a to afford the mono carbonylated silanes 4a and
4d in 66 and 58% yields, respectively (entries 4 and 5). This
method was also applied to p-tolyl substituted antimony di-
acetate 2b. The alkynylsilanes 1g and 1b were subjected to
carbonylative cross-coupling to afford ynones 4f and 4g in 77
and 81% yields, respectively (entries 7 and 8). To the best of our
knowledge this is the first direct Pd(0)-catalyzed carbonylative
cross-coupling of alkynylsilanes without deprotection of a silyl
group.

Scheme 4

In considering the plausible mechanism for carbonylative
cross-coupling, the palladium complex A is generated by
oxidative addition of the Ar–Sb bond of triarylantimony()
diacetate onto Pd(0) followed by carbonylation. Altern-
atively, the alkynyl group is transferred from alkynylsilane
to copper to form alkynylcopper B. The alkynyl group in
B migrates from copper to palladium to furnish intermediate
C which is subjected to reductive elimination to give the direct
coupled product, regenerating Pd(0) and Cu() as a catalyst
(Scheme 5).14

In conclusion triarylantimony() diacetates were prepared
conveniently and cross-coupling and carbonylative cross-
coupling of triarylantimony() derivatives with alkynylsilanes
were achieved in the presence of Pd2(dba)3�CHCl3 (5 mol%)
and CuI (10 mol%), at 50 �C at atmospheric pressure of carbon
monoxide for the carbonylative cross-coupling.

Experimental

Typical procedure for the preparation of triarylantimony(V)
diacetate

A mixture of triarylantimony (2.0 mmol) and (diacetoxyiodo)-
benzene diacetate (2.2 mmol) in dichloromethane (20 mL) was
stirred at room temperature for 7 h. The solvent was concen-
trated under reduced pressure to a small volume. A mixture of
diethyl ether–pentane was added and the solution was kept
overnight at �15 �C. The solid was filtered and recrystallized
from a mixture of dichloromethane and pentane.
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Table 2 Pd(0)–Cu()-catalyzed carbonylative cross-coupling of alkynylsilanes with triarylantimony diacetates

Entry Silanes Triarylantimony diacetates Product Yieid (%)

1 Ph3Sb(OAc)2

2a
62

2 2a 65

3 2a 68

4 2a 66

5 2a 58

6 2a 80

7 1g (p-Tol)3Sb(OAc)2

2b
77

8 1b 2b 80

Scheme 5

Triphenylantimony() diacetate (2a): mp 210–212 �C (lit.15

208–209 �C); δH 1.83 (s, 6H), 7.48 (m, 9H), 7.99 (m, 6H).
Tri(p-tolyl)antimony() diacetate (2b): mp 157–159 �C;

δH 1.82 (s, 6H), 2.39 (s, 9H), 7.27 (d, 6H, J = 8 Hz), 7.86 (d, 6H,
J = 8 Hz).

Typical procedure for the cross-coupling of alkynylsilanes with
organoantimony(V) compounds

Diphenylacetylene (3a). To a mixture of triphenylantimony
diacetate (2a) (412 mg, 1.00 mmol), Pd2(dba)3�CHCl3 (112 mg,
5 mol%) and CuI (19 mg, 10 mol%) was added (phenyleth-
ynyl)trimethylsilane (1a) (169 mg, 1.00 mmol) under N2

charged at 50 �C in CH3CN (20 mL). The reaction mixture was
stirred at 50 �C for 5 h, extracted with ether (20 mL × 3), and
washed with water (20 mL × 3). The organic layer was dried
over anhydrous MgSO4 and evaporated in vacuo. The crude
product was separated by SiO2 column chromatography
(hexanes, Rf = 0.48) to afford the coupled product diphenyl-
acetylene (3a) (144 mg, 81%); δH (500 MHz; CDCl3) 7.26 (m,
2H), 7.36 (m, 4 H), 7.54 (m, 4 H); νmax (KBr)/ cm�1 3063, 1600,
1499, 1070, 755; m/z 178 (100), 176, 152, 89, 88, 76.

Compounds 3b–3i were prepared following the above
procedures using the appropriate starting material.

1-Phenylethynyl-4-methylbenzene (3b). Hexanes, Rf = 0.40;
δH (500 MHz; CDCl3) 2.37 (s, 3 H), 7.17 (d, 1 H, J = 7.8 Hz),
7.34 (m, 3 H), 7.42 (m, 2 H), 7.53 (m, 2 H); νmax (KBr)/cm�1

3084, 2964, 1612, 1480, 1372, 695; m/z 192 (100), 191, 189, 165,
115.

1-Methoxy-4-(phenylethynyl)benzene (3c). EtOAc–hexanes
1 : 10, Rf = 0.52; δH (500 MHz; CDCl3) 3.83 (s, 3 H), 6.89 (dd,
1 H, J = 4.2, 2.0 Hz), 7.33 (m, 3 H), 7.51 (m, 4 H); νmax (KBr)/
cm�1 3080, 2958, 1617, 1405; m/z 208, 207 (100), 193 (49), 165
(52).

4-Phenylethynylbenzonitrile (3d). EtOAc–hexanes 1 : 30, Rf =
0.33; δH (500 MHz; CDCl3) 7.37 (m, 3 H), 7.50 (m, 2 H), 7.62
(m, 4 H); m/z 204 (11), 103 (100), 156 (10), 88 (11).

4-Phenylbut-3-yn-2-one (3e). EtOAc–hexanes 1 : 10, Rf =
0.48; δH (500 MHz; CDCl3) 2.45 (s, 3 H), 7.38 (m, 2 H), 7.45 (m,
1 H), 7.56 (m, 2 H); νmax (KBr)/cm�1 3054, 2865, 1680, 1456.

4-(4-Methylbenzene)but-3-yn-2-one (3f ). EtOAc–hexanes
1 : 10, Rf = 0.47; δH (500 MHz; CDCl3) 2.38 (s, 3 H), 2.45 (s, 3
H), 7.19 (d, 2 H, J = 9.9 Hz), 7.47 (dd, 2 H, J = 9.9, 2.1 Hz);
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δC (125 MHz; CDCl3) 200.9, 157.9, 150.5, 137.6, 137.2, 130.0,
128.7, 30.1, 21.9; νmax (KBr)/cm�1 3054, 2865, 1680,1456; m/z
158 (27), 143 (100), 115 (13), 89 (9); HRMS for C11H10O calcd:
158.0732, found: 158.0728.

Bis(4-methylphenyl)acetylene (3g). Hexanes, Rf = 0.38;
δH (500 MHz; CDCl3) 2.36 (s, 3 H), 7.24 (d, 2 H, J = 8.0 Hz),
7.50 (d, 2 H, J = 8.0 Hz); νmax (KBr)/cm�1 3080, 2964, 1609,
1480, 1377; m/z 207 (10), 106 (100), 189 (15), 102 (10), 101 (11),
89 (14).

1,4-Bis(phenylethynyl)benzene (3h). Hexanes, Rf = 0.27;
δH (500 MHz; CDCl3) 7.45 (m, 3 H), 7.58 (m, 4 H); m/z 278
(100), 139 (28), 126 (9).

Trimethyl[4-(phenylethynyl)phenylethynyl]silane (3i). Hex-
anes, Rf = 0.29; δH (500 MHz; CDCl3) 0.12 (s, 9 H), 7.32 (m,
3 H), 7.49 (m, 4 H), 7.52 (m, 2 H); m/z 274 (13), 273 (55), 260
(22), 259 (100), 130 (17).

Typical procedure for the carbonylative cross-coupling of
alkynylsilanes with organoantimony(V) compounds

3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (4b). To a mix-
ture of triphenylantimony diacetate (2a) (412 mg, 1.00 mmol),
Pd2(dba)3�CHCl3 (112 mg, 5 mol%) and CuI (19 mg, 10 mol%)
was added (4-methoxyphenylethynyl)trimethylsilane (1b) (168
mg, 1.00 mmol) under atmospheric pressure of CO at 50 �C in
CH3CN (20 mL). The reaction mixture was stirred at 50 �C for
5 h, extracted with ether (20 mL × 3), and washed with water
(20 mL × 3). The organic layer was dried over anhydrous
MgSO4 and evaporated in vacuo. The crude product was separ-
ated by SiO2 column chromatography (EtOAc–hexanes 1 : 10,
Rf = 0.19) to afford the coupled product 3-(4-methoxyphenyl)-
1-phenylprop-2-yn-1-one (4b) (118 mg, 65%); δH (500 MHz;
CDCl3) 3.89 (s, 3 H), 6.98 (m, 2 H), 7.41 (m, 2 H), 7.45 (m, 1 H),
7.66 (m, 2 H), 8.19 (m, 2 H); νmax (KBr)/cm�1 3055, 2200, 1632,
1264; m/z 237, 236, 208, 193, 165, 159 (100), 144.

Compounds 4a,c–g were prepared following the above
procedures using the appropriate starting material.

1,3-Diphenylprop-2-yn-1-one (4a). EtOAc–hexanes 1 : 10,
Rf = 0.34; δH (500 MHz; CDCl3) 7.41 (m, 2 H), 7.48 (m, 1 H),
7.52 (m, 1 H), 7.62 (m, 1 H), 7.68 (m, 1 H), 8.22 (m, 2 H); νmax

(KBr)/cm�1 3055, 2200, 1641; m/z 206 (95), 178 (100), 129 (94).

4-(3-Oxo-3-phenylprop-1-ynyl)benzonitrile (4c). EtOAc–
hexanes 1 : 7, Rf = 0.34; δH (500 MHz; CDCl3) 7.36–7.82 (m, 7
H), 8.19 (m, 2 H); δC (125 MHz; CDCl3) 174.9, 134.0, 132.1,
130.8, 130.6, 129.9, 127.2, 126.4, 122.5, 115.4, 111.6, 87.1; m/z
235 (15), 234 (99), 233 (100), 105 (14), 191 (12), 128 (29), 103
(82), 91 (23), 77 (33); νmax (KBr)/cm�1 3056, 2987, 2305, 2205,
1644; HRMS for C16H9NO calcd: 231.0684, found:231.0681.

1-Phenyl-3-(4-trimethylsilanylethynylphenyl)prop-2-yn-1-one
(4d). EtOAc–hexanes 1 : 10, Rf = 0.43; δH (500 MHz; CDCl3)
0.22 (s, 9 H), 7.58 (m, 2 H), 7.62 (m, 2 H), 7.74 (m, 1 H), 7.80
(m, 2 H), 8.18 (m, 2 H); δC (125 MHz; CDCl3) 178.5, 137.5,
134.9, 133.5, 132.8, 130.3, 129.5, 126.4, 120.6, 104.7, 98.9, 92.9,
88.9, 0.5; νmax (KBr)/cm�1 3055, 2987, 2199, 1641, 1423, 1265,
744; HRMS for C20H18OSi calcd: 302.1127, found: 302.1123.

4,4-Dimethyl-1-phenylpent-2-yn-1-one (4e). EtOAc–hexanes
1 : 10, Rf = 0.41; δH (500 MHz; CDCl3) 1.34 (s, 9 H), 7.61 (m,
2 H), 7.73 (m, 1 H), 8.05 (m, 2 H); m/z 186 (10), 143 (34), 128
(23), 105 (100), 77 (19).

4,4-Dimethyl-1-(p-tolyl)pent-2-yn-1-one (4f ). EtOAc–hexanes
1 : 10, Rf = 0.47; δH (500 MHz; CDCl3) 1.56 (s, 9 H), 2.42 (s, 3

H), 7.27 (m, 2 H), 7.69 (m, 2 H), 8.00 (m, 2 H); δC (125 MHz;
CDCl3) 178.8, 145.5, 135.5, 130.3, 129.9, 104.1, 78.9, 30.9, 28.7,
22.5; νmax (KBr)/cm�1 3055, 2888, 1706, 1450; HRMS for
C14H16O calcd: 200.1201, found: 200.1203.

3-(4-Methoxyphenyl)-1-(p-tolyl)prop-2-yn-1-one (4g).
EtOAc–hexanes 1 : 10, Rf = 0.16; δH (500 MHz; CDCl3) 2.45
(s, 3 H), 3.89 (s, 3 H), 6.98 (m, 2 H), 7.41 (m, 2 H), 7.45 (m, 1 H),
7.66 (m, 2 H), 8.19 (m, 2 H); δC (125 MHz; CDCl3) 178.5, 162.3,
145.7, 135.5, 130.3, 130.0, 129.7, 115.1, 112.7, 94.5, 87.6, 56.1,
22.5; νmax (KBr)/cm�1 3055, 2963, 2200, 1632, 1264; HRMS for
C17H14O2 calcd: 250.0994, found: 250.0988.
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