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SUMMARY

Elongator protein 3 (ELP3) acetylates histones in the
nucleus but also plays a role in the cytoplasm. Here,
we report that in Drosophila neurons, ELP3 is neces-
sary and sufficient to acetylate the ELKS family mem-
ber Bruchpilot, an integral component of the presyn-
aptic density where neurotransmitters are released.
We find that in elp3 mutants, presynaptic densities
assemble normally, but they show morphological
defects such that their cytoplasmic extensions
cover a larger area, resulting in increased vesicle
tethering as well as a more proficient neurotrans-
mitter release. We propose a model where ELP3-
dependent acetylation of Bruchpilot at synapses
regulates the structure of individual presynaptic
densities and neurotransmitter release efficiency.

INTRODUCTION

Synapses are highly specialized structures with tightly apposed

pre- and postsynaptic elements (Haucke et al., 2011). While the

basic building blocks of synapses within a cell may be similar,

synaptic contacts are not invariant, and synaptic efficacy of indi-

vidual release sites differs (Marrus et al., 2004; Peled and Isacoff,

2011; Pelkey et al., 2006; Schmid et al., 2008). This heterogeneity

suggests that presynaptic release site function may be locally

regulated (Nicoll and Schmitz, 2005; Pelkey and McBain,

2007). Thus, characterization of mechanisms that control the

function of individual active zones will yield insight into the regu-

lation of synaptic plasticity in health and disease.

Synaptic vesicles fuse at active zones, specialized presyn-

aptic structures directly aligned to the postsynaptic receptor

field (Petersen et al., 1997). In Drosophila, active zones harbor

electron-dense T bars, and Bruchpilot (BRP), a large cytoskel-

etal-like protein that is the ortholog of ELKS in mammals, is an

integral part of these structures (Hida and Ohtsuka, 2010; Kittel
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et al., 2006). BRP self-assembles in macromolecular entities

where individual BRP strands join at their N-terminal ends near

the plasma membrane while sending their C-terminal ends into

the cytoplasm like a parasol (Fouquet et al., 2009; Jiao et al.,

2010). Similar to presynaptic specializations in other species,

BRP is thought to capture synaptic vesicles using its C-terminal

extensions, concentrating synaptic vesicles at active zones and

facilitating synaptic transmission (Hallermann et al., 2010b; Zhai

and Bellen, 2004). Although the abundance of BRP at individual

active zones correlates with the release efficiency (Graf et al.,

2009; Marrus et al., 2004; Schmid et al., 2008), little is known

about the molecular mechanisms that regulate the function of

presynaptic release sites. Here, we identify Elongator protein 3

(ELP3), a member of the elongator complex as a regulator of

T bar function and morphology.

ELP3 was originally identified in yeast as a member of the

nuclear elongator complex (Otero et al., 1999). ELP3 harbors

a Gcn5-related acetyltransferase (GNAT) domain and acetylates

lysines in histone H3 (Han et al., 2008; Winkler et al., 2002) to

modify DNA chromatin structure (Walia et al., 1998). The ELP3

ortholog in plants is largely nuclear, however, in yeast and

several other species, the protein also localizes to the cytoplasm

where it is thought to take part in tRNA modification and acety-

lation of tubulin; however, the mechanistic details are elusive

(Creppe et al., 2009; Solinger et al., 2010; Versées et al., 2010).

Interestingly, ELP3 polymorphisms have been associated with

decreased risk for amyotrophic lateral sclerosis (Simpson

et al., 2009), and mutations in ELP1 cause familial dysautonomia

(Cheishvili et al., 2011; Slaugenhaupt and Gusella, 2002).

To understand ELP3 function, we have investigated the

neuronal role for ELP3 in vitro and in vivo. We show that presyn-

aptic ELP3 loss of function results in altered morphology and

function of T bars at fruit fly neuromuscular junctions (NMJs),

and this occurs in the absence of defects in tubulin acetylation.

We find that T bars in elp3mutants change their structure in favor

of forming more elaborate cytoplasmic extensions, that more

synaptic vesicles are tethered to these T bars, and that neuro-

transmitter release becomes more efficient, including a larger

readily releasable vesicle pool (RRP). Our data indicate that
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Figure 1. ELP3 Localizes to Synapses

(A and B) elp3 locus, elp3 alleles (green) (A), and

genomic elp3 constructs that express GFP N- and

C-tagged ELP3 (B). elp3D3 and elp3D4 deletion

mutants lack the SAM and GNAT domains, and

elp3D5 removes the start codon.

(C) Rescue of lethality of different elp3 mutants

using one copy of GFP-elp3+ or elp3+-GFP or

using neuronal (nSyb-GAL4) or ubiquitous (Act-

GAL4) expression of help3. Lethality scored on

regular food while assessing if adult males and

females emerged. Expression of help3 using

BG57-GAL4 (muscular expression) did not rescue

lethality (not shown).

(D and E) ELP3 localization using elp3+-GFP in

third-instar larval salivary gland cells and in fat

body cells labeled with anti-GFP. DNA is labeled

using TOTO3. Scale bars, 10 mm.

(F–J) L3 VNCs of w1118 (F, not GFP-expressing

controls), GFP-elp3+/+ (G), elp3+-GFP/+ (H and I),

and elp3D3/D4; elp3+-GFP/+ (J) animals labeled

with anti-GFP and/or TOTO3. Scale bars, 10 mm

(F–H and J) and 5 mm (I).

(K and L) NMJs of elp3+-GFP/+ animals labeled

with anti-GFP and anti-DLG, a pre- and post-

synaptic marker (K) or anti-DYN, a presynaptic

marker (L). Scale bars, 10 mm (K) and 2.5 mm (L).
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ELP3 Acetylates BRP
ELP3 is necessary and sufficient for BRP acetylation in vitro and

in vivo, and we propose a model where, similar to acetylation of

histones, acetylation of BRP regulates the cytoplasmic exten-

sions of T bars, thereby controlling the capture of synaptic vesi-

cles at active zones and neurotransmitter release efficiency.

RESULTS

Elp3 Is an Essential Gene
We previously isolated two EMS alleles of elp3 (elp31 and elp32)

that harbor missense mutations in the acetyltransferase domain

(Simpson et al., 2009) and now created independent null alleles
Neuron 72, 776–788,
by mobilizing P{SUP or-P}elp3KG02386,

a P element inserted in the 50UTR of

elp3. We isolated three different deletions

of the elp3 locus (elp3D3, elp3D4, elp3D5)

as well as a precise excision (elp3rev)

that serves as a genetic control (Fig-

ure 1A). These deletions fail to comple-

ment one another, as well as elp31 and

elp32, but not lethal alleles of morgue,

located 50 of elp3. Similar to elp3

null mutants (elp3D3/elp3D4), heteroallelic

combinations of the EMS alleles and the

P element excision alleles die as early

pupae, suggesting that all elp3 alleles

we isolated are severe hypomorphic or

null alleles (Walker et al., 2011).

To determine if the lethality and pheno-

types of the elp3 alleles are solely due to

loss of ELP3 function, we created trans-

genic flies that harbor genomic elp3 res-
cue constructs (Figure 1B) (Venken et al., 2006). The constructs

allow expression of a C- or N-terminally GFP-tagged ELP3 under

native control (Venken et al., 2008). The presence of elp3+-GFP

or GFP-elp3+ in several heteroallelic combinations restores

viability (Figure 1C; data not shown) and the cellular phenotypes

in elp3mutants (see below), indicating that only ELP3 function is

affected in the mutants tested.

ELP3 Localizes to the Cytoplasm in Neurons and
Enriches at Synapses
To determine the subcellular localization of Drosophila ELP3, we

labeled elp3+-GFP and GFP-elp3+ with several markers and
December 8, 2011 ª2011 Elsevier Inc. 777



Figure 2. Tubulin Acetylation Is Not

Affected upon Loss of ELP3 Function

(A–E) NMJs of y w; nSyb-GAL4/+ (A), y w; UAS-

hdac6/+; nSyb-GAL4/+ (B), control y w; elp3rev (C),

and mutant y w; elp3D3/D4 (D) Drosophila L3 larvae

labeled with anti-acetylated tubulin (ac-TUB)

(red) and anti-HRP (green), a neuronal membrane

marker; and (E) quantification of acetylated tubulin

intensity in bouton: mean ac-TUB intensity relative

to anti-HRP intensity normalized to control (%).

Mean is quantified from six to ten NMJs from

at least four animals. Error bars, SEM. t test,

*p < 0.05. Scale bar, 5 mm. ns, not significant.

Related to Figure S1.

(F) Western blot of brains dissected from control,

y w; elp3rev, y,w; elp3D3/D4, y w; Act-GAL4/+, y w;

UAS-hdac6/+; Act-GAL4/+ (+HDAC6) Drosophila

third-instar larvae labeled with antibodies against

ac-TUB and total tubulin (TUB).

(G) Western blot of zebrafish 30 hpf embryos in-

jected with elp3 (elp3-MO) and control (rev-MO)

morpholinos, and either incubated in DMSO

(control) or in tubastatin A (tubast.). Blots were

probed with anti ac-TUB, TUB, or Actin (ACT).

(H) Quantification of axonal length of 30 hpf ze-

brafish embryos after injection of control (rev-MO)

orelp3 (elp3-MO)morpholinos, treatedwithDMSO

(control) or tubastatin A (tubast.). t test, *p < 0.05.

(I) Western blot of N2a, HEK, NCS34, and cul-

tured cortical neuron cells (CN) transfected with

elp3siRNA or nontargeting NT-siRNA (controls),

probed with ac-TUB and GAPDH (control) anti-

bodies. Related to Figure S1.
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assessed GFP distribution. While control animals not expressing

GFP do not show labeling (Figure 1F; data not shown), in several

cell types of third-instar larvae, including salivary gland cells and

fat body cells, ELP3-GFP as well as GFP-ELP3 label the nucleus

and/or the cytoplasm (Figures 1D and 1E; data not shown). In

contrast, in neurons of the ventral nerve cord (VNC) in third-instar

larvae, we observe abundant ELP3 that concentrates in the cyto-

plasm, and we do not observe much nuclear labeling overlap-

ping with Toto-3, a DNA marker. Furthermore, our data indicate

that ELP3 concentrates in the synaptic-rich areas of the VNC and

overlaps with the synaptic markers anti-Discs Large (DLG) and

anti-Dynamin (DYN; Figures 1G–1J; data not shown). Similarly,

also in mouse motor neurons in culture, we observe abundant

cytoplasmic ELP3 localization, indicating that this feature is

evolutionary conserved (data not shown). In Drosophila larvae,

ELP3-GFP is also present at the presynaptic side of NMJ

boutons, double labeled with anti-DLG or with anti-DYN (Figures

1K and 1L). Thus, our data suggest a cytoplasmic role for ELP3 in

motor neurons.

To test whether ELP3 plays an important role in the nervous

system, we generated transgenic animals that harbor a UAS-

human ELP3 construct. Driving expression of hELP3 ubiqui-

tously using Act-Gal4 rescues lethality associated with elp3

loss of function (elp31/elp32; elp3D3/elp3D4), and these flies

show normal electroretinogram recordings (data not shown)

(Simpson et al., 2009), indicating that the construct is functional

(Figure 1C). Driving hELP3 specifically in the nervous system

using nsyb-Gal4 also rescues lethality of elp3 heteroallelic
778 Neuron 72, 776–788, December 8, 2011 ª2011 Elsevier Inc.
combinations (Figure 1C, and see also below). In contrast,

muscular hELP3 expression using BG57-Gal4 does not restore

viability (data not shown). These data indicate an important

role for ELP3 in the nervous system and presynaptically at the

NMJ and also suggest that the function of ELP3 is evolutionary

conserved.

Tubulin Acetylation Is Normal in elp3 Null Mutant Larvae
ELP3 harbors an acetyltransferase domain, and recent evidence

suggests that this function is important to mediate tubulin acet-

ylation (Creppe et al., 2009; Solinger et al., 2010). To test if ELP3

plays a role in neuronal tubulin acetylation in vivo, we labeled

acetylated tubulin with specific antibodies in controls and elp3

null mutant Drosophila larvae. As a control we overexpressed

HDAC6 (nsyb-GAL4), previously shown to act as a tubulin

deacetylase (Hubbert et al., 2002). While neuronal HDAC6

overexpression results in reduced acetylated tubulin labeling in

motor neurons (Figures 2A, 2B, and 2E), loss of ELP3 function

does not result in a difference in labeling intensity (Figures 2C–2E;

see Figures S1A–S1C available online). Similarly, western blot

of acetylated tubulin also does not show a difference between

elp3 null mutants and controls (Figure 2F). Furthermore,

kinesin-driven axonal transport of synaptic vesicles, thought to

be regulated by microtubule acetylation, is also not affected in

elp3 mutants (Figures S1D–S1F), indicating that acetylation of

microtubules in Drosophila larvae that lack elp3 is not affected.

To test if ELP3 is involved in tubulin acetylation in vertebrates,

we performed western blots using extracts of zebrafish embryos
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(30 hr post-fertilization [hpf]) treated with elp3 morpholinos or

treated with control morpholinos (Figure 2G). As we reported

before, elp3 morpholino treatment results in reduced motor

axon length at 30 hpf (Simpson et al., 2009) (Figure 2H).

However, elp3 knockdown does not show reduced levels of

acetylated tubulin (Figure 2G). Consistently, treatment of fish

with tubastatin, a specific inhibitor of HDAC6-mediated tubulin

deacetylation, results in the expected increase in acetylated

tubulin levels, but elp3 morpholino treatment does not coun-

teract this effect (Figure 2G). Furthermore, tubastatin treatment

fails to rescue elp3 morpholino-induced reduction in motor

neuron axon length (Figure 2H), indicating that motor axon

extension phenotypes upon elp3 morpholino treatment are not

caused by decreased tubulin acetylation. Finally, we also as-

sessed a role for ELP3 in the acetylation of microtubules in

N2a, HEK, and NCS34 neuroblastoma cells as well as in mouse

cortical neurons or motor neurons using elp3-siRNA or elp3-

shRNA but did not observe a decrease in the acetylation status

of microtubules (Figure 2I; Figures S1G–S1P). Thus, using

different species and cell types, our data indicate that ELP3 is

not a major acetyltransferase for tubulin, and suggest that

ELP3 exerts neuronal functions without affecting tubulin

acetylation.

BRP Spots Are Enlarged at elp3 Mutant NMJs
Given the cytoplasmic and synaptic localization of ELP3 in

neurons, we assessed the abundance and localization of various

markers at the Drosophila third-instar larval NMJ. We labeled

control and elp3 mutant synapses with the periactive zone

marker anti-FasiclinII (FASII), the synaptic vesicle markers anti-

Cysteine string protein (CSP), anti-synaptobrevin (nSYB), and

anti-vesicular glutamate transporter (vGLUT), with the endocytic

marker anti-DYN and with the active zone markers anti-

BRPNC82, anti-Liprin-a (LIP), and Cacophony-GFP (CAC). While

most of the markers tested do not display a quantitative dif-

ference in labeling intensity or localization in elp3 mutants

compared to controls, BRPNC82 immunoreactivity is markedly

increased (Figures 3A–3D, 3G; Figures S2A–S2D), and this

defect is specific to loss of elp3, as adding a wild-type copy of

elp3 completely rescues the defect (Figures 3D, 3E, and 3G;

data not shown). BRPNC82 recognizes BRP, an integral member

of the electron-dense T bar within the active zonewhere synaptic

vesicles fuse with the membrane (Figure 3H). However, given

that other active zone markers including LIP and CAC do not

show differences in labeling (Figures 3B, 3C, and 3G), our data

indicate specific synaptic defects in elp3 mutants, including

increased BRPNC82 immunoreactivity at NMJ boutons.

BRP forms macromolecular assemblies that are involved in

shaping the T bar (Fouquet et al., 2009). Several ‘‘BRP strands’’

join at their N-terminal ends and contact Cacophony calcium

channels near the presynaptic membrane (Kittel et al., 2006),

while BRP C-terminal ends extend into the cytoplasm (Fig-

ure 3H). BRPNC82 antibodies label the BRP C-terminal portion,

while anti-BRPN antibodies label the N-terminal end of the pro-

tein (Fouquet et al., 2009). To further quantify the defect in

BRPNC82 labeling, we measured dot number in controls and

elp3 mutants. As shown in Figure 3J, we do not observe an

increase in the number of BRPNC82 dots per boutonic area in
elp3 mutants, and similarly, we also do not find a difference in

the densities of dots per bouton of other active zone markers

including LIP and CAC in elp3 mutants and controls (Figures

3B, 3C, 3L, and 3M), indicating that elp3mutations do not affect

the number of active zones per synaptic area. Furthermore,

compared to controls, we also do not observe altered calcium

influx measured using GCaMP3 (Tian et al., 2009) in elp3mutant

boutons (Figures S2E–S2G), in line with normal calcium channel

clustering and function in the mutants.

Next, we quantified BRPNC82 dot size (maximum diameter) in

controls and elp3 null mutants and found an overall increase in

the size of individual BRPNC82 dots (Figures 3D and 3N), sug-

gesting increased immunoreactivity of this antigen at individual

active zones. To scrutinize the BRP defect in elp3 mutants in

more detail, we also quantified features of BRPN labeling in

controls and elp3 mutants (Figures 3F, 3H, 3K, and 3O). First,

we quantified the number of BRPN dots per bouton area but

did not find a difference, again indicating that ELP3 does not

affect the number of active zones per bouton area (Figure 3K).

Next, we also quantified BRPN dot size, but in contrast to

BRPNC82 labeling, BRP dot size revealed by BRPN is very similar

at elp3 mutant boutons and controls (Figure 3O), suggesting

that T bar assembly per se (the number of BRP molecules) is

not affected in elp3 mutants. We further assessed if in elp3

mutants supernumerous ‘‘BRP strands’’ join (Figure 3H), by

also performing western blots of elp3 mutant and control brains

probed with different BRP antibodies but found very similar

BRP levels (Figure 3I; data not shown). Thus, the data indicate

normal assembly of BRP strands at active zones and are

consistent with morphological alterations at the C-terminal of

BRP resulting in a more accessible BRPNC82 epitope in elp3

mutants.

Active Zones Are Malformed in elp3 Mutants
To directly assess active zone morphology in elp3 mutant

and controls, we performed transmission electron microscopy

(TEM). Quantification of several synaptic features, including

synaptic vesicle number, synaptic vesicle size, mitochondrial

number, and T bar number, does not reveal major differences

between mutants and controls (Figures 4A–4C; Figure S3), indi-

cating that elp3 mutations do not result in widespread synaptic

defects or affect synaptic organelle transport. The most pro-

minent feature in elp3 mutant boutons is the occurrence of

sizable T bars with large protrusions that extend into the cyto-

plasm (Figures 4D–4G, arrows). Quantification of T bar top

lengths (platforms) in controls indicates that they never exceed

300 nm, while in elp3 mutants we observe more than 20% of

the T bars with a platform that is larger than 300 nm and up to

400 nm in length (Figures 4D–4G, arrowheads; Figure 4H).

Thus, TEM indicates an increase in T bar size in elp3 mutants,

and these data are consistent with the extensive ‘‘tentacles’’ ex-

tending into the cytoplasm in elp3 mutants that we observe in

electron tomograms of elp3 mutant boutons (Figures 4I–4O,

arrows). In line with these data, we measure a concomitant

increase in the number of synaptic vesicles that are in direct

contact with the T bar (Figure 4P). Hence, the elaboration of

the dense projections of the T bar in elp3 mutants results in an

increased number of T bar-tethered vesicles.
Neuron 72, 776–788, December 8, 2011 ª2011 Elsevier Inc. 779



Figure 3. Bruchpilot BRPNC82 Immunoreac-

tivity Is Expanded in elp3 Mutants, while

Other Synaptic Markers Are Not Affected

(A–F) Labeling of Drosophila third-instar NMJs of

y w; elp3rev (control A–D and F) and y w; elp3D3/D4

(A0–D0 and F0 ) with anti-HRP (neuronal mem-

branes) or anti-DLG (not shown), and FasiclinII,

a perisynaptic marker (FASII) or the active zones

proteins: Liprin-a (LIP), Cacophony-GFP (CAC),

and Bruchpilot (BRPNC82 and BRPN); and of y w;

elp3rev/+; elp3+-GFP/+ (elp3+-GFP, control) and

y w; elp3D3/D4; elp3+-GFP/+ rescued animals with

BRPNC82 (E and E0 ). Related to Figure S2. Scale

bar, 5 mm (A–F, in F0).
(G) Quantification of synaptic marker intensity

(genotypes in A–E), relative to anti-HRP intensity

(not shown) and of synaptic vesicle markers Cis-

teine string protein (CSP), Vesicular glutamate

transporter (vGLUT), and Synaptobrevin (nSYB)

and Dynamin (DYN) (Figures S2A–S2D). Data are

normalized to control (%). Mean is quantified from

six to ten NMJs from at least four animals. Error

bars, SEM. t test, *p < 0.05.

(H) Schematic of a T bar indicating the BRP-N

and -C terminals. Double line shows presynaptic

membrane.

(I) Western blot of brains dissected from control,

y w; elp3rev and y,w; elp3D3/D4 L3 larvae labeled

with BRPD2 and nSYB (control).

(J–M) Quantification of the dot number per syn-

aptic area (defined by anti-HRP or anti-DLG)

for BRPNC82 (J), BRPN (K), LIP (L), and CAC-GFP

detected with anti-GFP (CAC, M). Mean is quan-

tified from five to ten NMJs from at least four

animals. Error bars, SEM. t test, p > 0.05. ns, not

significant.

(N and O) Quantification of BRPNC82 dot size in

controls, y w; elp3rev and mutants, y w; elp3D3/D4

as well as in controls, y w; elp3rev/+; elp3+-GFP/+

(elp3+-GFP) and rescued animals, y w; elp3D3/D4;

elp3+-GFP/+ (N); and quantification of BRPN dot

size in controls and y w; elp3D3/D4 mutants (O).

Mean is quantified for five to ten NMJs from

at least four animals. Error bars, SEM. t test,

***p < 0.0001. ns, not significant.
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Loss of elp3 Results in Larger Excitatory Junctional
Currents and Miniature Excitatory Junctional Currents
To determine functional consequences associated with the loss

of elp3 at the NMJ, we measured synaptic transmission using

two electrode voltage clamp. The average excitatory junctional

current (EJC) amplitude in 0.45 mM calcium is significantly

increased in elp3 mutants (Figures 5A and 5B), and also current

clamp recordings indicate increased excitatory junctional poten-

tial amplitudes in elp3mutants compared to controls (Figure S4).

To determine quantal content, we measured spontaneous

vesicle fusion (mEJC) and quantified the quantal amplitude. As

shown in Figures 5C–5F, mEJC amplitudes are significantly

increased in elp3 mutants compared to controls, while the

mEJC frequency trends toward an increase, but this is not statis-
780 Neuron 72, 776–788, December 8, 2011 ª2011 Elsevier Inc.
tically significant. The quantal content (in 0.45 mM calcium)

also trends toward an increase but is not significantly different

in controls and mutants (EJC/mEJC; controls, 45.3 ± 3.5 quanta;

elp3D3/D4, 54.6 ± 6.7 quanta). Increased mEJC amplitude can

be caused by larger synaptic vesicles that harbor more neuro-

transmitter or by a more elaborate postsynaptic glutamate

receptor field. Given that synaptic vesicle size distribution in

elp3 mutants is not different from controls, we labeled elp3

mutant NMJs with anti-GluRIIA8B4D2 antibodies and with anti-

GluRIII/IIC antibodies that each recognize different glutamate

receptor subunits (DiAntonio et al., 1999; Marrus et al., 2004).

While we did not observe a difference in GluRIII/IIC labeling

between elp3 mutants and controls (Figures 5G, 5H, and 5M),

the GluRIIA labeling in elp3 mutants is increased compared



Figure 4. T Bars Send Extensive Tentacles

into the Cytoplasm in elp3 Mutants

(A–H) TEM of NMJ boutons of y w; elp3rev control

(A and D) and y w; elp3D3/D4 mutants (B and E–G).

Synaptic vesicle diameter frequency (C) from

>2134 vesicles from >20 boutons from 3 animals

per genotype. (D–G) High-magnification image of

T bars in controls (D) and elp3D3/D4 mutants (E–G)

and distribution of individual T bar top lengths

(arrowheads in D–G) and their averages ± SEM (H).

Mean is quantified for >17 T bars from 3 animals

per genotype. t test, *p < 0.05. Related to Fig-

ure S3. Scale bars, 0.5 mm (A and B) and 0.1 mm

(D–G).

(I and J) Electron tomogram of a T bar from y w;

elp3rev (I) and from y w; elp3D3/D4mutant (J). A total

of 40 Z slices are projected. Arrows indicate

tentacles extending in the cytoplasm in elp3

mutants.

(K–O) 3D reconstructions of T bars shown in (I) and

(J) in y w; elp3rev (K) and in y w; elp3D3/D4 mutants

(L–O). Arrows indicate cytoplasmic extensions,

magnified in (M)–(O). T bars are shown frontally

(looking from the cytoplasm to the presynaptic

membrane [light blue]) in their longest dimension,

turned by 30� along the y axis showing the side

and top.

(P) Quantification of the number of T bar-tethered

synaptic vesicles. Mean is s quantified for >17

T bars from 3 animals per genotype. Error bars,

SEM. t test, ***p < 0.0001.
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to controls, and this defect is rescued by a genomic fragment

that harbors wild-type elp3 (Figures 5I–5M). These data are

consistent with the increased mEJC amplitude in elp3 mutants

to be caused by exuberant GluRIIA clustering.

Presynaptic Loss of elp3 Results in a Larger RRP
The number of T bar-tethered synaptic vesicles in elp3 is

increased, and we tested whether a larger pool of synaptic vesi-

cles is immediately ready for fusion in themutants. First, we used

fluctuation analysis to estimate the number of release-ready

vesicles in controls and elp3mutants. Given that EJC amplitudes

in elp3 mutants and controls saturate at high calcium (Fig-

ure S5A), we performed this analysis in the presence of a rapidly

dissociating competitive receptor antagonist g-D-glutamylgly-

cine (g-DGG) that has been used at the Drosophila larval NMJ

before (Pawlu et al., 2004). As shown in Figure S5A, EJC ampli-

tudes recorded in 5 mM external calcium are reduced by 38%

when incubated in 10 mM gDGG, and also mEJC amplitudes

(recorded in 0.5 mM Ca2+) are smaller both in controls (without

gDGG 1.08 ± 0.05 nA; with gDGG 0.68 ± 0.05 nA; Figure S5B)

as well as in elp3 mutants (without gDGG 1.29 ± 0.07 nA; with
Neuron 72, 776–788,
gDGG 0.97 ± 0.03 nA; not shown). While

in other systems application of gDGG

results in a stronger inhibition of the post-

synaptic response (Foster and Regehr,

2004), our data are in line with previous

results at the Drosophila NMJ (Pawlu

et al., 2004) and indicate that gDGG at
least in part prevents postsynaptic receptor saturation in high

calcium concentrations. Recordings in the presence of the

drug will thus allow us to assess neurotransmitter release while

partly suppressing glutamate receptor saturation in controls

and mutants.

We then recorded EJC amplitudes in gDGG and different

calcium concentrations and extracted quantal parameters from

parabolic fits from EJC variance versus EJC mean amplitude

plots (Figures S5C and S5D) (Foster and Regehr, 2004). Our

data indicate a larger release-ready pool in elp3 mutants com-

pared to controls (controls, 512.7 ± 35.1 quanta; elp3, 592.2 ±

41.3 quanta; p < 0.05). Also, we find a similar release probability

(Pr) in controls andmutants in low calcium concentrations (Ca2+):

(0.3 mM) control 0.08 ± 0.001 and elp3 0.13 ± 0.01; (0.4 mM)

control 0.20 ± 0.01 and elp3 0.17 ± 0.01; and (0.6 mM) control

0.27 ± 0.02 and elp3 0.24 ± 0.03. Similarly, in 3 mM calcium

our analyses indicate a similar Pr (control, 0.98 ± 0.02; elp3,

0.96 ± 0.02), but under these conditions, postsynaptic receptor

desaturation by gDGG may be incomplete (Figure S5A), con-

founding our estimations of the release-ready pool and Pr in

the mutants. Nonetheless, in high calcium, Pr is invariably high,
December 8, 2011 ª2011 Elsevier Inc. 781



Figure 5. EJC and mEJC Amplitude Are

Increased in elp3 Mutants

(A and B) Sample EJCs (A) from control y w; elp3rev

and mutant y w; elp3D3/D4 animals recorded in

0.45 mM CaCl2 and quantification of the mean

EJC amplitude (B). Error bars, SEM. n, number

of animals tested. t test, *p < 0.05. Related to

Figure S4.

(C–F) mEJCs recorded in 0.5 mM CaCl2 with TTX

in control y w; elp3rev (black) and mutant y w;

elp3D3/D4 (green) animals; quantification of the

mean mEJC frequency (C) and amplitude (D),

sample EJC traces (E), and cumulative probability

histograms of mEJC amplitude (F; the number of

mEJCs included is indicated). Error bars, SEM. n,

number of animals tested. t test, **p < 0.01; ns, not

significant.

(G–L) Labeling of y w; elp3rev (control, G and I), y w;

elp3D3/D4 (H and J), y w; elp3rev/+ ; elp3+-GFP/+

(elp3+-GFP, K), and y w; elp3D3/D4; elp3+-GFP/+

(rescued elp3 mutants, L) L3 Drosophila NMJs

with anti-GluRIII (G and H), anti-GluRIIA8B4D2 (I–L),

and anti-HRP or anti-DLG (not shown). Scale bar,

5 mm for (G)– (L) in (L).

(M) Quantification of GluR intensity relative to anti-

HRP or anti-DLG intensity. Data are normalized to

control (%), and mean is quantified from six to

ten NMJs from more than four animals. Error

bars, SEM. Student’s t test, **p < 0.01. ns, not

significant.
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and differences in Pr, if any, between elp3 mutants and controls

remain small.

To independently evaluate presynaptic release properties,

we also measured transmission during a short train of high-

frequency stimulation (500ms, 100 Hz) in 5mMexternal calcium,

ensuring a high Pr (Figure 6A). This protocol results in the release

of neurotransmitters from vesicles that are ready for fusion

during the first stimulations and, subsequently, reveals the rate

at which new vesicles are captured and prepared for release

(30th–50th stimulation) (Hallermann et al., 2010a). While the

rate at which vesicles are refilled into the releasable pool during

this stimulation paradigm is similar in elp3 mutants and controls

(p > 0.05), back extrapolation from linear fits of the cumulative

quantal content between the 30th and 50th stimulation reveals

a larger pool of quanta that readily fuses in elp3 mutants com-

pared to controls (control, 706.1 ± 36.9 quanta; elp3, 907.5 ±

52.2 quanta; p < 0.05). This effect is likely not caused by a post-

synaptic change in receptor sensitivity as mEJC amplitude

distribution in controls and in elp3 mutants before versus imme-

diately following stimulation is similar (Figures S5E and S5F).

Finally, we also recorded EJCs during a 500 ms 100 Hz train in

the presence of gDGG, allowing us to perform recordings where

the Pr is high, but postsynaptic receptor saturating is partly

inhibited (Figures S5A–S5C). As shown in Figure 6B, recordings

in gDGG yield very similar results for the sizes of the RRP

compared to recordings in the absence of the drug (control,

700.8 ± 27.5 quanta; elp3, 909.1 ± 40.7 quanta; p < 0.05). While

gDGG may not completely block receptor saturation in high

calcium, the data suggest that changes in postsynaptic receptor
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saturation are not the major cause of the larger number of

detected quanta in elp3 mutants.

To determine the relative contribution of pre- or postsynaptic

loss of elp3 to the defect we observe during high-frequency

stimulation, we conducted rescue experiments. We expressed

wild-type ELP3 (hELP3) using nsyb-Gal4 only in neurons (presyn-

aptically at the NMJ) or using BG57-Gal4 only in muscles (post-

synaptically at the NMJ) in elp3 null mutants. While neuronal

expression of ELP3 rescues the increased BRPNC82 immunore-

activity (Figures 6C, 6D, and 6G), but not the GluRIIA8B4D2 defect

(Figures 6C0, 6D0, and 6G), muscular expression fails to rescue

the BRPNC82 defect (Figures 6E, 6F, and 6H) but rescues the

GluRIIA8B4D2 defect (Figures 6E0, 6F0, and 6H). Furthermore,

muscular expression of ELP3 rescues the increased mEJCs

seen in elp3 mutants, but neuronal ELP3 expression does not

(Figures 6I–6L). Thus, ELP3 is cell autonomously required in

neurons to regulate BRP morphology and in muscles to restrict

GluRIIA abundance.

Having established conditions where the postsynaptic GluRIIA

defect is rescued and the presynaptic defect at the level of BRP

is not, we evaluated the number of readily released quanta

during a 500 ms 100 Hz stimulation train by back extrapolation.

We find that expression of ELP3 in the nervous system of elp3

null mutants rescues the increased release seen in elp3mutants

(nsyb-Gal4/+, 688.1 ± 43.3; elp3 nsyb-Gal4, 620.2 ± 32.6;

p > 0.05) (Figures 6A and 6M). Conversely, when we assess

the number of readily released quanta in elp3 mutants that

express ELP3 in muscles, the pool size is still large (BG57/+,

716.3 ± 44.7; elp3 BG57, 961.3 ± 18.7; p < 0.05) (Figures 6A



Figure 6. Presynaptically, the Size of the

RRP Is Increased in elp3 Mutants

(A and B) The cumulative released quantal content

recorded at 100 Hz in 5 mM CaCl2 without (A) or

with gDGG (B) versus stimulus number in control

(y w; elp3rev, black) and y w; elp3D3/D4 mutant

(green) animals. The y-intercept of the slope of the

trend line (dotted line) at steady state (points

30–50) provides a measure of the average RRP

size (indicated, control: black, elp3: green). Error

bars, SEM; n > 7.

(C–H) Images (C–F) and quantification of labeling

intensity (G and H) in y w; elp3rev/+; nsyb-GAL4/+

(control, C and C0), y w; elp3D3/D4 UAS-help3;

nsyb-GAL4/+ (elp3 mutant with neuronal ELP3

expression; D and D0 ), y w; elp3rev/+; BG57-

GAL4/+ (control, E and E0), and y w; elp3D3/D4

UAS-help3; BG57-GAL4/+ (elp3 mutant with

muscular ELP3 expression F and F0) with anti-

BRPNC82 (C–F) or anti-GluRIIA8B4D2 (C0–F0). Scale
bar, 5 mm (C)–(F) in (F0). Mean boutonic BRP or

GluRIIA intensity relative to anti-HRP, and data

are normalized to control (%). n, number of NMJs

from at least four animals (indicated in the bars).

Error bars, SEM. t test, *p < 0.05, **p < 0.001. ns,

not significant.

(I–L) mEJC traces of recordings in 0.5 mM

CaCl2 with TTX in y w; elp3rev/+; nsyb-GAL4/+ (I),

y w; elp3D3/D4 UAS-help3; nsyb-GAL4/+ (J), y w;

elp3rev/+; BG57-GAL4/+ (K), and y w; elp3D3/D4

UAS-help3; BG57-GAL4/+ (L). Mean mEJC

amplitudes ± SEM; n > 6 animals.

(M and N) The cumulative released quantal

content recorded at 100 Hz in 5 mM CaCl2 in

control y w; elp3rev/+; nsyb-GAL4/+ (M, black), y w;

elp3D3/D4 UAS-help3; nsyb-GAL4/+ (M, green),

control y w; elp3rev/+; BG57-GAL4/+ (N, black),

and y w; elp3D3/D4 UAS-help3; BG57-GAL4/+ (N,

green). The y-intercept of the slope of the trend line

(dotted lines) at steady state (points 30–50) is

a measure of the average RRP size (indicated).

Error bars, SEM; n > 6 animals.

(O) Mean relative fluorescence change (DF/Fo) of

SpH expressed in elp3 mutants (y w; elp3D3/D4; nsyb-GAL4/UAS-SpH, green) and in controls (y w; nsyb-GAL4/UAS-SpH, black) prior to, during, and following

a 500 ms 100 Hz stimulation train (black bar). Error bars, SEM; n = 9. ANOVA, p < 0.01. Related to Figure S5.
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and 6N). Thus, the data indicate that the larger pool of quanta

released under these conditions in elp3 mutants stems from

a presynaptic defect.

To independently test for a presynaptic defect in vesicle

release in elp3 mutants, we expressed synaptopHluorin (SpH).

SpH is a synaptic vesicle-associated pH sensor. At low vesicular

pH, SpH GFP is quenched but increases in fluorescence upon

vesicle fusion (Miesenböck et al., 1998). Wemonitored SpH fluo-

rescence during a 500 ms 100 Hz stimulation paradigm, and

while the initial baseline fluorescence (Fo) in controls and elp3

mutants is similar (data not shown), GFP fluorescence increases

to amuch higher level in elp3mutants compared to controls (Fig-

ure 6O). The data indicate that significantly more synaptic vesi-

cles in elp3 mutants fuse during such a bout of stimulation. We

do not believe that the increased fluorescence we observe is

the result of defects in endocytosis in elp3mutants, as our anal-

yses have not revealed endocytic defects in the mutants (data
not shown), and in addition, a potential defect in endocytosis

would not be expected to significantly contribute to the increase

in fluorescence within this short time period.

ELP3 Is Necessary and Sufficient for BRP Acetylation
Given that elp3mutants show morphological defects at the level

of their T bars, we tested whether BRP is a substrate for ELP3-

dependent acetylation. First, we expressed Drosophila HIS-

ELP3 in E. coli, purified, and refolded the protein (Figures S6A

and S6B). Acetyltransferases are prone to autoacetylation

(Choudhary et al., 2009). We therefore incubated ELP3 with

20 mM Acetyl-CoA for various time periods. Western blots

probed with antibodies against acetylated lysine (Ac-K) indicate

time-dependent ELP3 autoacetylation (Figure 7A). Next, we

tested whether our ELP3 protein can acetylate purified histone

H3, a well-established target, and tubulin. Our data indicate

both concentration- and time-dependent acetylation of histone
Neuron 72, 776–788, December 8, 2011 ª2011 Elsevier Inc. 783



Figure 7. ELP3 Is Sufficient to Acetylate

BRP

(A) Autoacetylation of ELP3 using an ELP3-

enriched fraction with and without adding Acetyl

CoenzymeA (ac-CoA); western blots probed with

Ac-K. Related to Figure S6.

(B) Time-dependent and concentration-depen-

dent in vitro acetylation of histone H3 with an

ELP3-enriched fraction; western blots were pro-

bed with Ac-K.

(C) Tubulin acetylation assay with an ELP3-

enriched fraction on brain extracts of third-instar

y w; elp3D3/D4 mutant larvae; western blots were

probed with anti-acetylated tubulin (ac-TUB) or

total tubulin (TUB).

(D) In vitro acetylation of IPed BRP (with BRPNC82)

from w1118 brains with an ELP3-enriched fraction.

Western blots were probed with Ac-K and re-

probed with BRPD2.

(E and F) Quantification of ELP3-dependent acet-

ylation of tubulin and of BRP normalized to total

tubulin or total BRP levels relative to initial acety-

lation levels (time point ‘‘0’’). Number of indepen-

dent repeats is indicated in the bars.
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H3 (Figure 7B), but we did not observe ELP3-dependent acety-

lation of tubulin in wild-type fly lysate, or in lysate prepared

from elp3 null mutant animals (Figures 7C and 7E; data not

shown). Thus, although our ELP3 fraction is active, it does not

support acetylation of tubulin in vitro. Finally, we tested acetyla-

tion of BRP in vitro. We immunoprecipitated BRP from fly heads

(see also Figure 8H), incubated these BRP-enriched fractions

with Acetyl-CoA and ELP3, and probed western blots with

Ac-K (Figure 7D). As shown in Figures 7D and 7F, we find

obvious time-dependent acetylation of BRP. These data indicate

that ELP3 is sufficient for the acetylation of the active zone-asso-

ciated protein BRP.

To determine if ELP3 acetylates BRP in vivo, we labeled NMJs

with Ac-K. Ac-K labels histones in nuclei (data not shown),

microtubules in axons that we marked using the monoclonal

antibody Futsch22C10 (Figures 8A and 8B), as well as several

features in synaptic boutons (Figures 8A and 8C). Furthermore,

overexpression of HDAC6 shows a marked reduction in Ac-K

that decorates microtubules labeled by Futsch22C10, indicating

that the antibodies are specific (Figure 8E). Interestingly, anti-

acetylated lysine labeling that overlaps with BRPNC82 labeling

is much reduced in elp3 mutants compared to controls (Figures

8C, 8D, 8F, and 8G). The reduction in labeling is specific to active

zones because Ac-K labeling overlapping with Futsch22C10 is not

significantly different in elp3 mutants compared to controls

(Figures 8A, 8B, and 8E). The data suggest that less acetylated

lysines are present at active zones in elp3 mutants.

Next, we immunoprecipitated BRP from control and elp3

RNAi-expressing pharate adult brains and probed western blots
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with Ac-K. BRP immunoprecipitations

(IPs) from control animals show an acety-

lated lysine band that migrates at the

same height of BRP, detected with anti-

bodies against the middle domain of
BRP, BRPD2 (Figures 8H and 7D). This band is largely absent

in western blots of IPs from pharate adult brains that express

RNAi to brp, indicating that the band is specific to BRP and sug-

gesting that at least some BRP is acetylated under basal condi-

tions. Interestingly, in BRP IPs from animals that express RNAi to

elp3, we are able to clearly detect BRP, but the acetylated lysine

band at the height of BRP is largely absent (Figure 8H). These

data corroborate the labeling of acetylated lysines at boutons

and suggest that ELP3 is necessary to maintain the acetylation

status of the active zone-associated protein BRP.

DISCUSSION

In this work we provide evidence that ELP3 acetylates the active

zone-associated cytoskeletal-like protein BRP that is increas-

ingly implicated in neuronal diseases (Choi et al., 2010; Zweier

et al., 2009). ELP3-mediated BRP acetylation regulates dense

body structure, akin to the modification of chromatin structure

in the nucleus, and this function is independent of an effect of

ELP3 on tubulin acetylation. We suggest that decreased BRP

acetylation in elp3 mutants results in expanded cytoplasmic

specializations that capture synaptic vesicles, and our work

points to a model where individual release site morphology

and function may be controlled by BRP acetylation.

Tubulin Acetylation in the Absence of ELP3
Recent work suggests that besides a role in acetylating histones,

ELP3 also acetylates tubulin (Creppe et al., 2009; Solinger et al.,

2010); however, several of our observations using different



Figure 8. ELP3 Is Necessary to Acetylate

BRP

(A–G) Double labeling of NMJs in control elp3rev

(A, C, and G) and y,w; elp3D3/D4 mutant L3 larvae

(B, D, and G), stained with Ac-K and Futsch22C10,

a microtubule-associated protein (A and B), or

BRPNC82 (C, D, and G) and mean Ac-K intensity

within the area marked with Futsch22C10 (E) or

BRPNC82 (F) relative to controls from eight to ten

NMJs frommore than four larvae. Error bars, SEM.

t test, *p < 0.05. Scale bars, 5 mm (A–D in D) and

0.5 mm (G). ns, not significant.

(H) Western blot of IPed BRP (using BRPNC82)

frombrp-RNAi (wDCR2;UAS-brpRNAi/nsyb-Gal4),

control (w DCR2;nsyb-Gal4/+), and elp3-RNAi

(w; UAS-elp3RNAiC8/+; da-Gal4/+), and its control

(w; da-Gal4/+) pupal brains were probed with Ac-K

or with BRPD2.
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species and cell types indicate that microtubules can be acety-

lated by a mechanism that does not involve ELP3. Similar to our

findings, in human neuroblastoma cells or in mouse embryonic

fibroblasts, ELP1 knockdown results in a profound reduction of

ELP3 expression, but also this condition did not affect the levels

of acetylated tubulin (Cheishvili et al., 2011). Although in vitro our

ELP3 fraction was not able to increase tubulin acetylation, when

the protein is overexpressed in N2a cells or in Drosophila motor

neurons, we find amild increase in acetylation of tubulin (data not

shown), but our work shows that this activity is limited outside of

overexpression conditions. It is interesting that an alternative

GNAT domain protein, MEC-17, was shown to acetylate tubulin

in different systems, including nematodes, zebrafish, and ciliates

(Akella et al., 2010); in addition, an acetyltransferase complex,

ARD1-NAT1, that can acetylate tubulin in vitro has been found

associated with tubulin in developing dendrites of cultured hip-

pocampal neurons and was shown to regulate dendritic out-

growth in vitro (Ohkawa et al., 2008). Thus, alternative tubulin

acetyltransferases that regulate neuronal morphology have

been identified.

ELP3 Is a BRP Acetyltransferase and Controls Active
Zone Morphology
In a search of alternative cytoplasmic ELP3 targets, we identi-

fied BRP, a large cytoskeletal-like protein that decorates the

active zone where synaptic vesicles fuse with the membrane.

We provide several lines of evidence that ELP3 acts to acetylate

BRP at the Drosophila NMJ. First, ELP3 is present at NMJ bou-

tons, localizing the enzyme in close proximity to BRP. Second,

acetylated lysine levels that overlap with BRPNC82 labeling at

the NMJ are reduced in elp3mutants. Similarly, BRP-associated

acetylated lysine levels detected bywestern blotting are reduced

in elp3 mutants. Third, immunoprecipitated BRP is efficiently

acetylated by purified ELP3 in vitro. Without excluding other

substrates, our data indicate that ELP3 is necessary and suffi-

cient to acetylate BRP. BRP is indeed an excellent candidate

to undergo this modification as it contains numerous coiled-
coil motifs that were recently shown to be ideal acetylation

substrates (Choudhary et al., 2009).

Individual BRP strands organize into parasol-like structures,

with their N termini facing the plasma membrane, contacting

calcium channels, and their C termini extending into the cyto-

plasm capturing synaptic vesicles (Fouquet et al., 2009; Haller-

mann et al., 2010b; Jiao et al., 2010). While mutations that affect

BRP transport to synapses or assembly of T bars at active zones

exist, our data indicate that these processes are not affected in

elp3 mutants. Unlike SRPK79D mutants (Johnson et al., 2009;

Nieratschker et al., 2009), BRPNC82 does not accumulate in

elp3mutant motor neurons (data not shown), suggesting normal

axonal transport. In addition, in contrast to rab3 mutants (Graf

et al., 2009), the number of T bars per synaptic area is not

different in controls and elp3 mutants.

Our analyses also identified a postsynaptic role for elp3 in

regulating glutamate receptor subunit IIA abundance in muscles

at NMJs and, thus, mEJC amplitude; however, unlike ELP3’s

neuronal function, we show that this role of ELP3 is not critical

for viability, as muscular expression of the protein does not

rescue elp3-associated lethality. Nonetheless, by regulating

postsynaptic receptor field size, ELP3 may also modulate

neuronal communication. We present evidence that this defect

is regulated in muscle cells independently of the presynaptic

role of ELP3.

Using different independent methodologies, we provide

evidence that ELP3 regulates presynaptic neurotransmitter

release efficiency. We show that during a short high-frequency

stimulation train, elp3 mutants show a stronger increase in

SpH fluorescence than controls. Furthermore, mutants release

more quanta than controls during a short 100 Hz stimulation

train, and this is also true in mutant animals that express

hELP3 in muscles and, thus, do not display increased GluRIIA

levels. While these data are consistent with a larger pool of

readily releasable vesicles in the mutants, a larger Pr in elp3

mutants may also contribute to increased release. Given that

gDGG only partially prevents postsynaptic receptor saturation
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at the NMJ, our estimates of Pr in high calcium based on fluctu-

ation analysis are less accurate. However, in 5 mM calcium the

Pr is invariably high, limiting the difference in Pr between controls

and mutants. In addition, an increased Pr but not a larger RRP in

elp3 mutants would alter the time course by which neurotrans-

mitters are released during the 500 ms 100 Hz stimulation para-

digm, but the total number of released quanta would not be

different between elp3 mutants and controls, particularly in

mutants where the postsynaptic defects are rescued, and differ-

ences in receptor abundance are eliminated. Thus, while not

excluding an effect of ELP3 on the Pr in high calcium, our data

are most consistent with an increased RRP in elp3 mutants.

Our work suggests a model where acetylation of BRP reorga-

nizes the cytoplasmic tentacles such that deacetylation leads to

more extensive spreading of the strands, possibly by altering

electrostatic interactions, similar to the regulation of chromatin

structure by histone acetylation (Shogren-Knaak et al., 2006).

At active zones, we speculate that this function regulates vesicle

capturing by the C-terminal end of BRP (Hallermann et al.,

2010b), and transport of vesicles at dense bodies. We present

evidence that the defect in elp3 mutants results in a larger pool

of synaptic vesicles that is ready for immediate release, poten-

tially in part by improved vesicle tethering at T bars. Although

the mechanisms that regulate local ELP3 activity levels at the

synapse (but also those that regulate ELP3 activity in the

nucleus) remain elusive, it will be interesting to identify signaling

pathways that activate ELP3 enzymatic function. The local regu-

lation of ELP3 may enable single active zones to control neuro-

transmitter release and may have important implications for

synaptic transmission regulation in a number of neurological

diseases, including ALS and familial dysautonomia (Simpson

et al., 2009; Slaugenhaupt and Gusella, 2002).

EXPERIMENTAL PROCEDURES

Animals and Cells

All Drosophila lines were kept on cornmeal and molasses medium. For

experiments L3 larvae were grown on black currant juice agar plates with fresh

yeast paste. GAL4 > UAS-expressing larvae and controls were raised at 28�C
(rescue and HDAC6) or at 25�C (CAC-GFP, GCaMP3, SpH, and RNAi). elp3D3,

elp3D4, and elp3D5 mutants and elp3rev controls were created by P element

dysgenesis using y1w67c23, P{SUP or-P}elp3KG02386.

Adult zebrafish (AB) and embryos were maintained and staged as

described (Westerfield, 2003). The elp3 ATG-morpholino is from Gene Tools,

LLC (Corvallis, OR, USA): 50-TGGCTTTCCCATCTTAGACACAATC-30 (ATG-

MO); reverse control 50-CTAACACAGATTCTACCCTTTCGGT-30 (Ctr-MO).

A total of 2 mM tubastatin A or DMSO treatment was started at 6 hpf. Axonal

defects were evaluated at 30 hpf (Lemmens et al., 2007).

N2a, HEK293T, and NSC34 cells were grown under standard conditions,

and cortical neurons, motor neurons, and glial feeder layer cells were prepared

as described (Vandenberghe et al., 1998).

Constructs

UAS-help3 was created by cloning the human elp3 cDNA (OriGene) into the

EcoRI site of pUAST-attB. Genomic GFP-elp3+ and elp3+-GFP constructs

were generated using recombineering in attB-P(acman)-ApR (Venken et al.,

2006, 2008) using BAC RP98-28K16. These constructs were inserted in

VK31 (62E1) and VK01 (59D3) sites using phiC31-mediated integration

(GenetiVision, Houston).

For protein expression,Drosophila elp3 cDNA (RE35395, BDGP) was cloned

into a pDEST14 expression vector using Gateway technology (Invitrogen) and

includes an N-terminal 6xHIS tag.
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Biochemistry

Drosophila, zebrafish, and cellular extracts for westerns were prepared using

standard procedures and probed with the antibodies listed below.

IP of BRP from pupal or adult brain extracts was performed using BRPNC82

diluted 1:5 (Developmental Studies Hybridoma Bank, Iowa City, IA, USA) and

G protein-coupled magnetic beads (BioLabs) using Drosophila head lysate

(Supplemental Experimental Procedures), and IPed protein was either used

for acetylation assays or for westerns.

Drosophila ELP3 was expressed in E. coli Rosetta (DE3) pLysS cells

(Promega). In vitro acetylation was performed by incubating purified ELP3

with substrate in acetylation buffer (50 mM Tris-HCl [pH 8.0], 0.1 mM EDTA,

1 mM DTT, 10 mM Na-butyrate, 10% glycerol) and 20 mM acetyl CoA

(Sigma-Aldrich) at 25�C (Chen and Greene, 2005). Substrates used were puri-

fied Histone H3 (Westburg) and beads with BRP or Drosophila head protein

lysate (for acetylation of tubulin).

Western blotting antibodies were: 1:500 anti-Acetylated lysine (Ac-K)

(rabbit, AB80178; abCAM); 1:1,000 anti-BRPN and 1:1,000 anti-BRPD2

(Fouquet et al., 2009); 1:1,000 anti-neuronal synaptobrevin (nSYBR29) and

1:500 anti-Histone H3 (9715L; Cell Signaling); 1:10,000 anti-Acetylated

a-Tubulin (6-11-B-1; Sigma-Aldrich); 1:1,000 anti-a-Tubulin (B5-12; Sigma-

Aldrich); 1:5,000 anti-b-actin (A5441; Sigma-Aldrich); 1:1,000 anti-BRPNC82

(Developmental Studies Hybridoma Bank); 1:5,000 anti-GAPDH (4300;

Ambion); and 1:1,000 HRP-coupled secondary antibodies (Jackson

ImmunoResearch). Blots were developed with Western Lightning ECL

(PerkinElmer).

Fluorescence Microscopy

Drosophila third-instar larvae were prepared as described (Uytterhoeven et al.,

2011). Primary antibodies were: 1:100 BRPNC82, 1:100 Futsch22C10, 1:25 anti-

GLURIIA8B4D2, 1:50 Anti-DLG4F3, and 1:2 anti-FASII1D4 (all from Develop-

mental Studies Hybridoma Bank); 1:50 anti-CSP49 (Zinsmaier et al., 1994);

1:1,000 anti-HRP (Jackson ImmunoResearch); 1:300 anti-BRPN and 1:1,000

anti-Liprin (Owald et al., 2010); 1:200 anti-DYN (Hudy1; Millipore); 1:500 anti-

nSYBR29 and 1:200 anti-Syndapin (both gifts from H. Bellen, BCM); 1:500

anti-GLURIII (Marrus et al., 2004); 1:10,000 anti-vGLUT (Daniels et al., 2004)

(both gifts from A. Di Antonio, Washington University); 1:200 anti-Acetylated

Lysines (Ac-K) (ab80178; abCAM); 1:1,000 anti-Acetylated a-Tubulin (6-11-

B-1; Sigma-Aldrich); 1:500 anti-GFP (rabbit IgG fraction; Invitrogen) to detect

GFP-ELP3, ELP3-GFP, and Cac-GFP signals; and 1:1,000 secondary Alexa

488, 555, or 645-conjugated antibodies (Invitrogen). Toto3 (Invitrogen) was

used to label DNA and was used at 1:500 in PBS prior to mounting samples.

NMJs were imaged through 633 1.4 NA oil lens on a Zeiss 510 Meta confocal

microscope, and mean fluorescence intensities of labeling per bouton and

background were measured using ImageJ as described (Khuong et al.,

2010; Uytterhoeven et al., 2011). The number of BRP spots per area was

counted following automated thresholding in ImageJ and calculated from

measurements of R 6 type 1b boutons per NMJ on M6/7 in segments A2/3.

Electron Microscopy

L3 larvae were dissected in HL-3 and prepared for TEM, and bouton profiles in

50 nm sections from M6/7 in segment A2 were visualized on a JEOL TEM100

(Uytterhoeven et al., 2011). At least 17 images from 3 animals were analyzed.

Serial-tilt EM was performed on 300 nm sections, and micrographs were

recorded from �60� to 60� at 2� intervals. 3D reconstructions were generated

in IMOD (Uytterhoeven et al., 2011).

Electrophysiology

Recordings from L3 M6 in segment A2/3 were performed on an Axoclamp

900A amplifier, filtered at 1 kHz (400 Hz for minis), and stored in pClamp

10.3 in modified HL-3: 110 mM NaCl, 5 mM KCl, 10 mM NaHCO3, 5 mM

HEPES, 30 mM sucrose, 5 mM trehalose, 10 mM MgCl2, CaCl2 (as indicated)

[pH 7.2], using a holding potential of�70mV (Uytterhoeven et al., 2011). Where

indicated, 0.5 mM TTX (for mini recordings, not in Figures S6E and S6F) or

10 mM g-DGG (Tocris Bioscience) was added (Pawlu et al., 2004) for 10 min

prior to recordings.

Fluctuation analysis was performed as described (Weyhersmüller et al.,

2011).
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The RRP size from cumulative EJC plots was determined as described

(Weyhersmüller et al., 2011; Hallermann et al., 2010a) except that 50 stimuli

were delivered at 100 Hz. EJC amplitudes were measured from peak to the

baseline (lowest level) immediately before the onset of the EJC. Trend lines

were calculated between the 30th and 50th stimulation point and back extrap-

olated to time zero.

Time-Lapse Imaging

GCaMP3 and SpH were expressed with nSyb-Gal4 in elp3rev and elp3

mutants, and imaging was performed as described (Hendel et al., 2008;

Uytterhoeven et al., 2011).
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Quentin, C., Rasse, T.M., Mertel, S., Heckmann, M., and Sigrist, S.J. (2008).

Activity-dependent site-specific changes of glutamate receptor composition

in vivo. Nat. Neurosci. 11, 659–666.

Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R., and Peterson,

C.L. (2006). Histone H4-K16 acetylation controls chromatin structure and

protein interactions. Science 311, 844–847.

Simpson, C.L., Lemmens, R., Miskiewicz, K., Broom, W.J., Hansen, V.K., van

Vught, P.W., Landers, J.E., Sapp, P., Van Den Bosch, L., Knight, J., et al.

(2009). Variants of the elongator protein 3 (ELP3) gene are associated with

motor neuron degeneration. Hum. Mol. Genet. 18, 472–481.

Slaugenhaupt, S.A., and Gusella, J.F. (2002). Familial dysautonomia. Curr.

Opin. Genet. Dev. 12, 307–311.
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