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ABSTRACT: 2,4,5,6-Tetrakis(3,6-di-tert-butyl-9H-carbazol-9-yl)-
isophthalonitrile (4CzIPN-'Bu) was developed as a photocatalyst for

the phosphorus-radical-initiated cascade cyclization reaction of .. @@
isocyanides. By using 4CzIPN-'Bu as catalyst, we developed a visible- LQ’,']:NC
light-induced proton-coupled electron transfer strategy for the +

generation of phosphorus-centered radicals, via which a wide range of
phosphorylated phenanthridines, quinolines, and benzothiazoles were

successfully constructed.

B INTRODUCTION

Over the past decade, visible-light-driven photoredox catalysis
has stimulated a resurgence of interest in the exploration of
radical reactions.' These attractive synthetic manifolds are
mainly spurred by the exploitation of exogenous photocatalysts
to facilitate the primary photoinduced events, such as single-
electron transfer (SET),” hydrogen-atom transfer (HAT),’
energy transfer (EnT)," and proton-coupled electron transfer
(PCET),” to generate open-shell reactive species that enable
the molecular architectures upon photoexcitation.” Among
them, ruthenium- and iridium-polypyridyl complexes stand at
the forefront, due to their strong absorptions, long-lived
excited states, and broad redox capabilities in the visible regime
of the light spectrum.” Nevertheless, several intrinsic draw-
backs regarding toxicity of metals, high cost, as well as
restrictive conformational constraint hinder their large-scale
application in photosynthetic chemistry.” In this context,
organic dyes offer a metal-free alternative to their transition-
metal counterparts, thus expending the accessibility to
photoredox catalysis in a more environmentally benign and
sustainable manner.*””

Currently, the structural design and development of organic
dyes relies on the (hetero)anthracene-based fluorescent
platform, from which a majority of classic photocatalysts
(e.g, 9,10—dicyanoanthracene,10 Eosin Y, methylene blue, '
Rhodamine B,'” Mes-Acr®,'* N-phenylphenothiazine,” etc.)
were derived. This situation has been partially alleviated
because carbazolyl dicyanobenzenes (CDCBs) emerged as a
novel donor—acceptor (D—A) fluorophore with intriguing
photoelectric performance, greatly expanding the photocatalyst
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toolbox of organic chemists.'® In particular, the 1,2,3,5-
tetrakis(carbazol-9-yl)4,6-dicyanobenzene (4CzIPN)"” is ubig-
uitously applied in many photodriven transformations,
including organic dye/metal dual catalytic coupling reac-
tions,"® photoredox-enabled alkylation of imines,'” photo-
carboxylation with CO,,*° radical addition cyclization
cascades,”’ etc. More importantly, by tailoring the number
and alignment of carbazolyl and cyano units on the benzene
ring, the HOMO—LUMO energy levels as well as photoredox
potentials of the resulting CDCBs can be easily adjusted.””
Phosphorus-radical-mediated approaches are a powerful tool
for the rapid and facile access to structurally diverse
phosphorus-containing scaffolds.”> Unfortunately, the direct
additions of electrophilic P-centered radical to electron-
deficient heteroarenes are less favored in contrast to alkenes
and alkynes.”* The radical cascade cyclization of isocyanides
can circumvent the aforementioned limitations by introducing
phosphoryl groups simultaneously with constructing N-hetero-
cycles. Considering the great signiﬁcance of both heteroarene”
and organophosphorus motifs,” the P-radical-initiated radical
cascade cyclization of isocyanides has been extensively
studied.”” Early methods for generating P-radicals required
stoichiometric amounts of Ag(I) or Mn(III) salts as radical
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initiators to trigger the following isocyanide annulations
(Scheme 1a).”® In 2014, Lakhdar’s group reported a metal-

Scheme 1. P-Radical-Initiated Cascade Cyclization of
Isocyanides
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free method in the presence of diphenyliodonium salt with
triethylamine to access various 6-phosphorylated phenanthri-
dines (Scheme 1b).” Afterward, Lu and co-workers developed
a photoredox-mediated tandem cyclization of isocyanides with

[Ir(ppy),(dtbpy) JPFs as photocatalyst leading to P(O)Ph,-
containing phenanthridines and isoquinolines.”” A concurrent
work by Yang et al. provided a photoinduced approach to the
construction of 2-phosphinoylindoles by using a ruthenium
photocatalyst (Scheme 1c).”" Despite that significant progress
has been achieved in this area, the dye-catalyzed P-radical-
initiated cascade cyclization of isocyanides to access
phosphoryl-functionalized N-heteroaromatics has not yet
been established. Herein, we would like to disclose the
application of 2,4,5,6-tetrakis(3,6-di-tert-butyl-9H-carbazol-9-
yl)isophthalonitrile (4CzIPN-‘Bu) as a metal-free photocatalyst
for the visible-light-induced proton-coupled electron transfer
reaction to generate phosphorus-centered radicals, by which a
wide range of phosphorylated phenanthridines, quinolines, and
benzothiazoles were successfully synthesized. To the best of
our knowledge, this is the first example of applying
4CzIPN-Bu as a photocatalyst to trigger phosphorus-radicals
via an unprecedented photoredox-catalyzed proton-coupled
electron transfer process (Scheme 1d).

Scheme 2. Excited-State Oxidative Potentials of CDCB-Based Photocatalysts and Screening of PC1—10 for the Photosynthesis
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“The values of E;,(*P/P”) and E,, (vs SCE in MeCN) were obtained in the reported literature.**“**** Typical reaction conditions: la (0.2
mmol), 2a (2.0 equiv), PC (5 mol %), NaHCO; (2.0 equiv), and TBHP (2.0 equiv) were mixed in 2 mL of MeCN under irradiation of blue LEDs
with N, protection at rt for 12 h, and the corresponding *'P NMR yields of 3a were given with trioctylphosphine oxide as an internal standard. PC
= photocatalyst, 4CzTPN = 2,3,5,6-tetra(9H-carbazol-9-yl)terephthalonitrile, 4CzIPN = 3 4,5,6-tetra(9H-carbazol-9-yl)phthalonitrile, 4CzIPN =
2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile, 4DPAIPN = 2,4,5,6-tetrakis(diphenylamino)isophthalonitrile, 4CzIPN-Br = 2,4,5,6-tetrakis(3,6-
dibromo-9H-carbazol-9-yl)isophthalonitrile, 4CzIPN-Cl = 2,4,5,6-tetrakis(3,6-dichloro-9H-carbazol-9-yl)isophthalonitrile, 4CzIPN-Ph = 2,4,5,6-
tetrakis(3,6-diphenyl-9H-carbazol-9-yl)isophthalonitrile, 4CzIPN-Me = 2,4,5,6-tetrakis(3,6-dimethyl-9H-carbazol-9-yl)isophthalonitrile, 4CzIPN-
OMe = 2,4,5,6-tetrakis(3,6-dimethoxy-9H-carbazol-9-yl)isophthalonitrile, 4CzIPN-Bu = 2,4,5,6-tetrakis(3,6-di-tert-butyl-9H-carbazol-9-yl)-

isophthalonitrile.
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B RESULTS AND DISCUSSION

To avoid the use of expensive and toxic transition-metal
photocatalysts, we initiated our study by using CDCB-based
organic dyes. Previous studies on CDCBs generally focus on
the fine-tuned assembly of carbazolyl and cyano group-
§;109P22032 powever, the exploration of substituted CDCBs
remains scarce.> Accordingly, as illustrated in Scheme 2, four
reported CDCB analogues (i.e,, 4CzIPN, 4CzTPN, 4CzIPN,
and 4DPAIPN) as well as six substituted 4CzIPNs bearing
electron-withdrawing groups (i.e., 4CzIPN-Br and 4CzIPN-Cl)
or electron-donating groups (i.e., 4CzIPN-Ph, 4CzIPN-Me,
4CzIPN-OMe, and 4CzIPN-Bu) at the para-position on the
carbazoles were prepared through a reported one-step
nucleophilic substitution reaction followed by simple filtration
isolation (see the Supporting Information for details). An
obvious trend that adding electron-donating groups leads to a
lower oxidative potential of the excited state (E,,,(*P/P~) vs
SCE in MeCN), while the electron-withdrawing ones can
make it more oxidizing, was observed among our available
substituted 4CzIPNs, and the order of E,/,(*P/P~) values
follows the sequence as Br > Cl > Ph > Me > OMe > Bu,
exhibiting widely distributed oxidative capabilities ranging
from +1.10 to +1.73 V (Scheme 2). Considering the essential
parameter of oxidative potential for a photoexcited catalyst in
the reductive quenching cycle to produce a radical by
oxidation, it is rational to envisage that our CDCB-based
photocatalysts could possibly oxidize P-radical precursors (e.g,,
diphenylphosphine oxide 2a with E,, = ~+1.00 V vs SCE in
MeCN)"* to generate the corresponding radicals upon visible
light excitation.

We thereby turn to investigate the performance of our
CDCB-based organic dyes (PC1—PC10) in the visible-light-
driven radical cascade cyclization of isocyanides with
phosphorylation reagents. The model reaction conditions
were established as follows: 1a (0.2 mmol), 2a (2.0 equiv),
PC (5 mol %), NaHCO; (2.0 equiv), and TBHP (2.0 equiv)
were mixed in 2 mL of MeCN under irradiation of blue LEDs
with N, protection at rt for 12 h (see Tables S1—S3), and the
corresponding *'P NMR vyields of the desired product 3a were
displayed in Scheme 2. Among the four reported CDCB
analogues (PC1—-PC4), 4CzIPN, 4CzTPN, 4CzIPN, and
4DPAIPN, the 4CzIPN (PC3) with an appropriate oxidative
potential of the excited state (+1.35 V) led to 3a in a superior
yield of 78%. Intriguingly, as for the six substituted 4CzIPNs
(PC5—PC10), the yields of 3a increased constantly from 0 to
80% with the decline of E;/,,(*P/P~) values from +1.73 to
+1.21 V, and 4CzIPN-"Bu (PC10) outperformed the others to
produce 3a in 80%. Notably, the relatively poor reactivities of
4CzIPN-Br (PCS) and 4CzIPN-CI (PC6) might be attributed
to their inferior solubility.”>® After extensive experimentation,
4CzIPN-Bu was selected as the optimal photocatalyst to
continue our follow-up study.

DFT and TD-DFT computations of PC10 (4CzIPN-'Bu)
revealed that the absorption band (4,5, = 391 nm) is assigned
to the HOMO-LUMO transition (95%) with the largest
oscillator strength (f) of 0.1369. The carbazolyl moieties are
markedly distorted from the dicyanobenzene plane by steric
hindrance, resulting in the spatially separated highest occupied
molecular orbitals (HOMOs) and lowest unoccupied molec-
ular orbitals (LUMOs) of PC10. The HOMOs are mainly
localized in the carbazolyl moieties, while the LUMOs are
distributed over the dicyanobenzene moieties, respectively

(Figure 1). These features of the orbital distribution are similar
to those of PC3 (4CzIPN), leading to the characteristic

Aabs = 391 nm
HOMO — LUMO: 95%
f=0.1369

PC10
(4CzIPN-Bu)

Figure 1. Electronic transition calculated by DFT and TD-DFT
calculations and frontier orbitals of PC10.

extension of the absorption band to the visible region and
efficient intramolecular charge transfer (CT).>**

We next investigated the substrate scope of biphenyl
isocyanides and diphenylphosphine oxides by using PC10 as
a photocatalyst to access various 6-phosphorylated phenan-
thridines. As shown in Scheme 3, initially, the biphenyl
isocyanides bearing different groups at the 4’-position of Ar*
rings, such as H—, Me—, MeO—, F—, Cl—, Br—, CF;—, and
CN—, were tested to react with diphenylphosphines oxide 2a
itself, affording the corresponding products 3a—h in yields up

Scheme 3. Synthesis of 6-Phosphorylated Phenanthridines
by Reacting Biphenyl Isocyanides with Diphenylphosphine
Oxides”
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“Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), PC10 (5 mol %),
TBHP (70% solution in water, 2.0 equiv), and NaHCOj; (2.0 equiv)
in 2 mL of MeCN under irradiation of blue LEDs with N, protection
at rt for 12 h. Isolated yields were given on the basis of substrate 1.
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to 80%. Additionally, cyclization of polycyclic substituted
isocyanobenzenes occurred successfully to give phosphorylated
polyheteroarenes 3i—k in good to moderate yields. It was
observed that the biphenyl isocyanides with substituents of
Me—, F—, Cl—, and CN— on the Ar' moiety also proceeded
smoothly in this reaction (31—p). Furthermore, a variety of
phosphorus reagents, including 4-Me, 4-MeO, 4-F, 4-Cl, 3,5-
dimethyl, and 2,4-dimethyl-substituted diarylphosphine oxides,
were well tolerated to give their corresponding products 3q—v
with comparable yields. However, as for ethyl phenyl-
phosphinate (2w) and diethyl H-phosphonadtes (2x), the
corresponding products 3w and 3x were obtained in 31% and
trace yields, respectively, which might be attributed to the
higher theoretical bond dissociation energies (BDE) of the P—
H bonds (357 and 375 kJ/mol) and oxidative potentials (E,,,
1.62 and 1.65 V) (see Table S6).

Inspired by the primary results of the photosynthesis of 6-
phosphorylated phenanthridines, we decided to expand the
implementation of this strategy to other isocyanide systems.
Whereas vinyl isocyanides have recently demonstrated the
synthetic versatility in radical chemistry and garnered particular
recognition in the preparation of isoquinoline derivatives, we
hence commence exploring their scalable application in the
synthesis of 1-phosphorylated isoquinoline derivatives. The
studies were ongoing to use PC10 as a photocatalyst for
screening the experimental parameters of the model reaction,
and the optimized conditions were established (see Table S4).
As can be seen in Scheme 4, a large range of vinyl isocyanides 4
were reacted successfully with diphenylphosphine oxides 2 to
provide diverse 1-phosphorylated isoquinolines Sa—n in
satisfactory yields ranging from 33% to 79%.

Scheme 4. Synthesis of 1-Phosphorylated Isoquinolines by
Reacting Vinyl Isocyanides with Diphenylphosphine
Oxides”

PC10 SR
: q TBHP, K,CO. ! 2
1 5 . KoCOs3 COOR
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| Ar MeCN _N
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5j (R' = 4-OMe), 40%

5k (R' = 4-F), 79%

51 (R' = 4-Cl), 55%

5m (R' = 3,5-dimethyl), 66%
5n (R' = 2,4-dimethyl), 68%

“Reaction conditions: 4 (0.2 mmol), 2 (0.4 mmol), PC10 (5 mol %),
TBHP (70% solution in water, 2.0 equiv), and K,COj; (2.0 equiv) in 2
mL of MeCN under irradiation of blue LEDs with N, protection at rt
for 12 h. Isolated yields were given on the basis of substrate 4.
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Because of our continuous interest in the radical cascade
cyclization involving 2-isocyanoaryl thioethers,”” we proceeded
to probe the feasibility of this protocol for photosynthesis of
benzothiazoles. Much to our delight, the practicality of PC10
could be well extended to synthesize 2-phosphorylated
benzothiazoles 7 by treating 2-isocyanoaryl thioethers 6 with
diphenylphosphine oxides 2 in the presence of LPO and
NaHCO; under irradiation of blue LEDs with N, protection at
rt for 12 h (see Table S5). As shown in Scheme 5, it was found

Scheme 5. Synthesis of 2-Phosphorylated Benzothiazoles by
Reacting 2-Isocyanoaryl Thioethers with
Diphenylphosphine Oxides”
| PC10
4 ~2S o LPO, NaHCO4
+ H-P-Ar ——————
‘c Ar MeCN
o 12 h, Ny

6 2 blue LEDs 7

s. 9 Me s. 9 MeO s. 9
CLtm O e
N ph N ph N Ph

7a, 82% (68%")

7b,74%

cl s, 0 Br. s © CF3 s. 9
e UL e
N ph N ph N Ph

7, 92%

7c, 66%

7e,81% 79, 62%

5, Ti(R'=4-Me), 90%

7j (R' = 4-OMe), 53%

7k (R' = 4-F), 91%

71 (R' = 4-Cl), 75%

7m (R' = 3,5-dimethyl), 78%
7n (R' = 2,4-dimethyl), 94%

?(a) Reaction conditions: 6 (0.2 mmol), 2 (0.4 mmol), PC10 (5 mol
%), LPO (2.0 equiv), and NaHCO; (2.0 equiv) in 2 mL of MeCN
under irradiation of blue LEDs with N, protection at rt for 12 h.
Isolated yields were given on the basis of substrate 6. (b) Gram-scale

synthesis of 7a with the assistance of a specially designed reactor (see
the Supporting Information for details).

that 2-isocyanoaryl thioethers 6 bearing different substituents,
such as H—, Me—, MeO—, F—, Cl—, Br—, CF;—, and CN— at
the 4-positions of the benzene rings, underwent cycloaddition
smoothly to give the corresponding products 7a—h from
moderate to excellent yields. A range of H-phosphorus oxides
were also evaluated to react with 6a under standard conditions
leading to the desired products (7i—n). Notably, the gram-
scale synthesis of benzo[d]thiazol-2-yldiphenylphosphine oxide
(7a) was performed via our specially designed reactor (Figure
S2) with an isolated yield of 68%.

To gain a deeper insight into the reaction mechanism, a
series of mechanistic studies were carried out (Scheme 6).
Initially, two well-known radical scavengers, (2,2,6,6-tetrame-
thylpiperidin-1-yl)-oxidanyl) TEMPO and 2,6-di-tert-butyl-4-
methylphenol (BHT), were employed in the prevention
experiments, resulting in a significant loss in yield of 3a in
each case. A BHT-2a adduct was detected by high-resolution
mass spectrometry (HRMS), reminding us that phosphoryl
radical might be generated photochemically (Scheme 6a; see
Figure S3 for details). The intermolecular kinetic isotope effect
(KIE) experiments were carried out with a 1:1 mixture of
substrates 1a and deuterium-labeled substrates 1a-ds to verify
the rate-determining step, and the ky/kp, for deuterium-labeled
product was found to be 1.2, implying that the cleavage of the
C(sp*)—H bond might not be the rate-determining step and
radical aromatic substitution might be involved in the
cyclization step”® (Scheme 6b; see Figures S4—S6 for details).
The radical species were further confirmed by electron
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Scheme 6. Mechanistic Studies
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paramagnetic resonance (EPR) experiments using tert-butyl-a-
phenylnitrone (DMPO) as a spin trap.”” No signals were
observed in the control group of 2a and DMPO in MeCN
under the irradiation of blue LEDs (gray line). When PC10
and NaHCOj; were added, a strong spectrum signal assigned to
the spin adduct P(O)Ph,—DMPO appeared as a multiplet of
peaks (blue line). In the absence of NaHCO;, the signal was
significantly weakened (red line), and this suggested that the
phosphoryl radical is a key intermediate and its generation
relies on the presence of PC10 and base (Scheme 6c; see
Figure S7 for details). In 2019, Yu’s group””® reported that the
excited state of 4CzIPN can be quenched by 2a and K,COj;
our luminescence quenching experiments also verified that the
excited state of PC10 was only quenched in the presence of 2a
and NaHCO; (see Figure S9 for details). Finally, cyclic
voltammetry (CV) experiments indicate that, with the addition
of NaHCO;, the oxidation potential of 2a can be effectively
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reduced from 1.2 to 1.0 V (Scheme 6d; see Figure S10 for
details).

On the basis of our experimental results, a tentative
mechanism for this protocol was proposed as shown in
Scheme 7. Initially, ground-state PC10 is photoactivated to its

Scheme 7. Proposed Mechanism
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- 2
+ HCO3 —— > PC10 + thF" 9+

PC10* + ppo PIH
Ph

o H,CO3
Ph

PC10

Photocatalytic |

Cycle |
J—— TBHP 0
S 7 Lo
= pc1o ~ N7 NEL

fBuo'\J

BuO

g S
L Xy .
NINEL NP
3 pH M D PH
BH

L
“Ph

PC10 (4CzIPN-'Bu)

excited state (PC10%), which leaves a vacancy in a ground-
state orbital that can be filled by an electron donor.
Diphenylphosphine oxide (2a) often exists in rapid equilibrium
with its minor tautomer hydroxydiphenylphophine (2a’).*" A
proton-coupled electron transfer (PCET) process is followed,
proceeding through an electron transfer from 2a’ to PC10*
accompanying proton transfer from 2a’ to base (HCO;"),
giving phosphoryl radical A as well as photocatalyst radical
anion PC10°~, which subsequently reacts with TBHP, via SET
from PC10°~ to TBHP, giving rise to hydroxide ion (OH")
and tert-butoxyl radical together with regenerated PCI10.
Thereafter, A undergoes a radical addition to the isocyano
group of substrate la to afford the corresponding imidoyl
intermediate B. Intramolecular cyclization of B subsequently
occurs to render the radical intermediate C, which then
immediately loses an electron to ‘BuO® to form fert-butoxide
anion and cation intermediate D. Because cation intermediate
D is extremely inclined to donate a proton to base, to give
structurally stable N-heteropolyaromatic product 3a, the whole
reaction is thus quickly driven to completion. Besides, a
quantum yield (® = 0.3) was calculated, which was well
consistent with our proposed mechanism shown in Scheme 7,
excluding the radical chain process (see the Supporting
Information for details).

Proton-coupled electron transfer (PCET) is a chemical
process that involves the concerted shift of a single electron
and a single proton. PCET contrasts sharply with stepwise
mechanisms in which the electron and proton are transferred
sequentially."’ To explore the possible pathways for the
generation of phosphoryl radical in our case, the density
functional theory (DFT) calculations have been performed at
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the M06-2X/DZVP level. The calculation results indicate that
the individual electron transfer (ET) and proton transfer (PT)
pathways operate at higher activation energies than does the
concerted pathway, and the PCET pathway should be the most
energetically favorable one among the three possible pathways
(see Figure S13 for details).

B CONCLUSION

2,4,5,6-Tetrakis(3,6-di-tert-butyl-9H-carbazol-9-yl)-
isophthalonitrile (4CzIPN-‘Bu) was synthesized and demon-
strated to be an efficient photocatalyst for the phosphorus-
radical-initiated cascade cyclization reaction of isocyanides.
With the catalysis of 4CzIPN-Bu, a wide range of
phosphorylated aromatics including phenanthridines, quino-
lines, and benzothiazoles were successfully synthesized via a
visible-light-induced proton-coupled electron transfer strategy.
Such findings should be of great interest for the development
of novel transition-metal-free photocatalysts for eflicient
organic synthesis.
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