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Abstract:  The asymmetric a-oxylation of the dienolates derived from chiral or, d- or 
fl, T-unsaturated imide with dibenzyl peroxydicarbonate followed by the Pd(O)- 
catalyzed reactions of the resulting allylic carbonate with various nucleophiles 
(alkylation, etherification, and amination) is shown to provide the 7-(S)- or -(R)- 
configurated oc, d-unsaturated imide, respectively, with a high level of stereocontroL 
© 1998 Elsevier Science Ltd. All rights reserved. 

The creation of a chiral center at a position remote from the chiral auxiliary is a challenging problem in 

organic synthesis. ~ Recendy, we have described a general, efficient solution to this problem which relies 

upon a combination in tandem of the asymmetric induction via the allylation of chiral lithium dienolates or the 

aldol reaction of chiral boron dienolates with the asymmetric transmission v/a the [3,3]-sigmatropic 

rearrangements to afford the T-chiral (x, lS-unsaturated acid derivatives in high enantiomeric purities. 2,3 As an 

extension of this strategy, we now disclose a new asymmetric induction/transmission sequence which involves 

the asymmetric (x-oxylation of a chiral dienolate derived from 15,'y-(E)- or (x,15-(E)-I to afford the allylic 

carbonate (E)- or (Z)-2 which is subjected to the Pd(0)-catalyzed allylic substitutions 4 to provide the T-(S)- or - 

(R)-configurated (x,15-unsaturated imide (3), respectively, in a highly stereocontrolled fashion (Scheme 1). 

In view of the ability to introduce various T-substituents (Nu) and induce either configuration at the y-position, 

the present synthetic sequence provides a unique, highly stereopredictable approach to remote asymmetric 

induction. 

Scheme I Chiral Dienolate j I Asymmetric Transmission 
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At the outset, the ~-oxylation of the lithium dienolate of 13,~/-(E)-I with dibenzyl peroxydicarbonate 5 was 

found to afford 74% yield of (E)-2 in a high diastereofacial selectivity (>99% S), together with almost 

complete retention of the (E)-geometry (Scheme 2). By contrast, a similar reaction of tx, ~l-(E)-I proceeded 

also with a high diastereofacial selectivity but together with changeover of the olefin geometry to provide (Z)-2 

in >99% S and 89% Z. 6 Recrystallization of (Z)-2 from hexane was found to improve the stereopurity up to 

95% Z. With the allylic carbonates 2 of high stereopurity in hand, we first studies their thermal [3,3]- 

sigmatropic rearrangements. Significantly enough, the thermolysis of (E)- and (Z)-2 was found to proceed 

with a high level of asymmetric transmission to give the 7-chirally oxylated t~,l~-unsaturated imide (S)- and 

(R)-3a, respectively, in high stereospecificity 7 (Scheme 2). 

Scheme 2 0 
1) LHMDS (1.0 eq.) 200 °C 

I~, 7"(E) -1 , (E)-2 . Xc* . 
2) (BnOCO2)2 (1.2 eq.) (>99% S, 98 % E) toluene, 7 h OCO2Bn 

/ THF, -78 °C, 30 min (87%) (S)-3a (98% S) 
(74%) 

O 
I I  

• (Z)-2 220 °C 
(x,[~-(E)-I (61%) (>99%S, 89%Z) toluene, 7h " Xc* 

OCO2Bn (54%) 
(R)-3a (94% R) 

Next, our effort was directed toward the Pd(0)-catalyzed allylic substitution of (E)- and (Z)-2 with 

various nucleophiles. 8 Firstly, the reaction of (E)-2 with dimethyl malonate (2.0 equiv.) was carried out in 

toluene at room temperature using 5 mol% of Pd(PPh3) 4. Rather surprisingly, the expected substitution 

product was formed in only 10% yield and, instead, the conjugated dienoic imide (~-elimination product) was 

obtained in 81% yield. 9 However, a similar use of 2.5 mol% of Pd2(dba)3.CHC13 with l0 reel% of 

(Ph2PCH2) 2 (dppe) afforded the ),-alkylated product (S)-3b in 80% yield and high enantiopurity (92% S) 

(Scheme 3). l0 In the same way, (Z)-2 provided the epimer (R)-3b in >95% yield and 89% R. 11 It is 

worthwhile to note that the combined use of Pdz(dba)yCHCl3-dppe as the catalyst and toluene as the solvent 

is indispensable to suppress the undesired ~-elimination from the rt-allyl Pd intermediate. Interestingly, the 

use of Pd(PPh3) 4 or Pd2(dba) 3. CHC13-dppe in THF resulted in the exclusive and predominant formation of the 

[3-elimination product, respectively. These observations suggest that, as Keinan et al. have claimed, t 2 the 

dba ligand could effectively suppress the formation of the coordinatively unsaturated Pd intermediate which 

tends to undergo the [3-elimination. As expected, a similar Pd-catalyzed reaction of (S)-3a afforded (S)-3b in 

an equally high yield and stereospecificity through the same chiral n-allyl Pd species as described for (E)-2.13 

Scheme 3 Pd2(Oba)3.CHCI3 (2.5 mol %) O 
dppe (10 mol %) J~ A ~ 

(E)-2 + CH2(CO2Me) 2 X c , / ~ f j v .  
(>99% S, 98 % E) (2 eq.) toluene, rt, 2 h CH(CO2Me)2 (80%) 

(S)-3b (92% S) 

O 
I I  

(Z)-2 + CH2(CO2Me)2 X c * ~  
(>99% S, 89 % Z) (2 eq.) (>95%) CH(CO2Me)2 

(R)-3b (89% R) 
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Secondly, the Pd-catalyzed allylic etherification of 2 was examined using the Pd2(dba)3-CHC13-dppe 

catalyst under the optimized conditions. Initially, the intramolecular way was attempted by simply exposing 

(E)-2 to the catalyst solution. Unfortunately, the desired product (3c) was obtained in only 47% yield. 

However, the etherification of (E)- and (Z)-2 in the presence of 1.0 equiv, of benzyl alcohol afforded the 7- 

benzyloxy-substituted compounds (S)- and (R)-3c, respectively, in good yields together with almost complete 

asymmetric transmission (Scheme 4). 14 Notably, no regiochemical complication was encountered in this 

substitution process. 

Scheme 4 Pd2(dba)a.CHCl3 (2.5 mol %) O 
dppe (10 mol %) I I  

(E)-2 + BnOH • Xc* ~ .  toluene, rt, 40 h 
(>99% S, 98 % E) (1 eq.) (80%) OBn 

(S)-3¢ (96% S) 
O 

(2)-2 + BnOH Xc* ~ 
(>99% S, 94 % 2) (1 eq.) (71%) ~ O B n  

(R)-3c (91% R) 

Finally, the Pd-catalyzed allylic amination of (E)- or (Z)-2 with p-toluenesulfonamide was carried out 

using the Pd2(dba)yCHC13-dppe catalyst under similar conditions. For these reactions a mixture of toluene 

and THF (5:1 vol) was used as the solvent to solubilize the sulfonamide. Thus, the reaction of (E)- and (Z)-2 

with TsNH 2 (1.2 equiv.) was found to afford the T-amino-substituted compounds (S)- or (R)-3d, respectively, 

in good yields but with a slightly lower level of asymmetric transmission (Scheme 5). 15 Again, neither the 

u-substitution product nor the 13-elimination product was detected. 

Scheme 5 Pd2(dba)3.CHCI3 (2.5 mol %) O 
dppe (10 mol %) J~ A . 

(E)-2 + TsNH2 • Xc* 
(>99% S, 98 % E) (1.2 eq.) toluene-THF (5:1), rt, 35 h - HNTs 

(89%) 
(S)-3d (85*/0 S) 

O 
I I  

(,Z)-2 + TsNH2 Xc* "JL ' /~ "~ l  
(>99% S, 95 % Z) (1.2 eq.) (90%) HNTs 

(R)-3d (86% R) 

In summary, we have developed a new, efficient synthetic sequence to effect the net remote asymmetric 

induction which involves the asymmetric (x-oxylation of the dienolates of et,[~- or 13,y-(E)-imide 1 followed 

by the Pd(0)-catalyzed allylic substitutions, thereby permitting ready access to various types of the 7-chirally 

substituted et, l-unsaturated acid derivatives (3) of high enantiopurity in either enantiomeric form, which are 

useful for syntheses of natural products and bioactive molecules. 16 Work is underway to apply the present 

methodology in bioactive molecule synthesis and to further extend the present strategy. 
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