Accepted Manuscript

Research paper

Synthesis, structure and cytotoxicity evaluation of complexes of N¹-substitutedisatin-3-thiosemicarbazone with copper(I) halides

Ashiq Khan, Jerry P. Jasinski, Victoria A Smoleaski, Kamaldeep Paul, Gurpinder Singh, Rekha Sharma

 PII:
 S0020-1693(16)30242-0

 DOI:
 http://dx.doi.org/10.1016/j.ica.2016.05.013

 Reference:
 ICA 17049

To appear in: Inorganica Chimica Acta

Received Date:25 February 2016Revised Date:6 May 2016Accepted Date:6 May 2016

Please cite this article as: A. Khan, J.P. Jasinski, V.A. Smoleaski, K. Paul, G. Singh, R. Sharma, Synthesis, structure and cytotoxicity evaluation of complexes of N¹-substituted-isatin-3-thiosemicarbazone with copper(I) halides, *Inorganica Chimica Acta* (2016), doi: http://dx.doi.org/10.1016/j.ica.2016.05.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis, structure and cytotoxicity evaluation of complexes of N^{1} -substituted-isatin-3-thiosemicarbazone with copper(I) halides

Ashiq Khan^a, Jerry P. Jasinski^b, Victoria A Smoleaski^b, Kamaldeep Paul^c, Gurpinder Singh^a, Rekha Sharma^{a*}

^aDepartment of Chemistry, Lovely Professional University, Phagwara, Punjab, India

^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435–2001, USA

^cSchool of Chemistry and Biochmistry Thapar University, Patiala-147004, Punjab, India

*Corresponding author: R. Sharma (E-mail: <u>rekha.14537@lpu.co.in</u>)

Abstract

Synthesis of Isatin-N¹-methyl-thiosemicarbazone (H₂itsc-N¹-Me, H₂L¹) and isatin-N¹-ethylthiosemicarbazone (H₂itsc-N¹-Et, H₂L²) has been carried out and the effect of substituents (at N¹ atom of isatin-3-thiosemicarbazones) on nuclearity of copper(I) halide complexes has been investigated. Reactions of copper(I) halides (X = I, Br, Cl) with H₂L¹ and H₂L² using Ph₃P as coligand in 1 : 1 : 1 (M : L : PPh₃) molar ratio in acetonitrile yielded complexes of stiochiometry [CuX(H₂L¹)(Ph₃P)] (X = I, C1; Br, C2; Cl, C3) and [CuX(H₂L²)(Ph₃P)] (X = I, C4; Br, C5; Cl, C6) respectively. All these complexes have been characterized using analytical and spectroscopic data (IR, ¹H NMR and ESI mass). The single crystal structure has been solved for H₂L¹ and C2. The complex C2 has distorted tetrahedral geometry around copper(I) and isatin-

 N^{1} -methyl-thiosemicarbazone coordinated to metal center as neutral, bidentate, N^{3} , S- chelating ligand. Elemental analysis suggested the presence of one acetonitrile molecule in complexes C3 and C6 and half CH₃CN in complexes C2 and C4 as solvent of crystallization. MTT assay, supported by docking studies have revealed the cytotoxic nature of the compounds C1-C6.

Keywords: *isatin-N¹-methyl-thiosemicarbazone; isatin-N¹-ethyl-thiosemicarbazone; copper(I) halide; X-ray crystallography; cytotoxicity; docking.*

1. Introduction

Isatin and schiff bases of isatin derivatives possess a wide range of biological properties, like antibacterial¹⁻³, antifungal⁴⁻⁶, antiviral⁷⁻¹⁰, anti-HIV¹¹⁻¹³, antiprotozoal^{14,15} and anti-helminthic^{16,17} activities. Isatin on condensation with thiosemicarbazide forms three types of thiosemicarbazones: isatin-3-thiosemicarbazone (I), isatin-2-thiosemicarbazone (II) and isatin-2,3-bis(thiosemicarbazone) (III) (Chart 1).

Out of these three, isatin-3-thiosemicarbazone has been of interest as 1-methylisatin-3-thiosemicarbazone was found to be active in the treatment of smallpox.¹⁸⁻²⁰ Moreover, a number of substituted isatin-3-thiosemicarbazones are structurally characterized.²¹⁻³¹ Isatin-3-thiosemicarbazones are good O, N, S- donors and form complexes with metals.³²⁻⁴² They show variable bonding modes like, η^1 -S, terminal (A)³⁶, N³, S- chelation (B)³⁷, N³, S, O- chelation (C)³⁷, N³, S, O-chelation-cum-O-bridging (D)³⁸ (Chart 2).

Recently, the chemistry of copper(I) halides with thiophene-2-carbaldehyde thiosemicarbazones and furan-2-carbaldehyde thiosemicarbazones have been reported and it was observed that substituents at C^2 and N^1 atoms of thiosemicarbazone influenced the bonding and nuclearity of copper(I) halide complexes.⁴²⁻⁴⁵ Thus, we were interested in finding the similar effect in case of isatin-3-thiosemicarbazone. Un-substituted isatin-3-thiosemicarbazone reacted with copper(I) halides and Ph₃P in 1: 1: 2 molar ratio to form tetrahedral monomers.^{36, 46} In present work, isatin-3-thiosemicarbazone with methyl (H₂itsc-N¹-Me) or ethyl group (H₂itsc-N¹-Et) group at N¹ atom have been synthesized (Chart 3) and the effect of substituent at N¹ atom on the nuclearity of their copper(I) complexes has been investigated. The synthesized complexes have been characterized using elemental analysis, spectroscopic studies (IR, ESI mass, ¹H NMR) and single crystal x-ray crystallography (Complex **C2**). These compounds were further investigated for their cytotoxic evaluations.

Chart 3

Cancer figures among the leading cause of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer related deaths in 2012.⁴⁷ It is expected that annual cancer cases will rise from 14 million in 2012 to 22 within the next 2 decades.⁴⁷ These rising and alarming figures have prompted the discovery of some important anticancer drugs, currently used in the therapy and tremendous efforts are being taken towards identifying new efficient drug molecules.⁴⁸ Towards this end, we evaluated the cytotoxicity

4

potency of copper(I) complexes and further investigated the mechanism of action by molecular modelling studies.

2. Experimental

2.1. Materials and Methods

Potassium chloride, potassium bromide, potassium iodide and triphenylphosphine were purchased from Loba Pvt. Ltd, whereas isatin, 3-methylthiosemicarbazide and 3-ethyl thiosemicarbazides were procured from Aldrich Chemicals Ltd. Copper(I) iodide, bromide and chloride were prepared by the reduction of CuSO₄·5H₂O using SO₂ in the presence of KI, KBr or KCl in water.⁴⁹ C, H and N analyses were obtained with a Thermoelectron FLASHEA1112 CHNS analyzer. Infrared spectra were recorded from KBr pellets in the range 4000-200 cm⁻¹ on a SHIMADZU FTIR 8400S spectrophotometer. Melting points were determined with an electrically heated Gallenkamp apparatus. ¹H NMR were recorded on an AV500 FT spectrometer operating at a frequency of 500 MHz using d⁶-DMSO/CDCl₃ as the solvent with TMS as the internal standard. Crystal snaps were taken from OLYMPUS Magnus MLX Camera (40x and 100x). Mass spectra, ESI-methods, were recorded on Bruker Daltonics Esquire 300 mass spectrometer.

2.2. Synthesis of N¹-substituted-isatin-3-thiosemicarbazones

Isatin-N¹-methyl thiosemicarbazone (H_2L^1) and Isatin-N¹-ethyl thiosemicarbazone (H_2L^2) were prepared by refluxing isatin with their respective thiosemicarbazides in methanol for 8-10 h.

2.3. Procedure for Synthesis of Copper(I) Complexes C1-C6

$[CuI(\eta^2\text{-}N^3, S\text{-}H_2itsc\text{-}N^1\text{-}Me)(Ph_3P)] C1$

To a solution of CuI (0.050 g, 0.26 mmol) in 15 ml of acetonitrile was added, solid Ph₃P (0.068 g, 0.26 mmol) and stirred for 2-3 hrs. The white ppt. of [CuI(Ph₃P)] were formed. The acetonitrile was decanted off from the reaction and precipitates were dissolved in 15 ml chloroform. To it was added, solid H₂itsc-N¹-Me (0.061 g, 0.26 mmol) and the reaction mixture was stirred for 3-4 h. Yellow color clear solution thus obtained was filtered and kept for crystallization on slow evaporation at room temperature. The product obtained was recrystallized from acetonitrile. Yield: 0.061 g, 68%; m.p. 218-220 °C. Elemental analysis: Found: C, 48.5; H,

5

3.7; N, 8.04; S, 4.36. $C_{28}H_{26}N_4PSOCuI$ requires, C, 48.9; H, 3.8; N, 8.16; S, 4.66%. Main IR peaks (KBr, cm⁻¹), υ (N–H), 3468s, 3402s; υ (–NH–) 3217m; (NH, isatin) 3142s; υ (C–H_{Ph}), 3051s; υ (C–H_{Me}), 2814; υ (C=O) 1687s; δ (NH₂) + υ (C=N) + υ (C–C), 1597, 1554s; υ (C=S) 826s (thioamide moiety), υ (P–C_{Ph}), 1095s. ¹H NMR (DMSO δ ppm): 12.64 s (1H NH_{isatin}), 11.23s (1H, N²H), 7.76 s (1H N¹H), 7.67-6.93 m (19H, C^{5,7,8,6}H + Ph₃P), 2.50 m (3H, CH₃). m/z (ESI) 707.5 (M⁺+ Na), 684.9 (M⁺).

Complexes C2-C6 were prepared by a similar method albeit with their respective metal salts.

$[CuBr(\eta^2-N^3, S-H_2itsc-N^1-Me)(Ph_3P)] C2.$

Yield: 0.080 g, 76%; m.p. 182-185 °C. Elemental analysis, Found: C, 53.5; H, 4.0; N, 9.76; S, 4.39. $C_{28}H_{26}N_4SOPCuBr \cdot 0.5CH_3CN$ requires: C, 53.0; H, 4.2; N, 9.54; S, 4.84. Main IR peaks (KBr, cm⁻¹), υ (N–H), 3306s, 3207s, 3051s, 3026s; (NH, isatin) 2983m; υ (C–H_{Me}), 2935s; υ (C–H_{Ph}), 3026; υ (C=O) 1707s; δ (NH₂) + υ (C=N) + υ (C–C), 1614s, 1556m, 1479m, 1464m; υ (C=S) 826s (thioamide moiety), υ (P–C_{Ph}), 1095s. ¹H NMR (DMSO, δ ppm): 11.25 s (1H, NH_{isatin}), 9.50 s (1H, N²H), 7.80 s (1H N¹H), 7.39-6.89 m (19H C^{5,7,8,6}H+Ph₃P), 3.06 m (3H, CH₃). m/z (ESI) 660 (M⁺+ Na), 637 (M⁺).

$[CuCl(\eta^2-N^3, S-H_2itsc-N^1-Me)(Ph_3P)] C3.$

Yield: 0.115 g,72 %; m.p. 182-185 °C. Elemental analysis: Found: C, 56.2; H, 4.4; N, 11.00, S, 4.99. $C_{28}H_{25}N4SOPCuCl·CH_{3}CN$ requires, C, 56.6; H, 4.4; N, 11.26; S, 5.03. Main IR peaks (KBr, cm⁻¹), υ (N–H), 3470s, 3402s, 3215m; υ (–NH–) 3132m; (NH, isatin) 2982m; υ (C–H_{Me}), 2893, 2823; υ (C=O) 1687s; δ (NH₂) + υ (C=N) + υ (C–C), 1653, 1620s, 1543s, 1467s; υ (C=S) 827s (thioamide moiety), υ (P–C_{Ph}), 1103s. ¹H NMR (DMSO, CDCl₃, δ ppm): 11.23 s (1H, NH_{isatin}) 9.42 s (1H, N²H), 7.78 s (1H, N¹H), 7.39-6.91 m (19H, C^{5,7,8,6}H + Ph₃P), 3.10 m (3H, CH₃). m/z (ESI) 616 (M⁺+ Na), 593 (M⁺).

$[CuI(\eta^2-N^3, S-H_2itsc-N^1-Et)(Ph_3P)] C4.$

Yield: 0.065 g, 71%; m.p. 197-200 °C. Elemental analysis, Found: C, 49.5; H, 3.8; N, 7.96; S, 4.53. $C_{29}H_{28}N_4SOPCuI$ requires, C, 49.6; H, 3.9; N, 7.98; S, 4.56. Main IR peaks (KBr, cm⁻¹), υ (N–H), 3306s, 3273s; υ (–NH–) 3180m; (NH, isatin) 3053s; υ (C–H_{Ph}), 2982w, 2929w; υ (C–H_{Et}), 2829; υ (C=O) 1685s; δ (NH₂) + υ (C=N) + υ (C–C), 1651s, 1591m, 1543s; υ (C=S) 827s (thioamide moiety), υ (P–C_{Ph}), 1094s. ¹H NMR (DMSO δ ppm): 11.24 s (1H, NH_{isatin}), 9.5 s(1H, N²H), 7.8 s (1H, N¹H), 7.46-6.9 m (19H, C^{5,7,8,6}H+Ph₃P), 2.5 t (3H, CH₃), 1.206 m (2H, CH₂). m/z (ESI) 722 (M⁺ + Na), 699 (M⁺).

$[CuBr(\eta^2-N^3, S-H_2itsc-N^1-Et)(Ph_3P)] C5.$

Yield: 0.087 g, 74%; m.p. 182-185 °C. Elemental analysis, Found: C, 53.4; H, 4.0; N, 9.17; S, 4.81. $C_{29}H_{28}N_4PSOCuBr \cdot 0.5CH_3CN$ requires, C, 53.5; H, 4.4; N, 9.36; S, 4.75. Main IR peaks (KBr, cm⁻¹), υ (N–H), 3308s; υ (–NH–) 3176s; (NH, isatin) 3049s, 3012s 2980m; υ (C–H_{Ph}), 2928s; υ (C–H_{Et}), 2889; υ (C=O) 1705s; δ (NH₂) + υ (C=N) + υ (C–C), 1614s, 1570m, 1543s, 1523m, 1458s; υ (C=S) 828s (thioamide moiety), υ (P–C_{Ph}), 1094s. ¹H NMR (DMSO δ ppm): 11.23 s (1H, NH_{isatin}), 9.56 s (1H, N²H), 7.9 s (1H, N¹H), 7.34-6.90 m (19H, C^{5,7,8,6}H + Ph₃P), 2.5 t (3H, CH₃), 1.179 m (2H, -CH₂-). m/z (ESI) 674 (M⁺ + Na), 651 (M⁺).

$[CuCl(\eta^2\text{-}N^3,\text{S-H}_2itsc\text{-}N^1\text{-}Et)(Ph_3P)] \text{ C6.}$

Yield: 0.018 g, 72%; m.p. 182-184 °C. Elemental analysis, Found: C, 57.2; H, 4.3; N, 10.07; S, 4.62. $C_{29}H_{28}N_4PSOCuCl·CH_3CN$ requires, C, 57.3; H, 4.8; N, 10.78; S, 4.93. Main IR peaks (KBr, cm⁻¹), υ (N–H), 3306m; υ (–NH–) 3161m; (NH, isatin) 2982m; υ (C–H_{Et}), 2929; υ (C=O) 1687s; δ (NH₂) + υ (C=N) + υ (C–C), 1653, 1620s, 1543s, 1467s; υ (C=S) 827s (thioamide moiety), υ (P–C_{Ph}), 1093s. ¹H NMR (DMSO₂CDCl₃ δ ppm): 11.23 s (1H, NH_{isatin}), 9.46 s (1H, N²H), 7.80 s (1H, N¹H), 7.38-6.91 m (19H, C^{5,7,8,6}H+Ph₃P), 2.53 t (3H, CH₃), 1.18 m (2H, CH₂). m/z (ESI) 630.1 (M⁺ + Na), 607.1 (M⁺).

2.4. X-ray Crystallography

A single crystal was used for data collection with Agilent, Eos, Gemini (C2) and *X'calibur* CCD ($\mathbf{H}_{2}\mathbf{L}^{1}$), equipped with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Crystal data was collected at 173 (2) (C2) and 293(2) ($\mathbf{H}_{2}\mathbf{L}^{1}$) K. Data was processed with CrysAlisPro, Agilent Technologies (C2), CrysAlisPro, Oxford Diffraction Ltd ($\mathbf{H}_{2}\mathbf{L}^{1}$) (data collection) and CrysAlisPro RED (cell refinement, data reduction). ⁵⁰ For structure solution program SHELXS-97 ($\mathbf{H}_{2}\mathbf{L}^{1}$) ⁵¹ was used, whereas structure refinement was done by SHELXL (C2)⁵² and SHELXL-97 ($\mathbf{H}_{2}\mathbf{L}^{1}$). Atomic scattering factors taken from "International Tables for Crystallography".⁵³

2.5. Cytotoxicity studies

2.5.1. Cell culture

L123 (human lung cells) and HepG2 (Human hepatocellular carcinoma cells) was cultured in Dulbecco's modified Eagle's medium with 10% fetal bovine serum (heat inactivated), 100 units mL⁻¹ penicillin, 100 μ g mL⁻¹ streptomycin, and 2.5 μ g mL⁻¹ amphotericin B, at 37 °C in a saturated humidity atmosphere containing 95% air/5% CO₂.⁵⁴ The cell lines were harvested when they reached 80% confluence to maintain exponential growth.

2.5.2. MTT assay

The MTT assay is a standard colorimetric assay, in which mitochondrial activity is measured by splitting tetrazolium salts with mitochondrial dehydrogenases in viable cells only.⁵⁵ For viability testing, MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide, M2128 from Sigma) cell proliferation assay was carried out. The cell monolayers in exponential growth were harvested using 0.25% trypsin and single-cell suspensions were obtained by repeated pipetting. Only viable cells were used in the assay. Exponentially growing cells were plated at 1.2×10^4 cells per well into 96-well plates (Costar, Corning, NY, USA) and incubated for 48 h before the addition of drugs to achieve the maximum confluency of the cells. Stock solutions were prepared by dissolving the compounds in 10% (v/v) DMSO and further diluted with fresh complete medium to achieve 1M concentration. Cells were incubated with different concentrations of

8

cisplatin (reference drug) and test compounds for 48 h at 37 °C in 5% CO₂ humidified incubator together with untreated control sample. At appropriate time points, cells were washed in PBS, treated with 50 μ L MTT solution (5 mgmL⁻¹, tetrazolium salt) and incubated for 4 h at 37°C. At the end of the incubation period, the medium was removed and pure DMSO 150 μ L was added to each well. The metabolized MTT product dissolved in DMSO was quantified by measuring the absorbance at 570 nm on an Microplate reader (iMark, BIORAD) with a reference wavelength of 655 nm. All assays were performed in triplicate and repeated thrice.

The percentage inhibition was calculated, from the data, using the formula given below, and IC_{50} values were calculated using nonlinear regression analysis.

Mean OD of untreated cells (control) - Mean OD of treated cells × 100 Mean OD of untreated cells (control)

The IC_{50} concentration was determined as the dose that needs to be required to kill 50% of the cells.

2.6. Molecular docking study

Docking studies

Compounds were built using the builder tool kit of the software package Argus Lab 4.0.1.23 and energy minimized with semi-empirical quantum mechanical method PM3. Crystal coordinates of Hodgkin lymphoma enzyme and DNA were downloaded from protein data bank and in the molecule tree view of the software, the monomeric structures of the crystal co-ordinate was selected and the active site was defined as 15 Å around the ligand. Validation of the docking programme was checked by docking the known inhibitors of the respective enzymes in their binding sites. The molecule to be docked in the active site of the enzyme was pasted in the work space carrying the structure of the enzyme. The docking programme implements an efficient grid based docking algorithm which approximates an exhaustive search within the free volume of the S19 binding site cavity. The conformational space was explored by the geometry optimization of the flexible ligand (rings were treated as rigid) in combination with the incremental construction of the ligand torsions. Thus, docking occurs between the flexible ligand parts of the compound and enzyme. The docking was repeated several times (approx. 10000 iterations) until no change in the position of the ligand and a constant value of the binding energy was observed. The ligand orientation was determined by a shape scoring function based on Ascore and the final positions

9

were ranked by lowest interaction energy values. H-bond between the respective compound and enzyme were explored.

3. Results and Discussion

3.1. Chemistry

Reaction of un-substituted isatin-3-thiosemicarbazone (H₂itsc) with copper(I) halides and Ph₃P in 1 : 1 : 1 (M : L : PPh₃) molar ratio formed insoluble orange colored compounds. To solubilize them and to get crystalline product, one mole of Ph₃P had been further added, which formed tetrahedral monomeric complexes, [CuX(η^1 -S-H₂itsc)(Ph₃P)₂] (X = I, Cl, Br).^{36, 46} However, with substituted isatin-3-thiosemicarbazone (H₂itsc-N¹-R) (R = Me, Et), the similar reaction in 1 : 1 : 2 molar ratio formed three types of crystals (i) Red crystals of stoichiometry, [CuX(H₂itscR)(Ph₃P)] (A), (ii) white crystals of formula, [CuX(Ph₃P)₃] (B) and (iii) yellow needles of free ligand (C). The whole reaction sequence is given in Scheme 1, the characterization data of B and C is provided in supplementary information.

Compounds of stoichiometry, $[CuX(H_2itscR)(Ph_3P)]$ (R=Me, H_2L^1 ; Et, H_2L^2) were of our interest and were obtained by another route. Copper(I) halides (X = I, Br, Cl) were reacted with Ph₃P in 1 : 1 molar ratio to form white solid of composition, CuX(Ph₃P) in acetinitrile. Acetonitrile was then removed and precipitates were dissovled in chlorofrom and one mole of H_2L^1 and H_2L^2 was added to get complexes of stiochiometry, $[Cu(\eta^2-N^3, S-H_2itsc-N^1-Me)(Ph_3P)]$ (X = I, C1; Br, C2; Cl, C3) and $[CuX(\eta^2-N^3, S-H_2itsc-N^1-Et)(Ph_3P)]$ (X = I, C4; Br, C5; Cl, C6) respectively (Scheme 2).

Scheme 2

The v(N-H) bands in IR spectra of complexes can be divided into three categories: (i) bands between 3490–3200 cm⁻¹ due to (symmetric and asymmetric stretching mode) amino group, (ii) band in the ranges, 3051-3081 cm⁻¹, due to NH of isatin ring, (iii) band in the ranges, 3132-3149cm⁻¹ due to amide (-NH-) group. The presence of all these bands in the complexes **C1-C6**, suggest that no deprotonation occurs at any nitrogen atom and ligand is coordinating in neutral form. The characteristic v(C=S) band in H₂L¹ and H₂L² appeared at 835 and 837 cm⁻¹ respectively and showed shift to lower region (826-828 cm⁻¹ **C1-C6**) in their complexes. This shift indicates the binding of metal ion with thione sulfur. The presence of v(P-C_{Ph}) in the range, 1093-1103 cm⁻¹ ensures the coordination of triphenylphosphine to the copper center.^{36, 46}

In ¹H NMR spectra of ligands, $-N^{2}H$ - proton appeared at $\delta 11.22 (H_{2}L^{1})$ and $\delta 11.21$ ppm $(H_{2}L^{2})$, which showed an upfield shift in complexes (**C2-C6**) ($\delta 9.33 - 9.56$ ppm). Similarly, the NH proton of isatin ring and N¹H proton appeared at $\delta 12.60 (H_{2}L^{1})$ and at $\delta 12.55 (H_{2}L^{2})$. Both these signals also showed an upfield shift in complexes **C2- C6** vis-à-vis free ligand and no change was observed in complex **C1**. The presence of all these protons indicate that no deprotonation take place during complexation and isatin thiosemicarbazone ligands coordinate to the copper center in neutral form. The shift in the position of these protons also ensure complexation. The C⁵H, C⁶H, C⁷H and C⁸H ring protons of thiosemicarbazone ligands appeared in range, $\delta 7.67-6.89$ ppm in the complexes. The CH₃ group at N¹H gives a doublet (in range δ

11

3.17-2.50 ppm, C1-C3) and due to ethyl group a triplet (at $\delta 2.5$ ppm) and a multiplet (in the range $\delta 1.18-1.20$ ppm, C4-C6).

3.2. Structure of N¹-methyl-isatin-3-thiosemicarbazone (H₂L¹) and Complex C2

The molecular structure of ligand N¹-methyl-isatin-3-thiosemicarbazone (H_2L^1) and Complex C2 is given in Figure 1 and Figure 2 respectively. The crystallographic data and important bond parameters are given in Tables 1 and 2 respectively.

Structure of H₂L¹

The ligand N¹-methyl-isatin-3-thiosemicarbazone crystallizes in monoclinic crystal system with space group P2₁/c. The two rings of isatin moiety (five and six membered) are nearly planer and the dihedral angle between mean plane of both rings is $2.08(5)^{\circ}$, which is close to that of N¹-ethyl-isatin-3-thiosemicarbazone, (H₂itsc-N¹-Et, 2.1°) and N¹-hexamethyleniminyl isatin-3-thiosemicarbazone, (H₂itsc-N¹-Et, 2.1°) and N¹-hexamethyleniminyl isatin-3-thiosemicarbazone, (H₂itsc-N-Hm, 0.5°).³³ The angle describing plane of the thiosemicarbazone moiety, N(1)–N(2)–C(3)–S(1) and N(1)–N(2)–C(3)–N(3) is 1.8 and 1.6° respectively.

Figure 1. ORTEP view of H_2 itsc-N¹-Me (H_2L^1), showing the atom-labeling scheme

 H_2 itsc-N¹-Me, show Z – configuration about C(8)=N(1) double bond due to intramolecular H-bonding between N(2)H of thiosemicarbazone and O(7) of isatin similar to unsubstituted and substituted isatin-3-thiosemicarbazones (Table 2).³⁴ The formation of five

12

membered ring due to H-bonding between N(4)H and N(1) leads to E-configuration about N(2)-C(3) similar to H₂itsc and H₂itsc-N¹-Et, but opposite to Z-configuration in case of H₂itsc-N¹-Hm, where no such H-bonding is possible.³³

Structure of [CuBr(η^2 -N³, S-H₂itsc-N¹-Me)(Ph₃P)] C2:

Complex C2 crystallizes in triclinic crystal system with space group P-1. In this complex, phosphorous atom from triphenylphosphine ligand, one bromide atom, imino nitrogen (N^3) and thione sulfur of thio-ligand formed corners of tetrahedron with copper(I) in center. N¹-methylisatin-3-thiosemicarbazone coordinate as neutral ligand binding to copper(I) in N³, S- chelation mode. The Cu–S bond distance, 2.3274(10) Å is close to that of 2.3566(10) Å in [CuBr(η^1 -S- $H_2itsc)(Ph_3P)_2]^{46}$, but shorter than, 2.4156(6) Å in $[Cu(\eta^2-N^3, S-Hitsc)Ph_3P)_2]\cdot NO_3$.⁵⁶ Cu–Br bond length in C2, 2.4219(6) Å is less than sum of ionic radii of Cu and Br (Cu⁺, Br⁻, 2.73 Å). ⁵⁷ This Cu–Br bond length is also shorter than that of 2.5459(6) Å in $[CuBr(\eta^1-S-H_2itsc)(Ph_3P)_2]^{46}$. Cu-N bond distance, 2.108(3) Å is close to that found in literature. ^{56, 58-59} The C–S bond length. 1.689(3) Å is close to 1.6880(15) Å in free ligand (H_2L^1) as well in literature^{56, 58-59}, which indicates binding of ligand to metal center in thione (C=S) form. The bond angles around copper in range, 84.64(8)-121.35(3)° reveal distorted tetrahedral geometry. The maximum distortion of 121.35(3)° is found to be in P-Cu-Br angle. The Cu-S-C angle, 95.61(11)° in C2 is close to $[(Ph_3P)Cu(\mu-Br)(\mu_3-S, N^3-Hcptsc)CuBr(PPh_3)],$ 96.91(12)° in where cyclohexanone thiosemicarbazone (Hcptsc) binds to metal in N³,S-chelation-cum S-bridging mode.⁶⁰ This angle is much shorter than $113.30(12)^{\circ}$ in [CuBr(η^1 -S-H₂itsc)(Ph₃P)₂], where the thiosemicarbazone was acting as terminal monodentate ligand.⁴⁶

Figure 2. ORTEP view of C2 showing the atom-labeling scheme

In **C2**, inter-molecular H-bonding beween pyrrole hydrogen (N⁴H) of one molecule and bromide atom of other molecule, N⁴H…Br, 2.778Å leads to formation of H-bonded dimer. An additional CH…HC, 2.322 Å interaction between phenyl ring of triphenylphosphine of two molecules is also present. These interactions are repeated to form 1D chain. Inter-molecular H-bonding between prrrole nitrogen of one chain and Phenyl hydrogen of triphenylphosphine molecule of second chain, $HN^4...HC_{Ph}$, 2.733 Å lead to formation of 2D sheet (Figure 3).

X CO

14

Figure 3. Packing diagram of C2 showing H-bonding and various interactions

Table 1:	Crystallo	graphic	data	for H	2itsc-N	1 -Me	$(\mathbf{H}_2\mathbf{L}^1)$
	2				-		\ = /

	H_2L^1	C2
Crystal description	Block shaped	Prism
Crystal colour	Orange	Red
Crystal size	0.30 x 0.20 x 0.20 mm	0.34 x 0.24 x 0.12 mm
Empirical formula	$C_{10}H_{10}N_4OS.H_2O$	C ₂₈ H ₂₅ BrCuN ₄ OPS
Formula weight	252.30	640.00
Radiation, Wavelength	Mo Kα, 0.71073 Å	Μο Κα, 0.71073 Å
Unit cell dimensions	a = 8.9306(2), b = 13.0538(3),	a = 9.8769(7), b =
	$c = 10.2347(2) \text{ Å}, \beta =$	11.2821(8), c =
	93.105(2)°	14.1915(11) Å, α =
		93.964(6), $\beta = 102.013(6)$,
		$\gamma = 105.636(6)^{\circ}$
Crystal system	Monoclinic	Triclinic

15

Space group	P2 ₁ /c	P-1
Unit cell volume	1191.39(4) Å ³	1476.3(2) Å ³
No. of molecules per unit cell,	4	2
Ζ		
Temperature	293(2) K	173(2) K
Absorption coefficient	0.268 mm^{-1}	2.245 mm ⁻¹
F(000)	528	648
Scan mode	ω scan	ω scan
θ range for entire data	3.48 <θ< 24.99 °	3.000<θ< 32.743°
collection		
Range of indices	h= -10 to 10, k= -15 to 15, l= -	h= -14 to 14, k= -16 to 15,
	12 to 12	l= -21 to 21
Reflections collected / unique	24272 / 2083	18759 / 9734
Reflections observed (I >	1798	6849
2σ(I))		
R _{int}	0.0404	0.0998
R _{sigma}	0.0171	0.0671
Final R	0.0320	0.0998
wR(F ²)	0.0835	0.1677

Table 2: Selected bond distance (Å) and bond angles (°) for $H_2itsc-N^1-Me(H_2L^1)$

H_2L^1			
S(1) - C(3)	1.6880(15)	N(1) - N(2) - C(3)	120.41(13)
N(1) - C(8)	1.2906(19)	N(4) - C(3) - N(2)	116.97(14)
N(1) - N(2)	1.3561(18)	N(4) - C(3) - S(1)	125.32(12)
N(2) - C(3)	1.364(2)	N(2) - C(3) - S(1)	117.71(11)
C(3) - N(4)	1.312(2)	C(3) - N(4) - C(5)	123.80(16)
N(4) - C(5)	1.455(2)	O(7) - C(7) - N(6)	127.44(15)

1	6
т	υ

C(7) – O(7)	1.236(2)	O(7) - C(7) - C(8)	126.07(14)
C(7) – C(8)	1.507(2)	N(6) - C(7) - C(8)	106.48(14)
C(8) - N(1) - N(2)	116.55(13)	N(1) - C(8) - C(9)	126.13(14)
$[CuBr(\eta^2-N^3, S-H_2itsc$	\mathbf{N}^{1} -Me)(Ph ₃ P)]	C2:	0
Cu(1) - Br(1)	2.4219(6)	P(1) - Cu(1) - Br(1)	121.35(3)
Cu(1) - S(1)	2.3274(10)	P(1) - Cu(1) - S(1)	113.66(4)
Cu(1) - P(1)	2.2300(10)	P(1) - Cu(1) - N(3)	105.57(8)
Cu(1) - N(3)	2.108(3)	S(1) - Cu(1) - Br(1)	111.37(3)
N(3) - N(2)	1.361(4)	Br(1) - Cu(1) - N(3)	114.24(8)
C(1) - N(1)	1.330(5)	N(3) - Cu(1) - S(1)	84.64(8)
C(1) - S(1)	1.678(4)	Cu(1) - S(1) - C(1)	96.91(12)
	-		

3.3. Cytotoxicity and docking studies

MTT assay was used to assess the % cell viability of the newly synthesized compounds against L123 (human lung cells) and HepG2 (Hepatocellular carcinoma cells) cell lines to check their cytotoxicity profile. Cisplatin was used as a reference drug. A sub-confluent population of L123and HepG2 cells was treated with increasing concentration of these compounds and the number of viable cells was measured after 48 h by MTT cell viability assay. The concentration range of all the compounds was 1.55-50 μ M. The cytotoxicity of complexes C1-C6 was found to be concentration-dependent. The data reported in Table **3** suggest that all the complexes showed different levels of cytotoxicity. IC₅₀ value for Complexes C1-C6 fall in range, 8.31-25.50 μ M (L123) and 18.65-22.50 μ M (HepG2) (Table **3**).

17

		Com	oounds-	$\rightarrow (IC_{50}\mu$	$(M)^a$			
Cell lines↓	C1	C2	C3	C4	C5	C6	Cisplatin	0
L123	18.31	25.86	22.50	18.01	24.54	22.45	8.5	
HepG2	22.56	25.50	18.65	20.54	22.65	18.65	9.65	

Table 3: Cytotoxicity profile of synthesized compounds and reference drug Cisplatin^{*}.

 ${}^{a}IC_{50}$ = the concentration of compound that inhibits 50% of cell growth.

^{*}Each cytotoxic activity was performed in triplicate and average result is given with an error range of ± 0.05

3.4 Molecular modeling studies

Based on the in vitro anticancer activity to the Hodgkin lymphoma cell-line L1236, one of the active complex 2 was selected to evaluate the putative binding mode with amino acids in the active site of the enzyme using molecular docking technique. To confirm the binding affinity or probable binding site, docking study of cisplatin was first carried out with Hodgkin lymphoma cell line (PDB ID 1QOK)⁶¹ using builder tool kit of software package ArgusLab 4.0.1 (www.arguslab.com).⁶² It was observed that NH₂ groups of cisplatin binds with the cysteine 184 (d = 2.51 Å) and 248 (d = 2.76 Å) amino acid residues through hydrogen bonding. Moreover, it also showed binding interactions with histidine 194 (d = 1.03 Å) and glutamine 249 (d = 2.62 Å) amino acid residue. Encouraging from the results of cisplatin with Hodgkin lymphoma cell line and finding out the probable binding sites from these interactions, docking was then performed by placing complex 2 into the binding site of target-specific region (where cisplatin showed its interactions) of the Hodgkin lymphoma cell-line (PDB ID 1QOK). The docked model of cisplatin and complex 2 with Hodgkin lymphoma enzyme was shown in Figure 4. Complex 2 is surrounded by side chains of various amino acids such as F196, H194, Y192 and Y231, indicating that the molecule is well fitted in the active pocket. The docking results revealed that the interaction of complex 2 with Hodgkin lymphoma is dominated by hydrogen bonding interactions with tyrosine (Y247), glutamine (Q249) and cysteine (C248 and C184) amino acid residues. As shown in Figure 4, NH of complex 2 showed hydrogen bonding interactions with S of cysteine (C248 and C184) amino acid residues and N of tryptophan (W195) of 1QOK (bond

18

distance: NH...S = 2.96 Å in case of C248, NH...S = 2.73 Å in case of C184 and NH...N = 2.81 Å of W195). NH group of indole ring of complex **2** also showed hydrogen bonding interactions with oxygen of glutamine (Q249) and tyrosine (Y247) amino acid residue (bond distance: NH...O = 2.41 Å in case of Q249 and NH...O = 1.98 Å in case of Y247). Therefore, docking of complex **2** in the active site of enzyme indicated the probable mode of action for anticancer activity.

Figure 4 Docking of cisplatin (A) and complex 2 (B) in the active site of Hodgkin lymphoma (PDB ID 1QOK)

Molecular docking is an interesting tool to predict the possible drug–DNA interactions because the mode of action of cisplatin is directly associated with their binding to DNA. Thus, cisplatin showed interactions with DNA, crosslinked DNA in several different ways, interfering with cell division by mitosis and kill cells. To explore the most feasible binding site or binding affinity, docking studies have been performed on cisplatin and complex 2 with DNA (PDB ID: 1BNA). It has been demonstrated that both cisplatin and complex 2 showed interactions with DNA, the probable mode of action for anticancer activity (Supporting Information).

Conclusion

19

Previous reports have suggested that un-substituted isatin-3-thiosemicarbazone formed mononuclear tetrahedral complexes with copper(I) halides whereas the structure of complex C2 revealed that substituent at N¹ (methyl) of isatin-3-thiosemicarbazone has changed the binding mode of ligand from terminal to N³, S- chelation of its copper (I) bromide complex. The analytical data supports same result for other complexes also. The *in vitro* cytotoxicity evaluation showed moderate activity for these compounds. Docking study of C2 reveal that the molecule is well fitted in the active pocket of Hodgkin lymphoma enzyme and the interaction of complex C2 with Hodgkin lymphoma for the binding site is dominated by hydrogen bonding interactions with Y247, Q249, C248 and C184 amino acid residues.

Acknowledgements:

The authors thank Lovely Professional University for providing all the facilities to carry out the experimental work. JPJ acknowledges the NSF–MRI program (Grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

Supplementary data is available from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: + 44-1223-336033 email: <u>deposit@ccdc.cam.ac.uk</u>) on request quoting the deposition number CCDC 842975 for structure of H_2L^1 and 1448643 for C2.

References:

1	S.N. Pandeya, D. Sriram, Acta Pharm. Turc. 1998, 40, 33.
2	M. Sarangapani, V.M. Reddy, Indian J. Pharm. Sci. 1994, 56,170.
3	R.S. Varma, W.L. Nobles, J. Pharm. Sci. 1975, 64, 881.

4	S.N. Pandeva, D. Sriram, G. Nath, E. De Clercq, <i>Indian J. Pharm. Sci</i> , 1999, 61 ,
	245
	343.
5	S N Pandeva D Sriram G Nath E De Clerca Pharm Sci 1999 67 103
5	S.N. Fandeya, D. Sinani, S. Hani, E.De Cherey, Fnarm. Sci. 1999, 07,105.
6	S.N. Pandeva, D. Sriram, G. Nath, E.De Clercq, Pharm. Acta Helv, 1999, 74, 11.
_	
7	R.S. Verma, W.L. Nobles, Med. J. Chem., 1967, 10,972.
8	S.P. Singh, S.K. Shukla, L.P. Awasthi, <i>Curr. Sci</i> . 1983, 52 , 766.
9	J.C. Logan, M.P.J. Fox, M. Morgan, A.M. Makohon, C.J. Pfau, Gen, J. Virol.
	1975, 28 ,271.
10	I.J. Kang, L.W. Wang, T.A. Hsu, A. Yueh, C.C. Lee, Y.C. Lee, Y.S. Chao, S.R.
	Shin, J.H. Chern, Bioorg & Biomed. Chem. Letters2011, 21, 1948.
11	S.N. Pandeya, P. Yogeeswari, D. Sriram, E. De Clercq, C Pannecouque, M.
	Wityrouw, <i>Chemotherapy</i> , 1999, 45 ,192.
12	S.N. Pandeya, D. Sriram, G. Nath, E. De Clercq, Eur. J. Med. Chem. 2000, 35,
	249
13	S.N. Pandeya, D. Sriram, G. Nath, E. De Clercq; Arzneimittel-Forschun. Drug
	Res 2000 50 55
	Acts.2000, 20, 55.
14	S.A. Imam, R.S. Varma, <i>Experientia</i> , 1975, 31 ,1287.
(
15	R. S. Varma, I. A. Khan, PolishJ. Pharmacol. Pharm. 1977, 29, 549.
16	S.E. Sarciron, P. Audin, I. Delebre, C. Gabrion, A.F. Petavy, J. Paris, J. Pharm.
	<i>Sci</i> . 1993, 82 ,605.
17	E.A.B. Et-Sawi, E.A. Mostafa, T.B. Mostafa, B.B. Mostafa, J. Egypt. Soc.
	Parasitol 1998 28 481
1	

18	R.L. Thompson, S.A. Milton, J.E. Officer, G.H. Hitchings, J. Immunol. 1953, 70,
	229.
19	D.J. Bauer, Br. J. Exp. Path. 1956, 36 , 105.
20	D.J. Bauer, P.W. Sadler, Br. J. Pharmacol. 1960, 15, 101.
21	G. A. Bain, D.X. West, J. Krejci, J. Valdés Martinez, S. Hernández – Ortega, R.
	A. Toscanob, <i>Polyhedron</i> , 1997, 16 , 855.
22	M. D. Revenko, V. Kh. Kravstov, Y. A. Siminov, Crystallography, 1994, 39,50.
23	K. C. T. Bandeira, L. Bresolin, J. Beck, J. Daniels, A. B. de Oliveira, Acta
	<i>Cryst</i> .2011, E67 , 2858.
24	L. Pederzolli, Bresolin, V. S. Carratu, A. Locatelli, A. B. de Oliveira, Acta
	<i>Cryst</i> .2011, E67 ,1804.
25	A. Q. Ali, N. E. Eltayed, S. G. Teoh, A. Salhin, HK. Fun, Acta Cryst. 2011,
	E67 , 3141.
26	A. Q. Ali, N. E. Eltayed, S. G. Teoh, A. Salhin, HK. Fun, Acta Cryst. 2012,
	E68 , 953.
27	A. Q. Ali, N. E. Eltayed, S. G. Teoh, A. Salhin, HK. Fun, Acta Cryst.2012,
	E68 , 962.
28	A. Q. Ali, N. E. Eltayed, S. G. Teoh, A. Salhin, HK. Fun, Acta Cryst.2012,
	E68 , 955.
29	A. Q. Ali, N. E. Eltayed, S. G. Teoh, A. Salhin, HK. Fun, Acta Cryst. 2012,
	E68 , 964.
30	M. D. Hall K. R. Brimacombe, M. S. Varonka, K. M. Pluchino, J. K. Monda, J.
	Li, M. L. Walsh, M. B. Boxer, T. H. Warren, H. M. Fales, M. M. Gottesman, J.

	Med. Chem. 2011, 54 , 5878.
31	J. Haribabu, G. R. Subhashree, S. Saranga, K. Gomathi, R. Karvembu, D.
	Gayathri, J. Mol. Struct. 2016, 1110, 185.
32	T.S. Lobana, R. Sharma, G. Bawa, S. Khanna, <i>Coord. Chem. Rev.</i> , 2009, 253,
	977.
33	J. R. Dilworth, R. Hueting, Inorg. Chim. Acta, 2012, 389, 3.
34	G. A. Bain, D. X. West, J. Krejci, J. S. Hernández –Ortega, R. A. Toscanob,
	Polyhedron, 1997, 16, 855.
35	N. T. Akinchan, P. M. Drozdzewski, W. Holzer, J. Mol. Struc. 2002, 641, 17.
36	T. S. Lobana, Rekha, A.P.S. Pannu, G. Hundal, R. J. Butcher, A.Castineiras,
	Polyhedron, 2007, 26 , 2621.
37	E. Labisbal, A. Sousa, A. Castineiras, J. A. Garcıa-Vazquez, J. Romero, D. X.
	West, Polyhedron, 2000, 19, 1255.
38	J.S. Casas, E.E. Castellano, M.S. Garcıa Tasende, A. Sanchez, J. Sordo, Inorg.
	<i>Chim. Acta</i> , 2000, 304 , 283.
39	M.C. Rodriguez-Arguelles, A. Sanchez, M.B. Ferrari, G.G. Fava, C. G. Pelosi,
	S. Pinelli, J. Inorg. Biochem. 1999, 73, 7.
40	J.S. Casas, A. Castineiras, M.C. Rodriguez-Arguelles, A. Sanchez, J. Sordo, A.
P	Vazquez-Lopez, E. Vazquez-Lopez. J. Chem. Soc., Dalton Trans. 2000, 4056.
41	M. Hakimia, H. Vahedia, M. Rezvaninezhada, E. Schuh, F. Mohr, J. sulfur
	<i>chem</i> .2011, 32 , 55.
42	M. B. Ferrari, C. Pelizzi, G. Pelosi, M. C. Rodrıguez-Arguelles, Polyhedron,

	2002, 21 , 2593.
43	T. S. Lobana, R. Sharma, A. Castineiras, G. Hundal, R. J. Butcher, Inorg. Chim.
	Acta, 2009, 362 , 3547.
44	T. S. Lobana, R. Sharma, Z. Anorg. Allg. Chem. 2009, 635, 2150.
45	T. S. Lobana, R. Sharma, G. Hundal, A. P. S. Pannu, A. Castineiras, R. J.
	Butcher, <i>Polyhedron</i> , 2012, 47 , 134.
46	T. S. Lobana, Rekha, B. S. Sidhu, A. Castineiras, E. Bermejo, T. Nishioka, J.
	Coord. Chem.2005, 58,803.
47	World Health Organization (WHO),
	http://www.who.int/mediacentre/factsheets/fs297/en/
48	National cancer Institute (NCI),
	http://www.cancer.gov/cancertopics/treatment/drugs
40	C. Prover Handbook of Prongrative Chamistry, Academic Press, New York 2 nd
49	G. Blauer, Hanabook of Freparative Chemistry, Academic Fless, New Tork, 2
	ed. 1965, vol. 2.
50	CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014)
	CrysAlis171.NET)
51	G. M. Sheldrick, SHELX97, 1997, University of Gottingen, Germany.
50	
52	Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
53	A. J. C. Wilson International Tables for Crystallography. Vol. C, Kluwer
	Academic Publishers: Dordrecht The Netherlands 1995
54	W V W Loo L C M Chin L H K Young Food Cham Toxicol 2008 46 228
54	W. I. W. Lee, L.C.W. Chiu, J.H.K. Feung, Food. Chem. Toxicol. 2008, 40, 528.
55	M. Y. Wani, A. R. Bhat, A. Azam, I. Choi, F. Athar, Eur. J. Of Med. Chem. 2012,
	48, 313.

24

57 57 58 58 59 60 61 1 62 1	 32, 55. J. E. Huheey, E. A. Keiter, R. L. Keiter <i>Inorganic Chemistry: Principals of Structure and Reactivity</i>, 1993, 4th ed.; Harper Collins College Publishers: New York. S. Lhuachan, S. Siripaisarnpipat, N. Chaichit, <i>Eur. J. Inorg. Chem.</i> 2003, 263. R. D. Pike, A. B. Wiles, T. A. Tronic, <i>Acta Cryst.</i> 2006, E62, m347. T. S. Lobana, P. Kumari, R. J. Butcher, <i>Inorg. Chem. Commun.</i> 2008, 11, 11. K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter. <i>Mol Cancer Ther</i> 2008, 7, 2486.
57 58 58 59 60 61 1 62 1	 J. E. Huheey, E. A. Keiter, R. L. Keiter <i>Inorganic Chemistry: Principals of Structure and Reactivity</i>, 1993, 4th ed.; Harper Collins College Publishers: New York. S. Lhuachan, S. Siripaisarnpipat, N. Chaichit, <i>Eur. J. Inorg. Chem.</i> 2003, 263. R. D. Pike, A. B. Wiles, T. A. Tronic, <i>Acta Cryst.</i> 2006, E62, m347. T. S. Lobana, P. Kumari, R. J. Butcher, <i>Inorg. Chem. Commun.</i> 2008, 11, 11. K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7, 2486.
58 59 60 61 1 62 1	 Structure and Reactivity, 1993, 4th ed.; Harper Collins College Publishers: New York. S. Lhuachan, S. Siripaisarnpipat, N. Chaichit, <i>Eur. J. Inorg. Chem.</i> 2003, 263. R. D. Pike, A. B. Wiles, T. A. Tronic, <i>Acta Cryst.</i> 2006, E62, m347. T. S. Lobana, P. Kumari, R. J. Butcher, <i>Inorg. Chem. Commun.</i> 2008, 11, 11. K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7, 2486.
58 59 60 61 1 62 1	 York. S. Lhuachan, S. Siripaisarnpipat, N. Chaichit, <i>Eur. J. Inorg. Chem.</i> 2003, 263. R. D. Pike, A. B. Wiles, T. A. Tronic, <i>Acta Cryst.</i> 2006, E62, m347. T. S. Lobana, P. Kumari, R. J. Butcher, <i>Inorg. Chem. Commun.</i> 2008, 11, 11. K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7, 2486.
58 59 60 61 62 1	 S. Lhuachan, S. Siripaisarnpipat, N. Chaichit, <i>Eur. J. Inorg. Chem.</i> 2003, 263. R. D. Pike, A. B. Wiles, T. A. Tronic, <i>Acta Cryst.</i> 2006, E62, m347. T. S. Lobana, P. Kumari, R. J. Butcher, <i>Inorg. Chem. Commun.</i> 2008, 11, 11. K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7, 2486.
59 60 61	 R. D. Pike, A. B. Wiles, T. A. Tronic, <i>Acta Cryst.</i> 2006, E62, m347. T. S. Lobana, P. Kumari, R. J. Butcher, <i>Inorg. Chem. Commun.</i> 2008, 11, 11. K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7, 2486.
	 T. S. Lobana, P. Kumari, R. J. Butcher, <i>Inorg. Chem. Commun.</i> 2008, 11, 11. K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7, 2486.
	K. M. Kim, C. F. McDonagh, L. Westendorf, L. L. Brown, D. Sussman, T. Feist, R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7 , 2486.
62 (1	R. Lyon, S. C. Alley, N. M. Okeley, X. Zhang, M. C. Thompson, I. Stone, H. P. Gerber, P. J. Carter, <i>Mol Cancer Ther</i> 2008, 7 , 2486.
62	Gerber, P. J. Carter, Mol Cancer Ther 2008, 7, 2486.
62	
]	Compounds were constructed and docked with builder tool kit of software
	package ArgusLab 4.0.1 (<u>www.arguslab.com</u>).

EPTED M SCRIPT ACC

Graphical Abstract (Pictorial):

26

Synopsis

Unsubstituted isatin-3-thiosemicarbazone formed mononuclear tetrahedral complexes with copper(I) halides whereas the structure of complex C2 revealed that substituent at N^1 (methyl) of .ni isatin-3-thiosemicarbazone has changed the binding mode of ligand from terminal to N³, Schelation of its copper (I) bromide complex.

CCEPTED M SCRIPT

Highlights

- 1. Substituent at N¹ (methyl) of isatin-3-thiosemicarbazone has changed the binding mode of ligand from terminal to N³, S- chelation of its copper (I) bromide complex.
- The in vitro cytotoxicity evaluation of complexes showed moderate activity for these 2. compounds.
- 3. Docking study of C2 reveal that the molecule is well fitted in the active pocket of

d in the