CHEMISTRY LETTERS, pp. 721-722, 1988.

© 1988 The Chemical Society of Japan

Reactivity of α -Metal(group 4) Esters. Lewis Acid Mediated Reactions of α -Triphenyltin Esters with Aldehydes and Acetals

Syun-ichi KIYOOKA^{*} and Masumi NAKATA Department of Chemistry, Kochi University, Akebono-cho, Kochi 780

Ethyl triphenylstannylacetate and ethyl α -triphenylstannylpropionate reacted with aldehydes and acetals to give β -hydroxy and β -alkoxy esters at room temperature in the presence of TiCl₄ in moderate yields. Under these conditions ethyl triphenylgermylacetate and ethyl trimethylsilylacetate did not work.

The improvement of versatile reactions for carbon-carbon bond formation is an important framework of synthetic organic chemistry. The Reformatsky reaction¹⁾ is widely recognized as an effective synthetic tool and its improvements are being continued up to date.²⁾ Reformatsky-type reactions using other α -metallic esters³⁾ are not so much, compared with similar reactions using α -metallic ketones.⁴⁾ The study of relative reactivity of α -metal(group 4) esters toward carbonyl compounds is of interest to find out more facile preparations of β -hydroxy esters, but its systematic comparisons have not been done yet.

The addition reaction at room temperature of ethyl α -triethylstannylacetate was limited to the compounds having carbonyl group polarized by strong electron withdrawing group (e.g. CCl₃CHO, C₆F₅CHO).^{3a)} In this communication, we report that Reformatsky-type reactions using α -triphenyltin esters⁵⁾ with aldehydes and acetals are smoothly promoted by Lewis acid, especially titanium tetrachloride, at room temperature.

 $\frac{R}{Ph_{3}SnCHCOOEt} + RCHO, [RCH(OMe)_{2}] \xrightarrow{\text{TiCl}_{4}-CH_{2}Cl_{2}} RCHCHCOOEt}{rt, 5 \min} \frac{R}{R}$

In a typical experiment; to a solution of titanium tetrachloride (1.5 mmol) in dichloromethane was added dropwise a mixture of ethyl triphenylstannylacetate (1.5 mmol) and benzaldehyde (1.5 mmol) in dichloromethane at room temperature. After stirring for 5 min, the reaction mixture was quenched with water. (The reaction with acetal was first quenched with methanol.) After usual work-up, purification by flash column chromatography gave the desired β -hydroxy(or methoxy) ester; 72%. Further the triphenyltin moiety was economically recovered as triphenyltin chloride in all runs; which is presumably produced by interaction with TiCl₄ in the reaction.

The products were obtained in moderate yields and these reactions showed

Run	a-Tin ester	Aldehyde, Acetal	Isolated yield/%	Selectivity
1	1	i-PrCHO	76	
2	1	PhCHO	72	
3	1	i-PrCH(OMe) ₂	55	
4	<u>1</u>	PhCH(OMe) ₂	64	
5	2	i-PrCHO	63	$2 : 1^{b}$
6	2	PhCHO	74	$1.6 : 1^{b}$
7	2	PhCH(OMe) ₂	65	$3.2 : 1^{b}$
8	1	PhMeCHCHO	69	$1.6 : 1^{c}$
9	<u>1</u>	PhMeCHCH(OMe) ₂	64	$3.1 : 1^{c}$

Table 1. Titanium tetrachloride mediated reactions of Ph_2SnCH_2COOEt <u>1</u> and Ph₃Sn(CH₃)CHCOOEt 2 with aldehydes and acetalsa)

a) Reaction conditions (see text); rt, 5-10 min. b) Erythro/threo ratios determined from their ¹H-NMR spectra, according to Ref. 6. c) Cram/anti-Cram ratios determined from their 1H-NMR spectra, according to Ref.

erythro- and Cram-selectivities, as summarized in Table 1. Other Lewis acids (e.g. BF3.OEt2, SnCl₄) did not effectively accelerate these reactions. A long-time reaction gave complex products. In addition, Me3SiCH2COOEt and Ph3CH2COOEt were unexpectedly inert toward Lewis acid conditions described in this text in contrast with a-silyl and a-germyl ketones. 4b,c)

References

- M. W. Rathke, Org. React., 22, 423 (1975); F. Orsini, F. Pelizzoni, and G. Ricca, Tetrahedron Lett., 23, 3945 (1982).
 R. Csuk, A. Furstner, and H. Weidmann, J. Chem. Soc., Chem. Commun., 1986, 775; G. D. Boldrini, D. Savoia, E. Tagliavini, C. Trombini, and A. Umani-Ronchi, J.
- G. D. Boldrini, D. Savola, E. Tagliavini, C. Trombini, and A. Umani-Ronchi, J. Org. Chem., <u>48</u>, 4108 (1983) and references cited therein.
 3) a) J. G. Noltes, T. Verbeek, and H. M. J. C. Cremers, J. Organomet. Chem., <u>11</u>, 21 (1968); Organomet. Chem. Syn., <u>1</u>, 57 (1970/1971); b) E. Nakamura, M. Shimizu, and I. Kuwajima, Tetrahedron Lett., <u>1976</u>, 1699; c) M. Bellassoued, J. -E. Dubois, and E. Bertounesque, ibid., <u>27</u>, 2623 (1986); d) T. Harada and T. Mukaiyama, Chem. Lett., <u>1982</u>, 161; e) K. Maruoka, S. Hashimoto, Y. Kitagawa, H. Yamamoto, and H. Nozaki, Bull. Chem. Soc. Jpn., <u>53</u>, 3301 (1980); f) P. Girard, J. L. Namy, and H. B. Kagan, J. Am. Chem. Soc., <u>102</u>, 2693 (1980).
- a) K. Konig and W. P. Neumann, Tetrahedron Lett., 1967, 495; b) T. Inoue, T. Sato, and I. Kuwajima, J. Org. Chem., 49, 4671 (1984); E. Nakamura and I. Kuwajima, Tetrahedron Lett., 24, 3347 (1983); Chem. Lett., 1983, 59; c) S. Kiyooka, F. Shiota, and T. Shibuya, ibid., 1987, 495; S. Inoue and Y. Sato, Organometallics, 6, 2568 (1987); d) M. T. Reetz and R. Peter, Tetrahedron Lett., 22, 4691 (1981); e) S. S. Labadie and J. K. Stille, Tetrahedron, 40, 2329 (1982) and references cited therein.
- 5) α -Triphenyltin esters which were derived from lithium enolates of ethyl acetate and ethyl propionate and Ph₃SnCl are more useful than α -trialkyltin esters because of their good stabilities to moisture and silica-gel etc.
- 6) D. A. Evans, J. V. Nelson, E. Vogel, and T. R. Taber, J. Am. Chem. Soc., <u>103</u>, 3099 (1981); C. H. Heathcock, C. T. Buse, W. A. Kleshich, H. C. Pirrung, T. E. Sohn, and J. Lamp, J. Org. Chem., <u>45</u>, 1066 (1980).
 7) C. H. Heathcock and L. A. Flippin, J. Am. Chem. Soc., <u>105</u>, 1667 (1983) [supple-
- mentary material].

(Received February 5, 1988)