

Note

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Copper-Catalyzed Selective N-Vinylation of 3-(Hydroxyimino)indolin-2-ones with Alkenyl Boronic Acids: Synthesis of N-Vinyl Nitrones and Spirooxindoles

Chun-Hua Chen, Qing-Qing Liu, Xiao-Pan Ma, Yu Feng, Cui Liang, Cheng-Xue Pan, Gui-Fa Su, and Dong-Liang Mo

J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 19 May 2017 Downloaded from http://pubs.acs.org on May 19, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Copper-CatalyzedSelectiveN-Vinylationof3-(Hydroxyimino)indolin-2-oneswithAlkenylBoronicAcids:Synthesis of N-Vinyl Nitrones and Spirooxindoles

Chun-Hua Chen[†], Qing-Qing Liu[†], Xiao-Pan Ma, Yu Feng, Cui Liang, Cheng-Xue Pan, Gui-Fa Su*, and Dong-Liang Mo*

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China

ABSTRACT: A copper-catalyzed selective cross-coupling reaction of 3-(hydroxyimino)indolin-2-ones with alkenyl boronic acids to access (E)-N-vinyl oxindole nitrones has been achieved under mild conditions. The studies showed that catalytic copper salt selectively gave mono N-vinylation products while 2.0 equiv of copper salt provided double N-vinylation products. The control experiments revealed that the carbonyl group in 3-(hydroxyimino)indolin-2-one played important roles on N-vinylation. Furthermore, the prepared N-vinyl oxindole nitrones could be converted to spirooxindoles in good yields under thermal conditions.

Nitrones are a versatile and important type of compounds and can undergo a variety of reactions.¹ Recently, *N*-vinyl nitrones have attracted much attentions as useful

synthetic intermediates and showed distinctive characteristics because of the rich chemistry of the double bond.² Despite many strategies have been developed to synthesize N-aryl or N-alkyl nitrones, methods to access N-vinyl nitrones are sparsely reported.³ In 2006, Denmark and Montgomery reported the first general and practical method to prepare N-vinyl nitrones from nitroalkenes and aldehydes in four steps involving 1,4-addition, reduction, condensation and oxidation (Scheme 1-A).⁴ In 2015, Sammakia and co-workers developed an efficient condensation of an α-chloroaldhyde or an α -acetoxy ketone with a substituted benzyl hydroxylamine and sequence of 1,4-conjugation elimination in the presence of a base to provide various N-vinyl nitrones in two steps (Scheme 1-B).⁵ Although Denmark and Sammakia independently developed an efficient and general method to afford N-vinyl nitrones, their methods suffered from some drawbacks, such as multi-step synthesis, non-commercial starting materials, and functional groups tolerance. To develop a more facile method from readily available starting materials, Anderson's group recently reported a copper-mediated N-vinylation of 9-fluorenone oximes with alkenyl boronic acids to prepare N-vinyl nitrones in good yields (Scheme 1-C).⁶ The prepared N-vinyl nitrones underwent a rearrangement to provide spiroisoxazoles under thermal conditions. In 2015, Anderson and co-workers continued to report a similar *N*-vinylation of chalcone oximes to access corresponding *N*-vinyl nitrones.⁷ Anderson's N-vinylation route is indeed short and efficient. Despite only fluorenone oximes and chalcone oximes are used, it is the most direct strategy to prepare N-vinyl nitrones up to now. Therefore, N-vinylation of oximes via the Chan-Lam reaction is

The Journal of Organic Chemistry

still desirable.⁸ In particular, it is more challenging for the controllable selectivity of coupling reaction of oxime substrates with additional N-H or O-H groups to synthesize *N*-vinyl nitrones. This could improve the efficiency in synthesis of complex molecules and avoid protection and deprotection procedures.⁹

During studies on synthesis of nitrones in our group,¹⁰ we hypothesized that a selective N^2 -vinylation of 3-(hydroxyimino)indolin-2-one containing both N-H and O-H groups with alkenyl boronic acids would directly afford *N*-vinyl oxindole nitrones *via* the Chan-Lam reaction (Scheme 1-D). Oxindole nitrones have been extensively utilized in cycloaddition reactions because of its facile access to privileged spirooxindoles.¹¹ Herein, we reported a copper-catalyzed selective *N*-vinylation of 3-(hydroxyimino)indolin-2-one with alkenyl boronic acids to synthesize various (*Z*)-*N*-vinyl nitrones and sequence of rearragement to afford spirooxindole-isoxazolines.

Scheme 1 An Overview of Synthesis of N-Vinyl Nitrones

ACS Paragon Plus Environment

Initially, the N-vinylation was screened by using 3-(hydroxyimino)indolin-2-one 1a and alkenyl boronic acid 2a. No reaction occurred for 24 h in 1,2-dichloroethane (DCE) when CuCl₂ or Cu $(OTf)_2$ was used as catalyst in the presence of pyridine (pyr) with Na₂SO₄ as an additive (Table 1, entries 1-2). To our delight, N-vinyl nitrone 3aa was isolated in good yield as a major isomer accompanied with nitrone 4aa as a minor isomer when CuCl or $Cu(OAc)_2$ was used (Table 1, entries 3-4). Compounds **3aa** and 4aa were easily separated by flash chromatography. The structure of nitrone 3 was further confirmed by the X-ray diffraction analysis of nitrone **3ca** in Table 2, which indicates the C=N bond of nitrone **3** is a E-configuration.¹² Actually, the yield of **3aa** was a little bit lower without addition of Na₂SO₄ (Table 1, entry 5). A screen of solvents revealed that MeOH sharply promoted the formation of **3aa** and gave the best result (Table 1, entries 6-10). The MeOH perhaps affected the pKa value of N-H group and the nucleophilicity of nitrogen in oxindole so that mono N-vinylation product was observed as a major isomer. Product 3aa was obtained in 93% yield when alkenvl boronic acid **2a** was decreased to 2.0 equiv (Table 1, entry 11). The base affected the reaction obviously (Table 1, entries 12-15). The yield of 3aa was only afforded in 8% using NEt₃ while 57% yield of **3aa** was obtained by using Cs₂CO₃. The addition of t-BuOK or without base inhibited the reaction competely. The yield of **3aa** was improved to 95% when the reaction ran at 40 °C, however, decreased yield of **3aa** was observed by higher temperature (Table 1, entries 16-17). The amount of copper salt played important roles on the yield of **3aa** and **4aa** (Table 1, entries 18-19). Increasing the amount of Cu(OAc)₂ decreased the yield of **3aa** but improved the yield

 of **4aa** (Table 1, entries 11 *vs* 18-19). The similar result was also observed in DCE (Table 1, entries 21-22). In particular, nitrone **4aa** was afforded in 77% yield accompanied with **3aa** in 17% yield in DCE under 2.0 equiv of Cu(OAc)₂ with 4.0 equiv of **2a** (Table 1, entry 22). But the yield of **4aa** was reduced with increasing temperature (Table 1, entry 23). These results disclosed that *N*-vinylation process was controlled by the amount of copper catalyst.

10	Cu(OAc) ₂	10%	МеОН	pyr	89	4
11 ^d	Cu(OAc) ₂	10%	МеОН	pyr	93	4
12 ^d	Cu(OAc) ₂	10%	МеОН	NEt ₃	8	-
13 ^d	Cu(OAc) ₂	10%	МеОН	t-BuOK	-	-
14 ^d	Cu(OAc) ₂	10%	МеОН	Cs ₂ CO ₃	57	-
15 ^d	Cu(OAc) ₂	10%	МеОН	-	-	-
16 ^{d,e}	Cu(OAc) ₂	10%	МеОН	pyr	95	2
$17^{d,f}$	Cu(OAc) ₂	10%	МеОН	pyr	77	8
18 ^d	Cu(OAc) ₂	50%	МеОН	pyr	72	26
19 ^d	Cu(OAc) ₂	200%	МеОН	pyr	44	54
20 ^d	Cu(OAc) ₂	200%	DCE	pyr	23	62
21 ^g	Cu(OAc) ₂	200%	DCE	pyr	17	77
22 ^g	Cu(OAc) ₂	50%	DCE	pyr	47	43
23 ^{e,g}	Cu(OAc) ₂	200%	DCE	pyr	46	52

^aReaction conditions: 1a (0.3 mmol), 2a (0.9 mmol, 3.0 equiv), Cu salts (10 % mmol), base (3.0 equiv), Na₂SO₄ (6.0 equiv), solvent (3 mL), 25 °C, 2-24 h; ^bIsolated yield; ^cwithout Na₂SO₄; ^d**2a** (0.6 mmol, 2.0 equiv) was used; ^eran at 40 °C; ^fran at 80 °C; g^{g} 2a (1.2 mmol, 4.0 equiv) was used.

formation of *N*-vinyl nitrone То test the scope of 3, several 3-(hydroxyimino)indolin-2-ones (1a-l) and alkenyl boronic acids (2a-p) were screened under copper-catalyzed conditions identified in Table 1, entry 11. As shown in Table 2, various linear and cyclic alkenyl boronic acids were efficiently converted into the corresponding N-vinyl oxindole nitrones 3 in good to excellent yields. Monosubstituted alkenyl boronic acids provided better yields than linear disubstituted alkenyl boronic acids (**3aa-ag** vs **3ah-ak**). However, linear disubstituted alkenyl boronic acids afforded both isomers of nitrone **3** (**3ah-ak**).¹³ The isomers of nitrone **3ah-ak** were the E/Z configuration of the C=C bond, which were derived from the alkenyl boronic acids. This showed that both E and Z configuration of alkenyl boronic acids could be coupled to provide N-vinyl nitrones. Cyclic alkenyl boronic acids gave moderate yields and tolerated five, six, and seven-membered rings while cyclohexenyl boronic acid **2m** afforded nitrone **3am** in 98% yield (**3al-ap**). The substituted groups on the aryl ring of 3-(hydroxyimino)indolin-2-ones were also examined under the copper-catalyzed conditions. The coupling reaction was compatible with the 5, 6, 7-positions in the aryl ring of the oximes (3ba-ia). Electron-donating and electron-withdrawing groups at the 5-position did not affect the yields of N-vinyl oxindole nitrones except for 5-NO₂ group giving 34% yield (**3ba-fa**). When 6-Br substituted oxime 1g was used, nitrone 3ga was obtained in 29% yield perhaps owing to the solubility of the oxime in MeOH.¹⁴ The coupling reaction did not occur when the oxime 1j with a 4-bromo group because of the steric hindrance (3ja). When methyl- and phenyl-protected oximes 1k and 1l were used, nitrone 3ka and 3la were afforded in 54% and 84% yields, respectively. In all cases, the N-vinyl nitrone **3** was obtained as a major isomer while N-vinyl nitrone 4 was always observed in less than 8% yield. Some sensitive functional groups such as halides, ester, and nitro groups were compatible, which enables further transformations.

^{*a*}Reaction conditions: **1** (0.3 mmol), alkenyl boronic acid **2** (0.6 mmol, 2.0 equiv), Cu(OAc)₂ (0.03 mmol, 10 %), pyr (0.9 mmol, 3.0 equiv), Na₂SO₄ (6.0 equiv), MeOH (3 mL), 25 °C, 2–24 h; ^{*b*}Isolated yield; ^{*c*}E/Z ratio for C=C bond in nitrone.

The scope of double N-vinylation of oxime 1 to prepare N-vinyl nitrone 4 was further evaluated under the copper-mediated conditions identified in Table 1, entry 21. The reaction tolerated a variety of alkenyl boronic acids and 3-(hydroxyimino)indolin-2-ones 1 (Table 3). Linear and cyclic alkenyl boronic acids gave the corresponding nitrone 4 in good to excellent yields. Compared to formation of nitrone **3ah**, when 2-butenyl boronic acid **2h** with a 2:1 E/Z ratio was used, nitrone **4ah** was afforded with a 1:0.5 E/Z ratio at the C=C bond. Most of 3-(hydroxyimino)indolin-2-ones bearing either electron-donating or electron-withdrawing groups in the 5, 6, 7-positions could provide corresponding nitrone 4 in good to excellent yields.

^{*a*}Reaction conditions: **1** (0.3 mmol), alkenyl boronic acid **2** (1.2 mmol, 4.0 equiv), Cu(OAc)₂ (0.6 mmol, 2.0 equiv), pyr (0.9 mmol, 3.0 equiv), Na₂SO₄ (6.0 equiv), DCE (3 mL), 25 °C, 2–24 h; ^{*b*}Isolated yield; ^{*c*}E/Z ratio of C=C bond in nitrone.

Treatment of nitrone **3aa** with alkenyl boronic acid **2a** under copper-mediated conditions, nitrone **4aa** was isolated in 90% yield (Scheme 2-1). To study the effect on formation of *N*-vinyl nitrones from oxime structure, we performed the control experiments. While methyl protected oxime **1m** reacted with **2a**, N^1 -vinylation product **3ma** was afforded in 88% yield (Scheme 2-2). To our surprise, the oxime **1m** and alkenyl boronic acid **2a** were subjected to the optimal conditions, *O*- or N^1 -vinylation product **3ma** and **3ma**' were observed in 72% yield (Scheme 2-3). These results suggested that the carbonyl group in oxime **1** mainly controlled the formation of nitrones **3** or **4** because it decreased the nucleophilicity of the *N*-atom.

Scheme 2. The Structural Effect on *N*-Vinylation of Oximes

With the two types of N-vinyl nitrones 3 and 4 in hand, we explored their thermal rearrangements. As shown in Table 4, both nitrones 3 and 4 could be smoothly converted to corresponding spirooxindole product 5 and 6 in moderate to good yields in toluene at 120–140 °C. Both disubstituted linear and cyclic N-vinyl nitrones were compatible for this thermal transformation, while monosubstituted N-vinyl nitrone such as **3aa-ag** in Table 2 decomposed. The disubstituted linear N-vinyl nitrones required shorter reaction time and provided better yields than cyclic N-vinyl nitrones (5ah, 5ai, 5aj vs 5am, 5an, 5ap). As expected based on Anderson's mechanism,⁶ the diastereoselectivity of spirooxindoles correlates with the E/Z-isomer ratio at C=C bond in the N-vinyl nitrones. When nitrone **3ah** with a 1:0.8 E/Z ratio was heated at 120 °C, a 1:0.8 dr value of spirooxindole **5ah** was obtained. Spirooxindole **5aj** was afforded in 10:1 dr by heating nitrone **3aj** with 10:1 E/Z ratio at C=C bond. When nitrone **3am** and **3an** with a 20:1 E/Z ratio were subjected to the optimal conditions, the spirooxindole **5am** and **5an** were furnished with 20:1 dr value. The relative configuration of the spirooxindole was determined by NOESY spectra of **5aj** and **5am**,

 which revealed that the proton connected with ethyl group in **5aj** or with six-membered ring in **5am** both had correlation with the proton of the aryl ring.¹⁵ Since spirooxindoles and isoxazoles have been identified as bioactive compounds, this strategy to access these compounds might lead to expand more applications in pharmaceuticals.¹⁶

Table 4. Thermal Reaction to Form Spirooxindole **5** or $6^{a,b}$

^{*a*}Reaction conditions: **3** or **4** (0.2 mmol), toluene (2 mL), 120–140 °C, 10–48 h; ^{*b*}Isolated yield; ^{*c*}*dr* value.

In summary, We have developed a copper-catalyzed N-vinylation of 3-(hydroxyimino)indolin-2-ones with alkenyl boronic acids to prepare (*E*)-*N*-vinyl oxindole nitrones in good to excellent yields. The reaction tolerated linear and cyclic alkenyl boronic acids with various functional groups. The *N*-vinyl nitrones could undergo a thermal rearrangement to access various spirooxindoles in good yields and high diastereoselectivity. This coupling strategy provided not only a facile method to prepare *N*-vinyl nitrones but also a good entry for spirooxindoles to be further studied in pharmaceuticals.

EXPERIMENTAL SECTION

General Methods. All reactions were performed under an air atmosphere. Commercially available reagents were used without further purification. The NMR spectra were recorded in CDCl₃ or DMSO- d_6 on 400, or 500 MHz instrument with TMS as the internal standard. NMR data are represented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in hertz (Hz), and integration. IR spectra were recorded on FT-IR spectrometer, and only major peaks are reported in cm⁻¹. HRMS were measured in ESI mode and the mass analyzer of the HRMS was TOF. Flash column chromatography was performed on silica gel (300-400 mesh). The oxime $1a^{17}$, $1b^{18}$, $1c^{10b}$, $1d^{17}$, $1e^{17}$, $1f_1^{19}$, $1g^{17}$, $1h^{20}$, $1i^{21}$, $1j^{22}$, $1k^{23}$, $1l^{24}$, $1m^{25}$, and $1n^{26}$, the alkenyl boronic acid 2a- $p^{6,7}$ were prepared according to literature methods and their spectral data matched literature values.

General procedure for preparing *N*-vinyl nitrone 3: In a 25 mL flask was charged with 3-(hydroxyimino)indolin-2-one 1 (0.3 mmol), alkenyl boronic acid 2 (0.6 mmol, 2.0 equiv), Cu(OAc)₂ (0.03 mmol, 10%) and anhydrous Na₂SO₄ (6.0 equiv) under air atmosphere. Then, MeOH (3.0 mL) and pyridine (0.9 mmol, 3.0 equiv) was added *via* syringe. The reaction flask was then capped with a septum pierced with a ventilation needle and stirred vigorously at 25 °C for 2–24 h until the oxime 1 disappeared (monitored by TLC). At this time, the reaction was quenched by H₂O (10 mL) and extracted with DCM (3 × 10 mL). Then, dried over with Na₂SO₄ and filtered. The solvent was removed under reduced pressure and the crude product

The Journal of Organic Chemistry

was purified by flash chromatography (the crude residue was dry loaded on silica gel, 1/10 to 1/6, ethyl acetate/petroleum ether) to provide *N*-vinyl nitrone **3**.

(1*E*,*NE*)-*N*-(2-Oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3aa), 0.068 g, 93% yield, orange solid. mp: 170–171 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 10.94 (s, 1H), 8.79 (d, *J* = 13.2 Hz, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.96–6.86 (m, 2H), 2.30 (q, *J* = 7.2 Hz, 2H), 1.47–1.41 (m, 2H), 1.37–1.30 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 161.8, 140.9, 134.7, 132.8, 132.6, 132.5, 125.3, 122.6, 119.0, 110.4, 30.7, 29.0, 22.3, 14.2; IR (thin film) 3452, 3174, 2926, 1683, 1525, 1459, 1213, 771 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₇N₂O₂ (M+H)⁺ 245.1290, found 245.1312.

(1*E*,*NE*)-*N*-(2-Oxoindolin-3-ylidene)pent-1-en-1-amine oxide (3ab), 0.055 g, 79% yield, orange solid. mp: 173–174 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 10.95 (s, 1H), 8.82 (d, *J* = 13.2 Hz, 1H), 8.25 (d, *J* = 13.2 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.98–6.88 (m, 2H), 2.30 (q, *J* = 7.6 Hz, 2H), 1.55–1.46 (m, 2 H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 161.7, 140.8, 134.4, 132.8, 132.6, 132.4, 125.2, 122.5, 118.9, 110.3, 31.2, 21.8, 14.0; IR (thin film) 3396, 3178, 2960, 1714, 1532, 1460, 1205, 657 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₁₅N₂O₂ (M+H)⁺ 231.1134, found 231.1128.

(1*E*,*NE*)-6-Methoxy-6-oxo-*N*-(2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3ac), 0.076 g, 88% yield, orange solid. mp: 145–146 °C; ¹H NMR (400 MHz, DMSO– d_6): δ 10.94 (s, 1H), 8.79 (d, *J* = 13.2 Hz, 1H), 8.23 (d, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.93–6.87 (m, 2H), 3.59 (s, 3H), 2.39 (t, *J* = 7.6 Hz, 2H), 2.33–2.28 (m, 2 H), 1.75 (t, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, DMSO– d_6): δ 173.5, 161.7, 140.9, 133.7, 133.1, 132.7, 132.6, 125.2, 122.5, 118.9, 110.4, 51.7, 33.1, 28.5, 23.9; IR (thin film) 3459, 3179, 2952, 1712, 1530, 1461, 1207, 655 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₇N₂O₄ (M+H)⁺ 289.1188, found 289.1181.

(1*E*,*NE*)-6-Chloro-*N*-(2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3ad), 0.063 g, 76% yield, orange solid. mp: 157–158 °C; ¹H NMR (500 MHz, DMSO–*d*₆): δ 10.94 (s, 1H), 8.80 (d, *J* = 13.0 Hz, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.96–6.87 (m, 2H), 3.68 (t, *J* = 7.0 Hz, 2H), 2.34 (t, *J* = 7.0 Hz, 2H), 1.80 (q, *J* = 6.5 Hz, 2 H), 1.63 (q, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO–*d*₆): δ 161.7, 140.9, 134.2, 133.0, 132.7, 132.5, 125.2, 122.5, 118.9, 110.4, 45.5, 32.0, 28.4, 25.8; IR (thin film) 3398, 3161, 2929, 1713, 1533, 1460, 1208, 657 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₆ClN₂O₂ (M+H)⁺ 279.0900, found 279.0898.

(1*E*,*NE*)-*N*-(2-Oxoindolin-3-ylidene)-2-phenylethenamine oxide (3ae), 0.067 g, 85% yield, orange solid. mp: 212–213 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 11.0 (s, 1H), 9.54 (d, *J* = 13.6 Hz, 1H), 8.28 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 13.6 Hz, 1H), 7.65 (d, *J* = 6.8 Hz, 2H), 7.48–7.42 (m, 3H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 161.9, 141.0, 133.6, 133.4, 132.9, 131.8, 131.2, 130.8, 129.7, 128.7, 125.4, 122.6, 119.1, 110.5; IR (thin film) 3453, 3175, 2927, 1710, 1525, 1459, 1253, 657 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₃N₂O₂(M+H)⁺ 265.0977, found 265.0971.

(1*E*,*NE*)-2-(4-Methoxyphenyl)-*N*-(2-oxoindolin-3-ylidene)ethenamine oxide (3af), 0.085 g, 97% yield, orange solid. mp: 207–208 °C; ¹H NMR (500 MHz,

DMSO-*d*₆): δ 10.99 (s, 1H), 9.47 (d, *J* = 13.0 Hz, 1H), 8.28 (d, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 13.0 Hz, 2H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.06 (t, *J* = 6.5 Hz, 3H), 6.90 (d, *J* = 6.5 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.9, 161.5, 140.7, 132.7, 132.5, 131.2, 130.5, 129.9, 125.8, 125.2, 122.5, 119.2, 115.3, 110.4, 55.9; IR (thin film) 3398, 3161, 2929, 1713, 1533, 1460, 1208, 657 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₇H₁₅N₂O₃ (M+H)⁺ 295.1083, found 295.1082.

(1*E*,*NE*)-2-(4-Methoxyphenyl)-*N*-(2-oxoindolin-3-ylidene)ethenamine oxide (3ag), 0.040 g, 48% yield, orange solid. mp: 131–132 °C; ¹H NMR (500 MHz, DMSO–*d*₆): δ 11.04 (s, 1H), 9.50 (d, *J* = 13.5 Hz, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 13.5 Hz, 1H), 7.75–7.72 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 8.5 Hz, 2H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.9 (d, *J* = 7.5 Hz, 1H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 164.9 (d, *J* = 247.1 Hz), 161.9, 141.0, 133.5, 133.0, 131.7, 131.1 (d, *J* = 60.5 Hz), 130.1, 130.0 (d, *J* = 29.0 Hz), 125.4, 122.7, 119.0, 116.9 (d, *J* = 21.9 Hz), 110.5; IR (thin film) 3430, 3200, 2926, 1705, 1508, 1457, 1231, 655 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₆H₁₂FN₂O₂ (M+H)⁺ 283.0883, found 283.0873.

N-(2-Oxoindolin-3-ylidene)but-2-en-2-amine oxide (3ah), *E*/*Z* = 1:0.8, 0.041 g, 64% yield, orange solid. mp: 128–129 °C; *E-isomer*: ¹H NMR (400 MHz, CDCl₃): δ 10.77 (s, 1H), 8.20 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 5.75 (t, *J* = 6.4 Hz, 1H), 2.02 (s, 3H), 1.71 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 143.0, 141.2, 134.0, 132.6, 124.5, 122.6, 122.4, 118.9, 110.4, 19.5, 13.0; *Z-isomer*: ¹H NMR (400 MHz, CDCl₃): δ 10.71 (s, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 6.91 (t, *J* = 7.6 Hz, 1H),

ACS Paragon Plus Environment

6.88 (d, J = 8.0 Hz, 1H), 5.50 (t, J = 6.4 Hz, 1H), 1.99 (s, 3H), 1.43 (d, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 142.5, 141.0, 133.5, 132.3, 124.4, 122.2, 119.4, 118.2, 110.2, 14.3, 12.5; IR (thin film) 3453, 3074, 2927, 1697, 1518, 1461, 1217, 741 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₂H₁₃N₂O₂ (M+H)⁺ 217.0977, found 217.0977.

(2*E*,*NE*)-*N*-(2-Oxoindolin-3-ylidene)but-2-en-2-amine oxide (3ai), 0.057 g, 72% yield, orange solid. mp: 143–144 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 10.77 (s, 1H), 8.27 (d, *J* = 7.2 Hz, 1H), 7.46–7.38 (m, 6H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.04 (s, 1H), 5.60 (s, 1H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 160.4, 151.6, 141.6, 135.3, 133.0, 132.8, 129.7, 129.4, 125.8, 124.9, 122.5, 118.5, 111.6, 110.6; IR (thin film) 3454, 3084, 2925, 1708, 1546, 1346, 1197, 696 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₆H₁₃N₂O₂ (M+H)⁺ 265.0977, found 265.0976.

(1*E*,*NE*)-*N*-(2-Oxoindolin-3-ylidene)-1-phenylbut-1-en-1-amine oxide (3aj), 0.063 g, 72% yield, orange oil. ¹H NMR (500 MHz, DMSO–*d*₆): δ 10.76 (s, 1H), 8.31 (d, *J* = 7.5 Hz, 1H), 7.43–7.30 (m, 6H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.33 (t, *J* = 7.5 Hz, 1H), 2.10–2.00 (m, 2H), 1.01 (t, *J* = 3.0 Hz, 3H); ¹³C NMR (125 MHz, DMSO–*d*₆): δ 159.9, 144.9, 141.5, 135.5, 133.5, 133.0, 129.1, 128.7, 126.6, 125.0, 124.8, 122.5, 118.0, 110.5, 21.3, 13.5; IR (thin film) 3435, 3196, 2930, 1713, 1547, 1461, 1192, 697 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₈H₁₇N₂O₂ (M+H)⁺ 293.1290, found 293.1282.

(1*E*,*NE*)-*N*-(2-Oxoindolin-3-ylidene)-1-phenylhex-1-en-1-amine oxide (3ak), 0.072 g, 75% yield, orange oil. ¹H NMR (400 MHz, DMSO– d_6): δ 10.74 (s, 1H), 8.30 (d, J = 7.2 Hz, 1H), 7.43–7.29 (m, 6H), 7.10 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.33 (t, J = 7.6 Hz, 1H), 2.06–2.00 (m, 2H), 1.42–1.36 (m, 2H), 1.29–1.24 (m, 2H), 0.82 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO– d_6): δ 159.9, 145.4, 141.5, 135.5, 133.6, 133.0, 129.2, 128.7, 125.4, 125.1, 124.8, 122.5, 118.0, 110.5, 30.6, 27.3, 22.2, 14.1; IR (thin film) 3252, 2928, 1716, 1617, 1546, 1459, 1196, 747 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₂₁N₂O₂ (M+H)⁺ 321.1603, found 321.1595.

(*E*)-*N*-(2-Oxoindolin-3-ylidene)cyclopent-1-enamine oxide (3al), 0.052 g, 76% yield, orange solid. mp: 144–145 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 10.76 (s, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.12–6.11 (m, 1H), 2.70–2.69 (m, 2H), 2.51–2.50 (m, 2H), 2.08–2.01 (m, 2H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 160.4, 146.7, 141.0, 134.8, 132.6, 128.4, 124.5, 122.2, 118.8, 110.2, 31.8, 31.1, 22.4; IR (thin film) 3411, 3176, 2950, 1717, 1549, 1337, 1243, 688 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₁₃N₂O₂ (M+H)⁺ 229.0977, found 229.0972.

(*E*)-*N*-(2-Oxoindolin-3-ylidene)cyclohex-1-enamine oxide (3am), 0.071 g, 98% yield, orange solid. mp: 186–187 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 10.69 (s, 1H), 8.15 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 5.95–5.91 (m, 1H), 2.35–2.28 (m, 2H), 2.14–2.13 (m, 2H), 1.77–1.74 (m, 2H), 1.62–1.59 (m, 2H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 160.6, 144.9, 141.0, 133.7, 132.3, 124.5, 124.3, 122.1, 118.8, 110.2, 25.9, 24.1, 22.2, 21.2; IR (thin film) 3452, 3174, 2927, 1683, 1526, 1459, 1214, 771 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₅N₂O₂ (M+H)⁺ 243.1134, found 243.1131.

(1*E*,*NE*)-*N*-(2-Oxoindolin-3-ylidene)cyclohept-1-enamine oxide (3an), 0.042 g, 54% yield, orange solid. mp: 170–171 °C; ¹H NMR (500 MHz, DMSO–*d*₆): δ 10.67 (s, 1H), 8.13 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.5 Hz, 1H), 6.04 (t, *J* = 6.0 Hz, 1H), 2.48–2.45 (m, 2H), 2.21–2.19 (m, 2H), 1.73–1.71 (m, 4H), 1.64–1.63 (m, 2H); ¹³C NMR (125 MHz, DMSO–*d*₆): δ 160.7, 148.8, 140.9, 133.3, 132.3, 129.0, 124.3, 122.2, 118.9, 110.2, 31.5, 30.7, 26.8, 26.2, 26.1; IR (thin film) 3456, 3194, 2926, 1621, 1463, 1341, 1193, 752 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₇N₂O₂ (M+H)⁺ 257.1290, found 257.1285.

(*E*)-*N*-(2-Oxoindolin-3-ylidene)-3,6-dihydro-2H-pyran-4-amine oxide (3ao), 0.057 g, 78% yield, orange solid. mp: 178–179 °C; ¹H NMR (500 MHz, DMSO– d_6): δ 10.76 (s, 1H), 8.16 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 7.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.14–6.12 (m, 1H), 4.21–4.20 (m, 2H), 3.86 (t, J = 5.5Hz, 2H), 2.44–2.43 (m, 2H); ¹³C NMR (125 MHz, DMSO– d_6): δ 160.6, 141.5, 141.2, 134.1, 132.6, 124.4, 123.6, 122.2, 118.7, 110.2, 63.9, 63.7, 26.2; IR (thin film) 3450, 3194, 2923, 1705, 1539, 1459, 1121, 659 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₁₃N₂O₃ (M+H)⁺ 245.0926, found 245.0920.

(E)-4-tert-Butyl-N-(2-oxoindolin-3-ylidene)cyclohex-1-enamine oxide (3ap),
0.052 g, 58% yield, orange solid. mp: 175–176 °C; ¹H NMR (400 MHz, DMSO–d₆):
δ 10.70 (s, 1H), 8.15 (d, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H),
6.88 (d, J = 8.0 Hz, 1H), 5.95–5.93 (m, 1H), 2.36–2.33 (m, 2H), 2.19–2.15 (m, 1H),
1.93–1.88 (m, 2H), 1.36–1.31 (m, 2H), 0.89 (s, 9H); ¹³C NMR (125 MHz, DMSO–d₆):
δ 160.5, 144.7, 141.0, 133.8, 132.3, 124.7, 124.3, 122.2, 118.8, 110.2,

The Journal of Organic Chemistry

42.9, 32.4, 30.3, 29.5, 27.5, 27.2, 25.8, 23.8; IR (thin film) 3433, 3194, 2964, 1650, 1463, 1341, 1193, 763 cm⁻¹; HRMS (ESI) m/z calcd for $C_{18}H_{23}N_2O_2$ (M+H)⁺ 299.1760, found 299.1759.

(1*E*,*NE*)-*N*-(5-Methoxy-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3ba), 0.064 g, 78% yield, orange solid. mp: 170–171 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 13.2 Hz, 1H), 8.49 (s, 1H), 8.06 (d, *J* = 2.0 Hz, 1H), 7.13–7.06 (m, 1H), 6.92 (t, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 2.0 Hz, 1H), 3.83 (s, 3H), 2.37 (q, *J* = 7.2 Hz, 2H), 1.57–1.49 (m, 2H), 1.45–1.34 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.2, 155.9, 135.5, 132.8, 132.7, 132.6, 119.7, 118.8, 110.5, 110.3, 55.9, 30.7, 29.2, 22.2, 13.8; IR (thin film) 3453, 3193, 2927, 1713, 1526, 1488, 1247, 653 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₉N₂O₃ (M+H)⁺ 275.1396, found 275.1393.

(1E,NE)-N-(2-Oxo-5-(trifluoromethoxy)indolin-3-ylidene)hex-1-en-1-amine

oxide (3ca), 0.071 g, 72% yield, orange solid. mp: 171–172 °C; ¹H NMR (400 MHz, DMSO– d_6): δ 11.12 (s, 1H), 8.76 (d, J = 13.2 Hz, 1H), 8.12 (s, 1H), 7.37(d, J = 8.4 Hz, 1H), 7.00–6.94 (m, 2H), 2.32 (q, J = 7.2 Hz, 2H), 1.49–1.42 (m, 2H), 1.38–1.29 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO– d_6): δ 161.6, 143.4, 139.8, 135.7, 132.7, 132.1, 125.4, 122.0 (d, J = 253.8 Hz), 119.8, 117.6, 112.2, 55.9, 30.5, 28.9, 22.1, 14.1; IR (thin film) 3452, 3174, 2933, 1701, 1517, 1466, 1164, 661 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₆F₃N₂O₃ (M+H)⁺ 329.1113, found 329.1097.

(1*E*,*NE*)-*N*-(5-Methyl-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3da). 0.060 g, 78%, orange solid. mp: 179–180 °C; ¹H NMR (400 MHz, DMSO– d_6): δ 10.82 (s, 1H), 8.79 (d, *J* = 13.2 Hz, 1H), 8.06–8.05 (m, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.95–6.88 (m, 1H), 6.77 (d, J = 7.6 Hz, 1H), 2.30–2.27 (m, 5H), 1.49–1.41 (m, 2H), 1.38–1.31 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO– d_6): δ 161.8, 138.6, 134.4, 133.0, 132.7, 132.5, 131.3, 125.6, 119.0, 110.1, 30.6, 28.9, 22.2, 21.2, 14.1; IR (thin film) 3453, 3170, 2927, 1698, 1516, 1481, 1259, 658 cm⁻¹; HRMS (ESI) m/z calcd for C₁₅H₁₉N₂O₂ (M+H)⁺ 259.1447, found 259.1445.

(1*E*,*NE*)-*N*-(5-Fluoro-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3ea), 0.059 g, 75% yield, orange solid. mp: 178–179 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.82 (d, *J* = 13.0 Hz, 1H), 8.25 (s, 1H), 8.17 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.13–7.03 (m, 2H), 6.82 (t, *J* = 8.0 Hz, 1H), 2.37 (q, *J* = 7.0 Hz, 2H), 1.56–1.50 (m, 2H), 1.44–1.37 (m, 2H), 0.96 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.8, 160.0 (d, *J* = 238.8 Hz), 136.4, 134.7, 132.8, 131.9, 120.1 (d, *J* = 40 Hz), 118.2 (d, *J* = 98.5 Hz), 113.0 (d, *J* = 109 Hz), 110.1 (d, *J* = 33 Hz), 30.6, 29.2, 22.3, 13.8; IR (thin film) 3454, 3175, 2930, 1699, 1517, 1477, 1247, 658 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₆FN₂O₂ (M+H)⁺ 263.1196, found 263.1198.

(1*E*,*NE*)-*N*-(5-Nitro-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3fa), 0.030 g, 34% yield, yellow solid. mp: 64–65 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 11.60 (s, 1H), 8.92 (s, 1H), 8.70 (d, *J* = 13.2 Hz, 1H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.05–6.99 (m, 2H), 2.34 (q, *J* = 6.8 Hz, 2H), 1.49–1.44 (m, 2H), 1.38–1.32 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 161.9, 146.0, 142.6, 136.6, 132.8, 131.5, 128.5, 119.7, 119.2, 110.5, 30.4, 29.0, 22.2, 14.2; IR (thin film) 3434, 2927, 1635, 1528, 1462, 1344, 1122, 747 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₆N₃O₄ (M+H)⁺ 290.1141, found 290.1165.

(1*E*,*NE*)-*N*-(6-Bromo-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3ga), 0.028 g, 29% yield, yellow solid. mp: 184–185 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 11.07 (s, 1H), 8.73 (d, *J* = 13.2 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.02 (s, 1H), 6.98–6.91 (m, 1H), 2.30 (q, *J* = 6.8 Hz, 2H), 1.49–1.42 (m, 2H), 1.38–1.31 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 161.5, 142.0, 135.2, 132.8, 131.9, 126.3, 125.2, 124.9, 118.2, 113.1, 30.5, 28.9, 22.2, 14.1; IR (thin film) 3453, 3172, 2927, 1692, 1521, 1443, 1213, 661 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₄BrN₂O₂ (M-H)⁻ 321.0239, found 321.0234.

(1*E*,*NE*)-*N*-(7-Fluoro-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3ha), 0.060 g, 77% yield, orange solid. mp: 183–184 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 11.47 (s, 1H), 8.79 (d, *J* = 13.2 Hz, 1H), 8.07 (d, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 9.6 Hz, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.98–6.94 (m, 1H), 2.32 (q, *J* = 7.2 Hz, 2H), 1.48–1.43 (m, 2H), 1.37–1.31 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 161.5, 147.7 (d, *J* = 240.7 Hz), 135.5, 132.7, 132.2 (d, *J* = 5.1 Hz), 127.6 (d, *J* = 13.2 Hz), 123.4 (d, *J* = 5.7 Hz), 121.8 (d, *J* = 15.1 Hz), 121.2 (d, *J* = 2.9 Hz), 119.4 (d, *J* = 16.8 Hz), 30.6, 28.9, 22.2, 14.2; IR (thin film) 3454, 3219, 2928, 1716, 1525, 1354, 1190, 672 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₆FN₂O₂ (M+H)⁺ 263.1196, found 263.1193

(1*E*,*NE*)-*N*-(2-Oxo-7-(trifluoromethyl)indolin-3-ylidene)hex-1-en-1-amine
oxide (3ia), 0.083 g, 88% yield, orange solid. mp: 157–158 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.39 (s, 1H), 8.79 (d, *J* = 13.2 Hz, 1H), 8.52 (d, *J* = 7.2 Hz, 1H), 7.64 (d, *J* = 7.2 Hz, 1H), 7.23 (t, *J* = 7.2 Hz, 1H), 6.96–6.95 (m, 1H), 2.32 (q, *J* = 6.8 Hz,

2H), 1.49–1.46 (m, 2H), 1.38–1.34 (m, 2H), 0.92 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO– d_6): δ 162.1, 137.6, 135.9, 132.9, 131.1, 128.3, 128.1 (d, J = 14.4 Hz), 125.1, 122.6, 120.7, 111.5 (d, J = 131.2 Hz), 30.5, 29.0, 22.2, 14.1; IR (thin film) 3454, 3170, 2927, 1695, 1528, 1435, 1120, 687 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₆F₃N₂O₂ (M+H)⁺ 313.1164, found 313.1186.

(1*E*,*NE*)-*N*-(1-Methyl-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (3ka), 0.042 g, 54% yield, orange solid. mp: 55–56 °C; ¹H NMR (400 MHz, DMSO– d_6): δ 8.80 (d, *J* = 13.2 Hz, 1H), 8.22 (d, *J* = 7.2 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.08–7.02 (m, 2H), 6.96–6.90 (m, 1H), 3.17 (s, 3H), 2.30 (q, *J* = 6.8 Hz, 2H), 1.49–1.42 (m, 2H), 1.38–1.29 (m, 2H), 0.92 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO– d_6): δ 160.2, 142.0, 134.9, 132.8, 132.4, 131.9, 124.8, 123.0, 118.1, 109.2, 30.5, 29.0, 26.5, 22.2, 14.2; IR (thin film) 3107, 2955, 2925, 1688, 1529, 1465, 1195, 750 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₉N₂O₂ (M+H)⁺ 259.1447, found 259.1446.

(1*E*,*NE*)-*N*-(2-Oxo-1-phenylindolin-3-ylidene)hex-1-en-1-amine oxide (3la), 0.081 g, 84% yield, orange solid. mp: 120–121 °C; ¹H NMR (400 MHz, DMSO–*d*₆): δ 8.84 (d, *J* = 13.2 Hz, 1H), 8.40 (d, *J* = 7.6 Hz, 1H), 7.61–7.57 (m, 2H), 7.51–7.48 (m, 3H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.04–6.97 (m, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 2.33 (q, *J* = 6.8 Hz, 2H), 1.51–1.43 (m, 2H), 1.39–1.32 (m, 2H), 0.92 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 159.9, 141.9, 135.3, 134.0, 132.9, 132.6, 131.8, 130.1, 128.9, 127.7, 125.1, 123.6, 118.4, 109.5, 30.5, 28.9, 22.1, 14.2; IR (thin film) 3454, 3097, 2926, 1692, 1496, 1457, 1189, 745 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₂₁N₂O₂ (M+H)⁺ 321.1603, found 321.1596.

The Journal of Organic Chemistry

General procedure for preparing *N*-vinyl nitrone 4, 3m and 3n: In a 25 mL flask was charged with indoline-2,3-dione oxime 1 (0.3 mmol), alkenyl boronic acid 2 (1.2 mmol, 4.0 equiv), Cu(OAc)₂ (0.6 mmol, 2.0 equiv) and anhydrous Na₂SO₄ (6.0 equiv) under air atmosphere. Then, DCE (3.0 mL) and pyridine (0.9 mmol, 3.0 equiv) was added *via* syringe. The reaction flask was then capped with a septum pierced with a ventilation needle and stirred vigorously at 25 °C for 2–24 h until the oxime 1 disappeared (monitored by TLC). At this time, the reaction was quenched by H₂O (10 mL) and extracted with DCM (3×10 mL). Then, dried over with Na₂SO₄ and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (the crude residue was dry loaded on silica gel, 1/50 to 1/20, ethyl acetate/petroleum ether) to provide nitrone **4**.

(1*E*,*NE*)-*N*-(1-((*E*)-Hex-1-enyl)-2-oxoindolin-3-ylidene)hex-1-en-1-amine oxide (4aa), 0.075 g, 77% yield, brown liquid. ¹H NMR (400 MHz, CDCl₃): δ 8.82 (d, *J* = 7.2 Hz, 1H), 8.40 (d, *J* = 6.0 Hz, 1H), 7.30 (t, *J* = 6.4 Hz, 1H), 7.06–6.97 (m, 3H), 6.37 (d, *J* = 7.6 Hz, 1H), 6.19–6.13 (m, 1H), 2.28 (q, *J* = 5.6 Hz, 2H), 2.18 (q, *J* = 5.6 Hz, 2H), 1.48–1.36 (m, 4H), 1.35–1.28 (m, 4H), 0.88–0.80 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 140.0, 135.5, 132.8, 131.6, 131.5, 125.6, 125.2, 123.5, 119.6, 118.6, 109.0, 31.6, 30.6, 30.5, 29.2, 22.2, 22.1, 13.9, 13.8; IR (thin film) 3091, 2953, 1695, 1602, 1527, 1462, 1183, 743 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₂₇N₂O₂ (M+H)⁺ 327.2073, found 327.2095.

(2E,NE)-N-(1-((E)-But-2-en-2-yl)-2-oxoindolin-3-ylidene)but-2-en-2-amineoxide (4ah), <math>E/Z = 1:0.5, 0.049 g, 60% yield, brown liquid. *E-isomer*: ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 7.0 Hz, 1H), 7.30 (d, J = 11.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 5.71 (q, J = 6.5 Hz, 1H), 5.62–5.61 (m, 1H), 2.08 (s, 3H), 1.90 (s, 3H), 1.77 (d, J = 6.0 Hz, 5H), 1.51 (d, J = 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.8, 143.2, 141.7, 133.6, 131.7, 128.9, 126.5, 125.0, 123.1, 122.8, 118.1, 109.0, 29.6, 14.6, 13.0, 12.7; *Z*-isomer: ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.04 (q, J = 7.2 Hz, 1H), 6.77 (d, J = 6.4 Hz, 1H), 5.62–5.61 (m, 1H), 5.43–5.41 (m, 1H), 2.05 (s, 3H), 1.89 (s, 3H), 1.73 (d, J = 4.8 Hz, 5H), 1.51 (d, J = 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.2, 142.7, 141.5, 133.1, 131.6, 128.9, 126.2, 124.9, 122.8, 119.9, 117.6, 108.9, 19.4, 14.1, 13.0, 12.3; IR (thin film) 2922, 2859, 1710, 1604, 1541, 1460, 1185, 748 cm⁻¹; HRMS (ESI) m/z calcd for C₁₆H₁₉N₂O₂ (M+H)⁺ 271.1447, found 271.1445.

(*E*)-*N*-(1-Cyclohexenyl-2-oxoindolin-3-ylidene)cyclohex-1-enamine oxide (4an), 0.074 g, 77% yield, brown liquid. ¹H NMR (500 MHz, DMSO–*d*₆): δ 8.22 (d, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 5.94–5.93 (m, 1H), 5.86–5.85 (m, 1H), 2.31–2.30 (m, 2H), 2.20–2.14 (m, 6H), 1.75–1.74 (m, 4H), 1.64–1.61 (m, 4H); ¹³C NMR (125 MHz, DMSO–*d*₆): δ 158.3, 145.0, 141.7, 132.9, 132.2, 131.8, 128.6, 124.6, 124.2, 122.8, 118.1, 109.4, 26.5, 25.9, 24.7, 24.1, 22.6, 22.2, 21.7, 21.2; IR (thin film) 3055, 2933, 1709, 1603, 1460, 1375, 1189, 747 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₂₃N₂O₂ (M+H)⁺ 323.1760, found 323.1760.

(1*E*,*NE*)-*N*-(1-((*E*)-Hex-1-enyl)-5-methoxy-2-oxoindolin-3-ylidene)hex-1-en-1-a mine oxide (4ba), 0.066 g, 61% yield, brown liquid. ¹H NMR (400 MHz, DMSO– d_6):

δ 8.83 (d, J = 13.2 Hz, 1H), 8.05 (d, J = 2.4 Hz, 1H), 7.04–6.97 (m, 1H), 6.91–6.82 (m, 2H), 6.40–6.36 (m, 1H), 6.14–6.07 (m, 1H), 3.75 (s, 3H), 2.28 (q, J = 6.8 Hz, 2H), 2.17 (q, J = 6.8 Hz, 2H), 1.47–1.27 (m, 8H), 0.88 (dt, J = 6.8 Hz, 1.2 Hz, 6H); ¹³C NMR (100 MHz, DMSO– d_6): δ 159.4, 156.2, 135.5, 134.0, 132.9, 131.9, 124.0, 119.8, 119.3, 118.1, 110.4, 109.9, 55.8, 31.7, 30.6, 30.5, 29.2, 22.2, 22.1, 13.8, 13.7; IR (thin film) 3095, 2958, 1694, 1648, 1529, 1482, 1272, 717 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₂₉N₂O₃ (M+H)⁺ 357.2178, found 357.2179.

(1*E*,*NE*)-*N*-(1-((*E*)-Hex-1-enyl)-5-methyl-2-oxoindolin-3-ylidene)hex-1-en-1-am ine oxide (4da), 0.074 g, 72% yield, brown liquid. ¹H NMR (400 MHz, DMSO–*d*₆): δ 8.81 (d, *J* = 13.2 Hz, 1H), 8.23 (s, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.02–6.97 (m, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.38 (d, *J* = 14.5 Hz, 1H), 6.15–6.09 (m, 1H), 2.27–2.23 (m, 5H), 2.16–2.12 (q, *J* = 5.6 Hz, 2H), 1.48–1.35 (m, 4H), 1.34–1.28 (m, 4H), 0.88 (dt, *J* = 7.5 Hz, 2.5 Hz, 6H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 159.5, 137.9, 135.2, 133.1, 132.8, 132.0, 131.7, 126.1, 124.3, 119.7, 118.6, 108.8, 31.6, 30.6, 30.5, 29.2, 22.2, 22.1, 21.0, 13.8, 13.7; IR (thin film) 3094, 2957, 1696, 1646, 1528, 1461, 1185, 727 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₁H₂₉N₂O₂ (M+H)⁺ 341.2229, found 341.2229.

(1*E*,*NE*)-*N*-(5-Fluoro-1-((*E*)-hex-1-enyl)-2-oxoindolin-3-ylidene)hex-1-en-1-ami ne oxide (4ea), 0.088 g, 86% yield, brown liquid. ¹H NMR (500 MHz, CDCl₃): δ 8.86 (d, *J* = 8.5 Hz, 1H), 8.18–8.16 (m, 1H), 7.10–7.01 (m, 2H), 6.96–6.95 (m, 1H), 6.42 (d, *J* = 14.5 Hz, 1H), 6.20–6.16 (m, 1H), 2.34 (q, *J* = 7.5 Hz, 2H), 2.23 (q, *J* = 6.0 Hz, 2H), 1.54–1.44 (m, 4H), 1.40–1.35 (m, 4H), 0.94 (dt, *J* = 7.5 Hz, 2.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 160.1 (d, *J* = 239.5 Hz), 159.3, 136.3, 136.0, 132.9, 131.1,

ACS Paragon Plus Environment

125.1, 119.6 (d, J = 6.4 Hz), 117.7 (d, J = 24.6 Hz), 112.8, 112.5, 109.6 (d, J = 8.3 Hz), 31.5, 30.5, 30.4, 29.2, 22.2, 22.1, 13.8, 13.7; IR (thin film) 3091, 2956, 1695, 1644, 1530, 1476, 1264, 805 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₂₆FN₂O₂ (M+H)⁺ 345.1978, found 345.1980.

(1*E*,*NE*)-*N*-(1-((*E*)-Hex-1-enyl)-5-nitro-2-oxoindolin-3-ylidene)hex-1-en-1-amin e oxide (4fa), 0.065 g, 58% yield, brown liquid. ¹H NMR (500 MHz, CDCl₃): δ 9.17 (s, 1H), 8.77 (d, *J* = 13.0 Hz, 1H), 8.22 (d, *J* = 8.5 Hz, 1H), 7.11–7.04 (m, 2H), 6.36 (d, *J* = 14.5 Hz, 1H), 6.23–6.19 (m, 1H), 2.31 (q, *J* = 7.0 Hz, 2H), 2.22 (q, *J* = 7.0 Hz, 2H), 1.50–1.41 (m, 4H), 1.38–1.31 (m, 4H), 0.88 (dt, *J* = 6.5 Hz, 5.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 159.5, 143.8, 137.9, 132.9, 129.8, 128.2, 127.2, 120.3, 118.9, 118.8, 108.6, 31.3, 30.4, 30.3, 29.6, 29.3, 22.2, 22.1, 13.8, 13.7; IR (thin film) 3089, 2956, 1708, 1520, 1459, 1343, 1178, 745 cm⁻¹; HRMS (ESI) *m/z* calcd for $C_{20}H_{26}N_3O_4$ (M+H)⁺ 372.1923, found 372.1926.

(1*E*,*NE*)-*N*-(6-Bromo-1-((*E*)-hex-1-enyl)-2-oxoindolin-3-ylidene)hex-1-en-1-ami ne oxide (4ga), 0.104 g, 85% yield, brown liquid. ¹H NMR (500 MHz, CDCl₃): δ 8.83 (d, *J* = 13.0 Hz, 1H), 8.31 (t, *J* = 5.5 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.18 (s, 1H), 7.11–7.06 (m, 1H), 6.38 (d, *J* = 13.0 Hz, 1H), 6.24–6.18 (m, 1H), 2.34 (q, *J* = 7.0 Hz, 2H), 2.26 (q, *J* = 7.0 Hz, 2H), 1.55–1.47 (m, 4H), 1.44–1.36 (m, 4H), 0.97 (dt, *J* = 16.0 Hz, 7.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 159.3, 140.8, 136.1, 132.9, 130.8, 126.4, 126.3, 126.2, 125.4, 119.2, 117.4, 112.5, 31.5, 30.5, 30.4, 29.4, 22.2, 22.1, 13.8, 13.7; IR (thin film) 3096, 2956, 1698, 1594, 1465, 1375, 1185, 818 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₂₆BrN₂O₂ (M+H)⁺ 405.1178, found 405.1181.

(1*E*,*NE*)-*N*-(7-Fluoro-1-((*E*)-hex-1-enyl)-2-oxoindolin-3-ylidene)hex-1-en-1-ami ne oxide (4ha), 0.093 g, 90% yield, brown liquid. ¹H NMR (500 MHz, CDCl₃): δ 8.91 (d, *J* = 13.0 Hz, 1H), 8.29 (d, *J* = 4.5 Hz, 1H), 7.12–7.03 (m, 3H), 6.58 (d, *J* = 14.0 Hz, 1H), 6.40–6.35 (m, 1H), 2.35–2.31 (q, *J* = 7.0 Hz, 2H), 2.22–2.18 (q, *J* = 7.0 Hz, 2H), 1.56–1.45 (m, 4H), 1.42–1.36 (m, 4H), 0.95 (dt, *J* = 14.5 Hz, 7.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 159.4, 148.2 (d, *J* = 244.1 Hz), 136.2, 132.9, 131.3, 126.6, 126.4 (d, *J* = 8.3 Hz), 124.2 (d, *J* = 6.4 Hz), 121.3, 121.0, 120.9 (d, *J* = 3.6 Hz), 119.9 (d, *J* = 21 Hz), 31.4, 30.6, 30.4, 29.2, 22.2, 22.1, 13.8, 13.7; IR (thin film) 3092, 2955, 1696, 1527, 1446, 1374, 1190, 785 cm⁻¹; HRMS (ESI) *m*/z calcd for C₂₀H₂₆FN₂O₂ (M+H)⁺ 345.1978, found 345.1981.

1-((*E***)-Hex-1-enyl)-3-(methoxyimino)indolin-2-one (3ma)**, 0.084 g, 88% yield, brown liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 4.4 Hz, 1H), 7.33 (d, J = 7.2Hz, 1H), 7.01–7.00 (m, 2H), 6.40–6.36 (m, 1H), 6.19–6.12 (m, 1H),4.22 (s, 3H), 2.15 (q, J = 6.8 Hz, 2H), 1.42–1.36 (m, 2H), 1.34–1.27 (m, 2H), 0.88–0.84 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 143.0, 132.3, 127.9, 124.6, 123.3, 120.9, 119.5, 116.0, 109.6, 64.8, 31.6, 30.5, 22.2, 13.9; IR (thin film) 3053, 2961, 1728, 1606, 1461, 1381, 1003, 748 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₉N₂O₂ (M+H)⁺ 259.1447, found 259.1440.

Mixture of 3na and 3na', 0.053 g, 72% yield, yellow liquid. 3na: ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 4.4 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.19–7.15 (m, 1H), 7.10–7.06 (m, 1H), 6.98 (d, J = 14.0 Hz, 1H), 6.56 –6.49 (m, 1H), 5.34 (q, J = 6.8 Hz, 1H), 2.61 (brs, 1H), 1.65 (d, J = 6.8 Hz, 3H), 1.45–1.39 (m, 2H), 1.38–1.29 (m, 2H),

0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.2, 136.2, 126.9, 124.8, 121.5, 121.1, 120.3, 117.0, 109.5, 62.7, 31.2, 29.7, 22.9, 22.1, 13.8; **3na'**: ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.35–7.31 (m, 1H), 7.10–7.06 (m, 1H), 6.93 (d, J = 14.0 Hz, 1H), 6.17–6.10 (m, 1H), 5.27 (q, J = 6.8 Hz, 1H), 2.61 (brs, 1H), 1.63 (d, J = 6.8 Hz, 3H), 1.45–1.39 (m, 2H), 1.38–1.29 (m, 2H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 139.6, 127.1, 125.6, 123.8, 121.4, 121.2, 119.7, 117.2, 65.5, 31.9, 29.8, 23.4, 22.2, 13.9; IR (thin film) 2959, 2857, 1672, 1627, 1464, 1383, 1083, 767 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₂₁N₂O (M+H)⁺ 245.1654, found 245.1641.

General procedure for synthesis of spirooxindole 5 or 6: In a 25 mL seal tube was charged with *N*-vinyl nitrone **3** or **4** (0.2 mmol). Then, toluene (2.0 mL) was added *via* syringe. The reaction mixture was stirred vigorously at 120–140 °C for 8–65 h until nitrone **3** or **4** disappeared (monitored by TLC). At this time, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography (the crude residue was dry loaded on silica gel, 1/4 to 1/1, ethyl acetate/petroleum ether) to provide spirooxindole **5** or **6**.

3',4'-Dimethyl-4'H-spiro[indoline-3,5'-isoxazol]-2-one (5ah), *dr* = 1:0.8, 0.032 g, 74% yield, light yellow liquid. *major isomer*: ¹H NMR (500 MHz, DMSO–*d*₆): δ 10.54 (s, 1H), 7.39 (d, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 3.75 (q, *J* = 7.0 Hz, 1H), 1.93 (s, 3H), 1.10 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, DMSO–*d*₆): δ 176.9, 159.7, 143.2, 130.9, 128.2, 125.7, 122.9, 110.9, 87.7, 53.6, 12.7, 11.5; *minor isomer*: ¹H NMR (500 MHz, DMSO–*d*₆): δ

10.43 (s, 1H), 7.25 (d, J = 7.0 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 7.5 Hz, 1H), 3.59 (q, J = 7.5 Hz, 1H), 1.93 (s, 3H), 0.97 (d, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, DMSO– d_6): δ 174.6, 159.5, 142.8, 130.9, 126.8, 124.9, 122.4, 110.5, 87.6, 51.6, 11.3, 10.8; IR (thin film) 3431, 2926, 1728, 1621, 1471, 1189, 1010, 757 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₂H₁₃N₂O₂ (M+H)⁺ 217.0977, found 217.0976.

3'-Phenyl-4'H-spiro[indoline-3,5'-isoxazol]-2-one (5ai), 0.043 g, 80% yield, light yellow liquid. ¹H NMR (500 MHz, DMSO–*d*₆): δ 10.66 (s, 1H), 7.75 (d, *J* = 4.5 Hz, 2H), 7.50–7.49 (m, 3H), 7.41 (d, *J* = 7.0 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 7.5 Hz, 1H), 3.83 (s, 2H); ¹³C NMR (125 MHz, DMSO–*d*₆): δ 176.2, 157.0, 143.0, 131.4, 131.1, 129.5, 129.1, 128.6, 127.5, 125.3, 123.3, 110.9, 85.5, 43.7; IR (thin film) 3456, 3199, 2929, 1636, 1472, 1336, 1117, 748 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₆H₁₃N₂O₂ (M+H)⁺ 265.0977, found 265.0966.

4'-Ethyl-3'-phenyl-4'H-spiro[indoline-3,5'-isoxazol]-2-one (5aj), dr = 10:1, 0.034 g, 57% yield, light yellow liquid. ¹H NMR (400 MHz, DMSO– d_6): δ 10.67 (s, 1H), 7.74–7.73 (m, 2H), 7.50 (t, J = 6.8 Hz, 3H), 7.43 (d, J = 7.2 Hz, 1H), 7.37 (t, J =7.6 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 4.12 (dd, J = 10.0 Hz, 3.2 Hz, 1H), 1.73–1.60 (m, 2H), 0.53 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO– d_6): δ 176.9, 160.6, 143.2, 131.3, 130.8, 129.4, 129.1, 127.9, 126.8, 124.6, 122.7, 110.9, 88.4, 55.2, 21.5, 12.1; IR (thin film) 3436, 3197, 2938, 1720, 1621, 1469, 1203, 749 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₈H₁₇N₂O₂ (M+H)⁺ 293.1290, found 293.1282.

4,5,6,7-Tetrahydro-3aH-spiro[benzo[c]isoxazole-3,3'-indolin]-2'-one (5am), 0.016 g, 32% yield, light yellow liquid. ¹H NMR (400 MHz, DMSO– d_6): δ 10.45 (s, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 3.60–3.56 (m, 1H), 2.68–2.64 (m, 1H), 2.28–2.20 (m, 1H), 1.93–1.90 (m, 1H), 1.79–1.70 (m, 2H), 1.66–1.65 (m, 1H), 1.35–1.27 (m, 2H); ¹³C NMR (100 MHz, DMSO– d_6): δ 174.7, 159.8, 142.8, 130.7, 129.3, 124.7, 122.9, 110.4, 86.1, 56.8, 26.1, 25.2, 24.9, 23.9; IR (thin film) 3454, 3198, 2955, 1711, 1621, 1471, 1194, 749 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₄H₁₅N₂O₂ (M+H)⁺ 243.1133, found 243.1134.

3,4,5,6,7,8-Hexahydrospiro[cyclohepta[c]isoxazole-3,3'-indolin]-2'-one (5an), 0.027 g, 53% yield, light yellow liquid. ¹H NMR (400 MHz, DMSO–*d*₆): δ 10.41 (s, 1H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 7.6 Hz, 1H), 3.84–3.81 (m, 1H), 2.76–2.70 (m, 1H), 2.39–2.32 (m, 1H), 1.85–1.73 (m, 3H), 1.69–1.50 (m, 2H), 1.39–1.30 (m, 3H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 174.7, 163.9, 143.5, 131.0, 127.5, 125.2, 122.8, 110.5, 88.3, 60.0, 30.9, 28.9, 27.5, 25.8, 24.9; IR (thin film) 3430, 3179, 2925, 1725, 1622, 1471, 1193, 752 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₇N₂O₂ (M+H)⁺ 257.1290, found 257.1289.

6-tert-Butyl-4,5,6,7-tetrahydro-3aH-spiro[benzo[c]isoxazole-3,3'-indol]-2'-one (5ap), dr = 1:1, 0.024 g, 40% yield, light yellow liquid. *isomer 1*: ¹H NMR (400 MHz, DMSO-d₆): δ 10.44 (s, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.85 (d, J = 7.6 Hz, 7.2 Hz, 1H), 3.99 (q, J = 7.0 Hz, 1H), 2.72-2.63 (m, 1H), 1.98-1.96 (m, 1H), 1.76-1.63 (m, 2H), 1.41-1.33 (m, 2H), 0.81(s, 9H); ¹³C

NMR (100 MHz, DMSO– d_6): δ 174.9, 161.5, 143.2, 130.9, 129.2, 125.0, 122.9, 110.5, 88.2, 57.3, 53.4, 45.76, 43.6, 32.9, 27.9, 27.2, 24.6, 25.3; *isomer* 2: ¹H NMR (400 MHz, DMSO– d_6): δ 10.43 (s, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 7.2 Hz, 1H), 6.83 (dd, J = 7.6, 7.2 Hz, 1H), 3.68 (q, J = 7.0 Hz, 1H), 2.29–2.23 (m, 1H), 1.75–1.71 (m, 1H), 1.56–1.47 (m, 2H), 1.26–1.22 (m, 2H), 0.78 (s, 9H); ¹³C NMR (100 MHz, DMSO– d_6): δ 174.7, 160.0, 142.9, 130.7, 128.1, 124.8, 122.9, 110.5, 86.4, 57.3, 53.6, 45.8, 43.6, 32.6, 28.9, 27.6, 23.9, 22.2; IR (thin film) 3435, 3180, 2930, 1714, 1618, 1461, 1192, 753 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₈H₂₂N₂O₂ (M+H)⁺ 299.1759, found 299.1758.

1-((E)-But-2-en-2-yl)-3',4'-dimethyl-4'H-spiro[indoline-3,5'-isoxazol]-2-one

(6ah), dr = 1:0.5, 0.041 g, 75% yield, light yellow liquid. *major isomer*: ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.47 (s, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.2 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 5.67–5.63 (m, 1H), 3.81 (q, J = 7.2 Hz, 1H), 1.99 (s, 3H), 1.87 (d, J = 6.8 Hz, 6H), 1.10 (d, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 174.2, 159.8, 144.1, 131.0, 129.1, 127.6, 126.2, 125.1, 123.6, 110.2, 87.2, 54.1, 14.6, 13.2, 11.5, 10.6; *minor isomer*: ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.45 (s, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.09 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 5.61–5.58 (m, 1H), 3.64 (q, J = 7.2 Hz, 1H), 1.94 (s, 3H), 1.78 (d, J = 6.8 Hz, 6H), 1.01 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 171.8, 159.6, 143.9, 130.9, 129.0, 126.7, 126.1, 124.9, 123.1, 109.9, 87.1, 51.9, 14.6, 12.7, 11.2, 10.6; IR (thin film) 3057, 2925, 1728, 1611, 1464, 1201, 1100, 757 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₉N₂O₂ (M+H)⁺ 271.1446, found 271.1445.

1'-Cyclohexenyl-4,5,6,7-tetrahydro-3aH-spiro[benzo[c]isoxazole-3,3'-indolin]-2 '-one (6am), 0.032 g, 50% yield, light yellow liquid. ¹H NMR (400 MHz, DMSO–*d*₆): δ 7.44 (d, J = 7.6 Hz, 1H), 7.37–7.34 (m, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.96–6.86 (m, 1H), 5.83–5.82 (m, 1H), 3.65–3.60 (m, 1H), 2.69–2.66 (m, 1H), 2.20–2.12 (m, 5H), 1.93–1.91 (m, 1H), 1.73–1.63 (m, 9H); ¹³C NMR (100 MHz, DMSO–*d*₆): δ 171.9, 159.8, 143.7, 131.7, 130.8, 128.6, 128.2, 124.7, 123.6, 109.8, 85.8, 57.3, 26.2, 26.0, 25.2, 24.9, 24.6, 23.8, 22.5, 21.6; IR (thin film) 3060, 2930, 1724, 1610, 1465, 1377, 1191, 765 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₀H₂₃N₂O₂ (M+H)⁺ 323.1759, found 323.1759.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge *via* the Internet at http://pubs.acs.org.

Spectra of compounds 3, 4, 5 and 6 (PDF)

X-ray structure of compound 3ca (CIF)

AUTHOR INFORMATION

Corresponding Authors

* E-mail: gfysglgx@163.com

* E-mail: moeastlight@mailbox.gxnu.edu.cn

[†]C.-H. Chen and Q.-Q. Liu contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Financial support from the "Overseas 100 Talents Program" of Guangxi Higher Education, National Natural Science Foundation of China (21562005, 21602037, 21462008), State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China (CMEMR2015-A05, CMEMR2014-A01), Ministry of Education of China (IRT_16R15), and Natural Science Foundation of Guangxi (2015GXNSFCA139001, 2016GXNSFFA380005) are greatly appreciated.

REFERENCES

(1) For reviews on nitrones, see: (a) Rück-Braun, K.; Freysoldt, T. H.; Wierschem,
F. Chem. Soc. Rev. 2005, 34, 507; (b) Anderson, L. L. Asian J. Org. Chem. 2016, 5, 9;
(c) Shi, W.-M.; Ma, X.-P.; Su, G.-F.; Mo, D.-L. Org. Chem. Front. 2016, 3, 116; (d)
Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348; (e) Yang, J.
Synlett 2012, 23, 2293; (f) Chiacchio, U.; Padwa, A.; Romeo, G. Curr. Org. Chem.
2009, 13, 422; (g) Pellissier, H. Tetrahedron 2007, 63, 3235; (h) Jones, R. C. F.;
Martin, J. N. in: Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry
torward Heterocycles and Natural Products (Eds: Padwa, A.; Pearson, W. H.), Wiley:
New York, 2002, pp.1.

(2) Some examples for *N*-vinyl nitrones, see: (a) Pacak, W. H.; Son, J.; Burnstine, A. J.; Anderson, L. L. *Org. Lett.* 2014, *16*, 3440; (b) Pennings, M. L.; Reinhoudt, D. N.; Harkema, S.; Van Hummel, G. *J. Am. Chem. Soc.* 1980, *102*, 7570; (c) Heaney, F.; Kelly, B. M.; Bourke, S.; Rooney, O.; Cunningham, D.; McArdle, P. *J. Chem. Soc.*,

Perkin Trans. 1 1999, 143; (d) Yeom, H.-S.; So, E.; Shin, S. Chem. Eur. J. 2011, 17, 1764; (e) Nakamura, I.; Okamoto, M.; Sato, Y.; Terada, M. Angew. Chem. Int. Ed. 2012, 51, 10816; (f) Son, J.; Kim, K. H.; Mo, D.-L.; Wink, D. J.; Anderson, L. L. Angew. Chem. Int. Ed. 2017, 56, 3059.

(3) Some examples for synthesizing *N*-aryl or *N*-alkyl nitrones, see: (a) Aurich, H.
G.; Weiss, W. *Tetrahedron* **1976**, *32*, 159; (b) Robl, J. A.; Hwu, J. R. *J. Org. Chem.* **1985**, *50*, 5913; (c) Confalone, P. N.; Huie, E. M. *Org. React.* **1988**, *36*, 1; (d) Murray,
R. W.; Singh, M. *J. Org. Chem.* **1990**, *55*, 2954; (e) Cicchi, S.; Corsi, M.; Goti, A. *J. Org. Chem.* **1999**, *64*, 7243; (f) Saladino, R.; Neri, V.; Cardona, F.; Goti, A. *Adv. Synth. Catal.* **2004**, *346*, 639; (g) Gella, C.; Ferrer, E.; Alibés, R.; Busqué, F.; de March, P.;
Figueredo, M.; Font, J. *J. Org. Chem.* **2009**, *74*, 6365; (h) Hood, T. S.; Huehls, C. B.;
Yang, J. *Tetrahedron Lett.* **2012**, *53*, 4679; (i) Mo, D.-L.; Anderson, L. L. *Angew. Chem. Int. Ed.* **2013**, *52*, 6722.

(4) Denmark, S. E.; Montgomery, J. I. J. Org. Chem. 2006, 71, 6211.

(5) Michael, R. E.; Chando, K. M.; Sammakia, T. J. Org. Chem. 2015, 80, 6930.

(6) Mo, D.-L.; Wink, D. A.; Anderson, L. L. Org. Lett. 2012, 14, 5180.

(7) Kontokosta, D.; Muller, D. S.; Mo, D.-L.; Pace, W. H.; Simpson, R. A.; Anderson, L. L. *Beilstein J. Org. Chem.* **2015**, *11*, 2097.

(8) Some examples for *N*-vinylation *via* the Chan-Lam reaction, see: (a) Ohata, J.;
Minus, M. B.; Abernathy, M. E.; Ball, Z. T. *J. Am. Chem. Soc.* 2016, *138*, 7472; (b)
Zhang, Z. H.; Yu, Y.; Liebeskind, L. S. *Org. Lett.* 2008, *10*, 3005; (c) Dalili, S.; Yudin,
A. K. *Org. Lett.* 2005, *7*, 1161.

The Journal of Organic Chemistry

(9) (a) Shafir, A.; Lichtor, P. A.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3490; (b) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205; (c) Yu, H. Z.; Jiang, Y. Y.; Fu, Y.; Liu, L. J. Am. Chem. Soc. 2010, 132, 18078.

(10) (a) Ma, X.-P.; Shi, W.-M.; Mo, X.-L.; Li, X.-H.; Li, L.-G.; Pan, C.-X.; Chen,
B.; Su, G.-F.; Mo, D.-L. *J. Org. Chem.* 2015, *80*, 10098; (b) Wu, S.-Y.; Ma, X.-P.;
Liang, C.; Mo, D.-L. *J. Org. Chem.* 2017, *82*, 3232; (c) Ma, X.-P.; Zhu, J.-F.; Wu,
S.-Y.; Chen, C.-H.; Zou, N.; Liang, C.; Su, G.-F.; Mo, D.-L. *J. Org. Chem.* 2017, *82*, 502.

(11) (a) Yang, H. B.; Shi, M. Org. Biomol. Chem. 2012, 10, 8236; (b) Shuji, K.;
Takashi, T. Chem. Lett. 1995, 24, 49; (c) Mehrdad, M.; Faraji, L.; Jadidi, K.; Eslami,
P.; Surem, H. Monatsh Chem. 2011, 142, 917; (d) Pei, C. K.; Jiang, Y.; Shi, M. Eur. J.
Org. Chem. 2012, 4206; (e) Aurich, H. G.; Grigo, U. Chem. Ber. 1976, 109, 200; (f)
Tacconi, G.; Righetti, P. P.; Desimoni, G. J. Prakt. Chem. 1980, 322, 679.

(12) CCDC: 1537304 (**3ca**) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

(13) The ratio of E/Z isomer of **3ah** was determined by its ¹H NMR spectrum. The E/Z configuration was determined by NOESY sepectra of **3ah**, see more details in Supporting Information.

(14) We found the solubility of oxime 1g in MeOH was bad. After the reaction ran24 h, the oxime 1g was still a solid in the solvent.

(15) Please see the NOESY spectra of compounds **5aj** and **5am** in Supporting Information.

(16) Some examples for spirooxindoles, see: (a) Li, J. W. H.; Vederas, J. C. Science
2009, 325, 161; (b) Kumar, K.; Waldmann, H. Angew. Chem. Int. Ed. 2009, 48, 3224;
(c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.

(17) Wang, Z.; Wang, C. L.; Sun, Y. N.; Zhang, N.; Liu, Z. L.; Liu, J. L. Tetrahedron 2014, 70, 906.

(18) Nakhai, A.; Stensland, B.; Svensson, P. H.; Bergman, J. *Eur. J. Org. Chem.***2010**, 6588.

(19) Sullivan, D. G.; Sadler, P. W. J. Org. Chem. 1957, 22, 283.

(20) Kollmar, M.; Parlitz, R.; Oevers, S. R.; Helmchen, G. Org. Synth. 2003, 79, 196.

(21) Pinto, A. C.; Alexandra, A. M.; Vasconcellos da Silva, B.; Bastos, R. S.; Dupont, J.; Neto, B. A. D. *Tetrahedron Lett.* **2008**, *49*, 5639.

(22) Klaubert, D. H.; Sellstedt, J. H.; Guinosso, C. J.; Capetola, R. J.; Bell, S. C. J.

Med. Chem. 1981, 24, 742.

(23) Moriconi, E. J.; Murray, J. J. J. Org. Chem. 1964, 29, 3577.

(24) Sin, N.; Venables, B. L.; Liu, X. H.; Huang, S.; Gao, Q.; Ng, A.; Dalterio, R.;

Rajamani, R.; Meanwell, N. A. J. Heterocycl. Chem. 2009, 46, 432.

(25) Cai, X. H.; Yang, H. J.; Zhang, G. L. Synthesis 2005, 1569.

(26) Jiang, Y.; Chen, X.; Hu, X. Y.; Shu, C.; Zhang, Y. H.; Zheng, Y. S.; Lian, C. X.;

Yuan, W. C.; Zhang, X. M. Adv. Synth. Catal. 2013, 355, 1931.

1
ว
2
3
4
5
6
7
1
8
9
10
11
11
12
13
14
15
10
10
17
18
19
20
20
21
22
23
24
24
25
26
27
28
20
29
30
31
32
33
22
34
35
36
37
20
30
39
40
41
42
7 <u>~</u> 40
43
44
45
46
47
41
48
49
50
51
51
52
53
54
55
56
(1)

- 57 58 59
- 60