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18 ABSTRACT: β-1,2-Xylosidase activity has not been recorded as an EC subsubclass. 

19 In this study, phylogenetic analysis and multiple sequence alignments revealed that 

20 characterized β-xylosidases of glycoside hydrolase family (GH) 39 were classified 

21 into the same subgroup with conserved amino acid residue positions participating in 

22 substrate recognition. Protein-ligand docking revealed that seven of these positions 

23 were probably essential to bind xylose-glucose, which is linked by a β-1,2-glycosidic 

24 bond. Amino acid residues in five of the seven positions are invariant, while those in 

25 two of the seven positions are variable with low frequency. Both the wild-type 

26 β-xylosidase rJB13GH39 and its mutants with mutation at the two positions exhibited 

27 β-1,2-xylosidase activity as they hydrolyzed o-nitrophenyl-β-D-xylopyranoside and 

28 transformed notoginsenosides R1 and R2 to ginsenosides Rg1 and Rh1, respectively. 

29 The results suggest that all these characterized GH 39 β-xylosidases probably show 

30 β-1,2-xylosidase activity, which should be assigned an EC number with these 

31 β-xylosidases as representatives.

32 KEYWORDS: β-xylosidase; β-1,2-glycosidic bond; enzyme commission; 

33 notoginsenosides; glycoside hydrolase family 39
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34 INTRODUCTION

35 Xylans, abundant in many agricultural biomasses, algae, and industrial wastes, are 

36 polymerized mainly by xylose with β-1,4-glycosidic or β-1,3-glycosidic linkages.1–3 

37 The role of β-1,4-xylosidases and β-1,3-xylosidases is to produce xylose from xylans 

38 after degradation by endo-xylanases. Engineered Saccharomyces cerevisiae can 

39 utilize xylose to produce ethanol, xylitol, lactic acid, and other chemicals.4 Therefore, 

40 β-xylosidases are of great importance in the food, beverage, bioenergy, feed, and 

41 pharmaceutical industries.5 

42 In addition to xylans, some saponins contain xylosyl moieties at their terminals. 

43 Panax notoginseng, well known as “Sanqi” in Chinese, is recorded in the 

44 Compendium of Materia Medica (Bencao Gangmu) and traditionally used for 

45 hemostasis. In China, the plant is primarily cultivated in Yunnan and Guangxi 

46 provinces. Both notoginsenosides R1 and R2 contain a xylosyl group linked by a 

47 β-1,2-glycosidic bond with a glucosyl group (Figure 1).

48 Removal of the xylosyl group from notoginsenosides R1 and R2 yields 

49 ginsenosides Rg1 and Rh1, respectively, which possess anticancer, antioxidant, and 

50 anti-inflammatory activities. Recently, Shin et al.6 reported that the β-xylosidase 

51 (TtGH39) from Thermoanaerobacterium thermosaccharolyticum was the first 

52 β-xylosidase exhibiting β-1,4-xylosidase activity as well as the ability to remove the 

53 xylosyl group from notoginsenosides R1 and R2. Li et al.7 also reported that the 

54 β-xylosidase (Xln-DT) from Dictyoglomus thermophilum could efficiently degrade 

55 xylobiose and remove the xylosyl group from notoginsenoside R1. Both TtGH39 and 
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56 Xln-DT are members of the glycoside hydrolase family (GH) 39. Shin et al.6 and Li et 

57 al.7 focused on the bioconversion of saponins, but they did not stress the key point that 

58 the two β-xylosidases had the ability to hydrolyze β-1,2-glycosidic bonds. 

59 To date, β-1,2-xylosidase or notoginsenoside xylohydrolase activity has not been 

60 assigned an EC number (http://www.enzyme-database.org). Most β-xylosidases are 

61 classified as EC 3.2.1.37 as they catalyze the hydrolysis of β-1,4-linked xylosyl 

62 moieties from xylo-oligosaccharides. β-1,3-Xylosidases are classified as EC 3.2.1.72, 

63 but seldom reported.2,3 To determine β-1,2-xylosidase activity, both notoginsenosides 

64 and o-nitrophenyl-β-D-xylopyranoside are suitable substrates. For example, EC 

65 3.2.1.191–195 show five types of ginsenoside glucohydrolases using various 

66 ginsenosides as substrates. 

67 This study aimed to determine whether other GH 39 β-xylosidases, like TtGH39 

68 and Xln-DT, had the ability to hydrolyze β-1,2-glycosidic bonds for transformation of 

69 notoginsenosides and further proposed that GH 39 β-xylosidases could be 

70 representatives of the new EC subsubclass, β-1,2-xylosidases or notoginsenoside 

71 xylohydrolases.

72

73 MATERIALS AND METHODS

74 Sequence, Strains, and Materials. Previously, we obtained a GH 39 β-xylosidase 

75 (JB13GH39) from Sphingomonas sp. JB13.8 The sequence of JB13GH39 can be 

76 retrieved from the GenBank database (accession No. MG838204). Escherichia coli 

77 BL21 (DE3) was purchased from TransGen (Beijing, China). p-Nitrophenol (pNP) 
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78 and p-nitrophenyl-β-D-xylopyranoside (pNPXyl) were purchased from Sigma-Aldrich 

79 (St. Louis, MO, USA). Notoginsenosides R1 and R2, ginsenosides Rg1 and Rh1, and 

80 o-nitrophenyl-β-D-xylopyranoside (oNPXyl) were purchased from YuanYe 

81 Bio-Technology (Shanghai, China). Mut Express® II Fast Mutagenesis Kit V2 was 

82 purchased from Vazyme Biotech (Nanjing, China).

83

84 Enzyme Activity toward oNPXyl. Recombinant JB13GH39 (rJB13GH39) was 

85 expressed in E. coli BL21 (DE3) cells using the pEASY-E2 vector and purified by 

86 Ni2+-NTA affinity chromatography. The details of enzyme preparation were described 

87 in our previous study.8

88 o-Nitrophenol is not available to us because of its danger. Therefore, the pNP 

89 method was used as described previously8 to evaluate the activity of rJB13GH39 

90 toward oNPXyl. One unit of β-1,2-xylosidase activity was defined as the amount of 

91 enzyme that releases 1 µmol of pNP per minute at pH 4.5 and 50 °C.

92  

93 Enzymatic Transformation of Notoginsenosides R1 and R2. The 400 µL (pH 

94 4.5) reaction included 10 μg of rJB13GH39 and 4 mM substrate. The mixture was 

95 incubated in a water bath at 30 °C for 24 h. The products were qualitatively detected 

96 by electrospray ionization mass spectrometry (ESI-MS) before quantitative analysis. 

97 ESI-MS was carried out in positive mode on a quadrupole time-of-flight 

98 high-resolution mass spectrometer (6540 series, Agilent Technologies, Santa Clara, 

99 CA, USA) with the following parameters: fragmentor, 135 V; capillary, 3500 V; 
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100 skimmer, 65 V; gas (nitrogen) temperature, 350 °C; drying gas, 8 L/min; and 

101 nebulizing gas, 30 psi. For quantitative analysis, the products from notoginsenosides 

102 R1 and R2 were prepared as previously described6 and analyzed by 

103 ultra-high-performance liquid chromatography (UHPLC) at 203 nm with a Hypersil 

104 ODS column (4.0 mm × 250 mm, 5 µm; Agilent Technologies). The column was 

105 eluted at room temperature with 20:80 (v/v) acetonitrile/water at 1.0 mL/min for R1 

106 and Rg1 and with 20:80 to 55:45 (v/v) acetonitrile/water for 60 min at 1.5 mL/min for 

107 R2 and Rh1.

108

109 Phylogenetic Analysis. Phylogenetic analysis of GH 39 members was performed 

110 by MEGA using the built-in Jones–Taylor–Thornton model for distance matrices 

111 calculation and neighbor-joining algorithm for phylogenetic tree construction with 

112 1000 bootstrap replications.9 A total of 14 identified GH 39 β-xylosidases were 

113 selected for phylogenetic analysis: TtGH39 and Xln-DT showing both 

114 β-1,4-xylosidase and β-1,2-xylosidase activities for transformation of 

115 notoginsenosides;6,7 XynB_thesa (accession no. AAA27369 or 1UHV) from 

116 Thermoanaerobacterium saccharolyticum showing both β-1,4-xylosidase and 

117 β-1,2-xylosidase activities using pNPXyl and oNPXyl as substrates;10,11 XynA 

118 (AAB87373) and XynB (AAA23063) from Caldicellulosiruptor saccharolyticus as 

119 well as BxyH (AEE47384) from Cellulomonas fimi showing β-1,2-xylosidase activity 

120 using oNPXyl as substrate;12,13 XynB1 (ABI49941 or 2BS9) from Geobacillus 

121 stearothermophilus having solved crystal structure with molecule 
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122 2,5-dinitrophenyl-β-xyloside as ligand;14 JB13GH39,8 SlpA (AFK86459) from T. 

123 saccharolyticum,15 XylBH39 (BAB04787) from Bacillus halodurans,16 WSUCF1 

124 (EPR27580) from Geobacillus sp.,17 Bxl39A (CAD48308) from Clostridium 

125 stercorarium,18 Coxyl A (ADQ03734) from Caldicellulosiruptor owensensis,19 and 

126 CcXynB2 (AAK24328 or 4EKJ) from Caulobacter crescentus20,21 showing 

127 β-1,4-xylosidase activity. 

128

129 Sequence Analysis. To illuminate patterns of amino acid conservation, the 

130 multiple sequence alignment of the 14 identified GH 39 β-xylosidases were uploaded 

131 to the Weblogo server22 to generate sequence logos.

132

133 Protein Structure Modeling. The protein homology model of JB13GH39 was 

134 built using SwissModel (http://swissmodel.expasy.org/), followed by quality 

135 estimation with GMQE, QMEAN Z-score, and a local quality plot.

136

137 Protein-ligand Docking. The ligand, designated as xylose-glucose, was a 

138 compound linked by a β-1,2-glycosidic bond. Xylose-glucose was retrieved from the 

139 PubChem database with the accessing number CID 3083150. Docking sites of 

140 JB13GH39 were predicted using the Dock Ligands (CDOCKER) protocol by 

141 Discovery Studio v2.5 software (Accelrys, San Diego, CA, USA).

142

143 Site-directed Mutagenesis. Site-directed mutagenesis was used to substitute 
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144 Tyr257 and Tyr311 of JB13GH39 with Thr and Pro, designated as mutants 

145 Y257(Ps266)T and Y311(Ps322)P, respectively. The mutation was introduced using 

146 Mut Express® II Fast Mutagenesis Kit V2 according to the manufacturer’s 

147 instructions. Two primer sets were designed: 

148 ACAGCaccGGCGTCGATGGCGGCTTTCTCGAC and 

149 ATCGACGCCggtGCTGTGCGTGGTGACGAAAT for mutant Y257(Ps266)T and 

150 ATGGAGCACCAGCccaACGCCGCGCGATGCCGTG and 

151 TtggGCTGGTGCTCCATTCGGTGAAATAGAGT for mutant Y311(Ps322)P. 

152 Mutated nucleic acids were confirmed by DNA sequencing (Tsingke, Beijing, China). 

153 Expression and purification of the mutated enzymes were performed as those of 

154 rJB13GH39.

155

156 Activity of Mutants. The pNP method was used as described previously8 to 

157 determine the activity of the mutants toward pNPXyl. One unit of β-1,4-xylosidase 

158 activity was defined as the amount of enzyme that releases 1 µmol of pNP per minute 

159 at pH 4.5 and 50 °C. β-1,2-Xylosidase activity of the mutants toward oNPXyl and 

160 notoginsenosides was detected by pNP method and UHPLC, respectively, as that of 

161 rJB13GH39.

162

163 RESULTS AND DISCUSSION

164 β-1,2-Xylosidase Activity of rJB13GH39. rJB13GH39 was successfully 

165 expressed and purified as previously described.8 The specific activity of rJB13GH39 
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166 toward oNPXyl was 31.7 ± 1.2 U/mg. The ESI-MS spectra indicated that 

167 notoginsenosides R1 and R2 were converted by the activity of purified rJB13GH39 to 

168 ginsenosides Rg1 and Rh1, respectively (Figure S1). Xylose was also observed in 

169 those products (Figure S1). As shown in the UHPLC chromatograms, 100.0 % of 

170 notoginsenoside R1 and 90.3 % of notoginsenoside R2 were individually hydrolyzed 

171 (Figures 2A, 3A).

172 β-Xylosidases have been found in 11 families, including GH 1, 3, 5, 30, 39, 43, 51, 

173 52, 54, 116, and 120.5,23 Why are β-xylosidases so diverse? What are the differences 

174 between these β-xylosidases? One explanation may be that β-xylosidases from each 

175 glycoside hydrolase family have specific activity toward certain xylose-containing 

176 substances. Previous studies have shown that the xylosyl moiety of notoginsenosides 

177 R1 and R2 can be removed by GH 39 β-xylosidases TtGH39 and Xln-DT.6,7 This study 

178 confirmed that GH 39 β-xylosidase rJB13GH39 had the ability to degrade 

179 notoginsenosides R1 and R2. Furthermore, Li et al.7 reported that three GH 3 

180 β-xylosidases, Tth XyB3, Tpe Xln3, and XlnD, as well as one GH 120 β-xylosidase, 

181 Tth Xyl, were unable to degrade notoginsenoside R1. Additionally, we found that the 

182 GH 43 β-xylosidase HJ14GH43 did not function as a β-1,2-xylosidase (data not 

183 shown). Therefore, the functional signature of GH 39 β-xylosidases may be their 

184 ability to cleave the β-xylose-(1→2)-β-glucose bond. However, the function is not 

185 exclusive to GH 39 β-xylosidases, as the GH 1 β-glucosidase from Pyrococcus 

186 furiosus has β-xylosidase activity and can also convert notoginsenosides R1 and R2 to 

187 ginsenosides Rg1 and Rh1, respectively.24
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188 Transformation of notoginsenosides R1 and R2 by GH 39 β-xylosidases seems to 

189 be highly efficient. Notoginsenoside R1 is converted into ginsenoside Rg1 by GH 39 

190 β-xylosidase Xln-DT after 30 min with a corresponding molar conversion yield of 100 

191 % in total.7 GH 39 β-xylosidase TtGH39 completely converts notoginsenosides R1 

192 and R2 to ginsenosides Rg1 and Rh1 after 4 and 18 h, respectively.6 Greater than 90 % 

193 of notoginsenosides R1 and R2 were hydrolyzed when the reactions occurred at 30 °C 

194 for 24 h using rJB13GH39.

195

196 Sequence and Phylogenetic Analyses. Previously, GH 39 enzymes were 

197 regarded as α-L-iduronidases or β-xylosidases. According to the previous 

198 phylogenetic analysis performed by Ali-Ahmad et al.,25  the GH 39 family has four 

199 subgroups. In this study, GH 39 enzymes were also classified into 4 subgroups 

200 (Figure 4). The results suggest that GH 39 enzymes should show at least 4 types of 

201 activity. As shown in Figure 4, subgroup I includes two α-L-iduronidases from Homo 

202 sapiens26 and Mus musculus.27 NF2152, in subgroup III from the rumen anaerobic 

203 fungus Neocallimastix frontalis, was reported to release β-1,2-arabinobiose from 

204 sugar beet arabinan and both β-1,2-arabinobiose and α-1,2-galactoarabinose from rye 

205 arabinoxylan.28 The GH 39 member in subgroup IV, PslG from Pseudomonas 

206 aeruginosa found in chronic leg ulcers, was found to disrupt biofilm matrix 

207 exopolysaccharide in bacteria.29 GH39wh2 from the human gut bacteria Bacteroides 

208 cellulosilyticus was classified in subgroup IV and predicted to harbor 
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209 endo-glycosidase activity.25 TtGH39, Xln-DT, and JB13GH39, as well as other 

210 characterized β-xylosidases, were classified into subgroup II.

211 On the basis of the multiple sequence alignment of the 14 identified GH 39 

212 β-xylosidases in subgroup II, conserved amino acid residue positions are shown in 

213 Figure 5. According to the alignment and the three GH 39 β-xylosidases 

214 XynB_thesa,10,11 XynB1,14 and CcXynB220,21 that have crystal structure data, Glu in 

215 position (Ps) 317 corresponds to the catalytic nucleophile, Glu in Ps195 corresponds 

216 to the general acid/base residue, and His in Ps88, Phe in Ps150, Asn in Ps194, Phe in 

217 Ps201, His in Ps264, Tyr in Ps266, Tyr in Ps322, Trp in Ps356, Phe in Ps362, Glu in 

218 Ps364, and Phe in Ps376 correspond to substrate recognition.

219

220 Protein-ligand Docking. To uncover which amino acid residue positions are 

221 essential for β-1,2-xylosidase activity, protein-ligand docking was performed. 

222 The homology model of JB13GH39 was built previously with CcXynB2 as a 

223 template.8 The quality of the model was high, taking the following values into 

224 consideration: 66.5 % sequence identity, 0.78 GMQE score, -1.49 QMEAN Z-score, 

225 and fewer than 4 residues (0.8 % of the total residues) showing a score below 0.6 in 

226 the local quality plot.8

227 The xylose-glucose ligand successfully docked with the catalytic pocket of 

228 JB13GH39 with 91 poses (Figure 6). Each pose was analyzed to show the hydrogen 

229 bond interactions of amino acid residues with the ligand (Figure 7). The results 

230 revealed that His88, Glu189, Tyr257, Glu306, Tyr311, Typ344, and Glu352 of 
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231 JB13GH39 bound xylose-glucose with high frequency (Figure 7). These results 

232 revealed that the seven conserved amino acid residue positions were probably 

233 essential for β-1,2-xylosidase activity.

234 As shown in Figure 5, the positions of His88 (Ps88), Glu189 (Ps195), Glu306 

235 (Ps317), Trp344 (Ps356), and Glu352 (Ps364) are not substituted with other amino 

236 acid residues, while the positions of Tyr257 (Ps266) and Tyr311 (Ps322) can be 

237 substituted with Thr and Pro with low frequency, respectively. As such, it is important 

238 to figure out whether β-1,2-xylosidase activity is lost when the positions of Tyr257 

239 (Ps266) and Tyr311 (Ps322) are substituted with Thr and Pro, respectively.

240

241 Expression and Purification of Mutants. The JB13GH39 residues Tyr257 and 

242 Tyr311 were successfully substituted with Thr and Pro, respectively, and confirmed 

243 by DNA sequencing (Figure S2). Under the same conditions as those of the 

244 expression and purification of rJB13GH39, mutants Y257(Ps266)T and 

245 Y311(Ps322)P were expressed in cells and purified to an electrophoretically pure state 

246 (Figure S3).

247

248 Activity of Mutants. Both Y257(Ps266)T and Y311(Ps322)P showed 

249 β-1,4-xylosidase activity, with specific activities of 0.106 ± 0.002 and 28.641 ± 

250 1.380 U/mg toward pNPXyl, respectively. The specific activities of Y257(Ps266)T 

251 and Y311(Ps322)P were reduced by 99.7 % and 24.2 %, respectively, compared with 

252 that of rJB13GH39 (37.8 ± 0.9 U/mg).8 The decrease in the activity of Y257(Ps266)T 

Page 12 of 30

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



13

253 may be attributed to the function of Y257 (Ps266): the tyrosine enables the catalytic 

254 nucleophile to attack the anomeric center correctly.10

255 Both Y257(Ps266)T and Y311(Ps322)P showed β-1,2-xylosidase activity. The 

256 specific activities of Y257(Ps266)T and Y311(Ps322)P toward oNPXyl were 0.073 ± 

257 0.030 and 7.619 ± 0.429 U/mg, respectively. More than 90 % of notoginsenosides R1 

258 and R2 were converted by purified Y311(Ps322)P to ginsenosides Rg1 and Rh1, 

259 respectively (Figures 2B, 3B). The rates at which Y311(Ps322)P hydrolyzes 

260 notoginsenosides R1 and R2 are almost the same as those of rJB13GH39. However, 

261 just as there was a substantial reduction in β-1,4-xylosidase activity, a substantial 

262 reduction in Y257(Ps266)T β-1,2-xylosidase activity was observed: 57.0 % of 

263 notoginsenoside R1 and 7.5 % of notoginsenoside R2 were individually hydrolyzed by 

264 purified Y257(Ps266)T (Figures 2C, 3C).

265 Phylogenetic analysis revealed that characterized β-1,4-xylosidases and 

266 β-1,2-xylosidases of GH 39 were classified into the same subgroup. Multiple 

267 sequence alignments revealed that these GH 39 β-xylosidases have conserved amino 

268 acid residue positions that participate in substrate recognition. Among these conserved 

269 amino acid residue positions, seven were probably essential to xylose-glucose binding 

270 revealed by protein-ligand docking. Amino acid residues in five of the seven positions 

271 are invariant, while those in two of the seven positions are variable with low 

272 frequency. Mutation at the two positions maintained β-1,4-xylosidase and 

273 β-1,2-xylosidase activity at the expense of decreased activity. These results suggest 

274 that all GH 39 β-xylosidases (GH 39 subgroup II) probably show β-1,2-xylosidase 
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275 activity for transformation of notoginsenosides. As such, we proposed that GH 39 

276 β-xylosidases could be representatives of a new EC subsubclass.

277 In conclusion, based on molecular analysis, conserved amino acid residue 

278 positions of characterized GH 39 β-xylosidases involved in β-1,2-xylosidase activity 

279 were revealed. Activity determination showed that both wild-type rJB13GH39 and its 

280 mutants exhibited β-1,2-xylosidase activity. These results confirm the cleavage of 

281 terminal β-xylose-(1→2)-β-glucose bond by these GH 39 β-xylosidases for 

282 transformation of notoginsenosides, and such cleavage activity should be assigned an 

283 EC number. These characterized GH 39 β-xylosidases could be representatives of the 

284 new EC subsubclass.
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FIGURE CAPTIONS

Figure 1. The diagram of enzymatic transformation of notoginsenosides R1 and R2 to 

ginsenosides Rg1 and Rh1, respectively.

Figure 2. UHPLC analysis for the conversion of notoginsenosides R1 to ginsenosides 

Rg1 using rJB13GH39 (A), Y257(Ps266)T (B), and Y311(Ps322)P (C).

Figure 3. UHPLC analysis for the conversion of notoginsenosides R2 to ginsenosides 

Rh1 using rJB13GH39 (A), Y257(Ps266)T (B), and Y311(Ps322)P (C).

Figure 4. The phylogenetic tree constructed on the basis of GH 39 enzymes.

The enzyme name, accession number, and source are given. Bootstrap values (n = 

1000 replicates) are reported as percentages. The scale bar represents the number of 

changes per amino acid position.

Figure 5. Sequence logos generated on the basis of the multiple sequence alignment 

of the 14 identified GH 39 β-xylosidases in subgroup II shown in Figure 4.

Arrows show the putative catalytic and substrate recognition residues. Asterisks show 

the conserved docking positions shown in Figure 7.

Figure 6. Xylose-glucose ligand docking with the catalytic pocket of JB13GH39 with 

91 poses.
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Hydrogen bonds are represented by green-dashed lines.

Figure 7. Heat plot showing the hydrogen bond interactions of amino acid residues 

with the 91 poses of the xylose-glucose ligand.

Arrows show the conserved docking positions.

Page 22 of 30

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



23

Notoginsenoside

Rg1 Rh1

GH 39 β-1,2-xylosidase

Ginsenoside

R1 R2

Figure 1.

Page 23 of 30

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



24

Notoginsenoside R1

Notoginsenoside R1 
hydrolyzed by rJB13GH39 
Ginsenoside Rg1

A

B

Notoginsenoside R1

Notoginsenoside R1 
hydrolyzed by Y257(Ps266)T
Ginsenoside Rg1

C

Notoginsenoside R1

Notoginsenoside R1 
hydrolyzed by Y311(Ps322)P
Ginsenoside Rg1

Figure 2.
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Notoginsenoside R2

Notoginsenoside R2 
hydrolyzed by rJB13GH39 
Ginsenoside Rh1
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Notoginsenoside R2

Notoginsenoside R2 
hydrolyzed by Y257(Ps266)T
Ginsenoside Rh1
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Notoginsenoside R2

Notoginsenoside R2 
hydrolyzed by Y311(Ps322)P
Ginsenoside Rh1

Figure 3.
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NF2523, ASF57709, Neocallimastix frontalis

NF2152, ASF57707 or 5U22, Neocallimastix frontalis

Hypothetical β-xylosidase, SHJ25262, Fibrobacter sp.

Hypothetical β-xylosidase, SDM81094, Streptomyces guanduensis

Hypothetical β-xylosidase, SIR88575, Microbispora rosea

XynB_thesa, AAA27369 or 1UHV, Thermoanaerobacterium saccharolyticum

SlpA, AFK86459, Thermoanaerobacterium saccharolyticum

TtGH39, ADL68513, Thermoanaerobacterium thermosaccharolyticum

Xln-DT, ARO76324, Dictyoglomus thermophilum

XynA, AAB87373, Caldicellulosiruptor saccharolyticus

XylBH39, BAB04787, Bacillus halodurans
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WSUCF1, EPR27580, Geobacillus sp.

Bxl39A, CAD48308, Clostridium stercorarium

BxyH, AEE47384, Cellulomonas fimi

Coxyl A, ADQ03734, Caldicellulosiruptor owensensis

XynB, AAA23063, Caldicellulosiruptor saccharolyticus

JB13GH39, MG838204, Sphingomonas sp.
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IDUA, AAC42044, Mus musculus

PslG, AAG05625 or 4ZN2, Pseudomonas aeruginosa

GH39wh2, WP_029426617 or 5JVK, Bacteroides cellulosilyticus
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Figure 5.
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