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A B S T R A C T

By introduction of trifluoromethyl and phenyl groups to 2-(2-thienyl)pyridine (thp), four new phosphorescent
bis-cyclometalated iridium(III) complexes, (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir
(tpip) (cf3thp= 2-(thiophen-2-yl)-4-(trifluoromethyl)pyridine, cf3btp=2-(benzo[b]thiophen-2-yl)-4- (tri-
fluoromethyl)pyridine, 3-cf3btp= 2-(benzo[b]thiophen-3-yl)-4-(trifluoromethyl)pyridine, tpip= tetra-
phenylimidodiphosphinate), were synthesized and fully characterized. The density functional theory and time-
dependent DFT calculations show that the frontier orbitals are mainly localized in the Ir(III) ion and the cy-
clometalated ligands. Thus, the photophysical properties were dominated by the cyclometalated C∧N ligand,
attributed to 3MLCT and 3ILCT transition. These Ir(III) complexes emit in the yellow-to-deep red region with
photoluminescence quantum yields in the range 40.5–86.4% in CH2Cl2 solutions at 298 K. The organic light-
emitting diodes (OLEDs) using (thp)2Ir(tpip), (cf3thp)2Ir(tpip) and (cf3btp)2Ir(tpip) as yellow, orange and deep
red emitters display good electroluminescent performance with low efficiency roll-off. Notably, the device based
on (cf3thp)2Ir(tpip) possesses very high EL efficiencies with the maximum luminance efficiency and external
quantum efficiency (EQE) of 53.9 cd A−1 and 17.9%, respectively. Furthermore, the EQE for this complex could
be still retained as 15.4% at a luminance of 1000 cdm−2.

1. Introduction

Nowadays, phosphorescent iridium(III) complexes are regarded as
the most promising phosphor materials for highly efficient organic
light-emitting diodes (OLEDs) due to their relatively short phosphor-
escence lifetimes, high quantum efficiencies, tunable emission colors
splendid electrochemical and thermal stability [1–3]. Many tris-cyclo-
metalated Ir(CˆN)3 and bis-cyclometalated Ir(CˆN)2(LX) Ir(III) com-
plexes have been exploited for high-performance OLEDs, where CˆN is a
cyclometalated ligand and LX is an ancillary ligand. An attractive fea-
ture of these Ir(III) complexes is that their emission color can be con-
trolled by different types of the CˆN cyclometalated ligands. For in-
stance, the green emissive complex Ir(ppy)3 (ppy=2-phenylpyridine)
is a classic example of the homoleptic Ir(CˆN)3 [4]. The sky-blue
phosphorescent Ir(III) complex (dFppy)2Ir(acac) has been studied sys-
tematically by introducing electron-withdrawing F atoms on the 4,6-
positions of the phenyl ring of ppy (dFppy= 2-(2,4-difluorophenyl)

pyridine, acac= acetylacetonate) [5]. As a traditional red-emitting Ir
(III) complex (piq)2Ir(acac), the color of the complex is achieved by
increasing the π system in the phenyl ring of ppy through the cyclo-
metalated ligand (piq= 1-phenylisoquinoline) [6]. By designing ap-
propriate ligands for Ir(III) complexes, certain emission colors have
been readily obtained and used in OLEDs [7]. However, it is still a
challenge for long-wavelength emitters, which are widely used as op-
toelectronic materials and as biological tags [8–10].

2-(2-Thienyl)pyridine (thp) is one typical ligand framework to
construct Ir(III) complexes, in which the phenyl group of ppy ligand is
replaced by a thiophene ring. The electron-rich nature of the thiophene
ring compared to the benzene ring leads to red shifts in the emission
energy of thp based complexes compared to those of ppy [11]. Here,
based on the thp cyclometalated ligand, the other three thp derivatives
(cf3thp, cf3btp and 3-cf3btp) by introducing trifluoromethyl and phenyl
groups were systematically designed and synthesized, aiming to
achieve high efficiency luminescent materials with long-wavelength
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(Scheme 1). Furthermore, the Ir(III) complexes using tpip (tetra-
phenylimidodiphosphinate) as the ancillary ligand always show good
performances on the basis of our previous work. Hence in this paper, we
synthesized four new bis-cyclometalated Ir(III) complexes based on thp
derivatives with tpip as the ancillary ligand. The emission wavelengths
of these Ir(III) complexes can be tuned from 571 to 652 nm, while
keeping considerable photoluminescence quantum efficiencies (Φem) of
40.5–86.4% in degassed CH2Cl2 solutions at room temperature. The
phosphorescent OLEDs using Ir(III) emitters achieved good perfor-
mance with the maximum current efficiency (ηc,max) and external
quantum efficiency (EQEmax) of 53.9 cd A−1 and 17.9%, respectively,
with low efficiency roll-off.

2. Experimental section

2.1. General information

HRMS spectra were recorded on an Agilent 6540 UHD Accurate-
Mass Q-TOF LC/MS instrument. X-ray diffraction data were collected
using an Agilent Technologies Gemini An Ultra diffractometer equipped
with graphite-monochromated Mo Kα radiation (λ=0.7107 Å) at room
temperature. Data collection and reduction were processed with
CrysAlisProsoftware [12]. All of the structures were solved using Su-
perflip [13] and refined using SHELXL−2014 [14] within Olex2 [15].
UV/Vis and photoluminescence spectra were measured on Hitachi
U3900/3900H and Hitachi F7000 spectrophotometers in degassed
CH2Cl2 solutions at room temperature, respectively. Luminescence
lifetime curves were measured on an Edinburgh Instruments FLS920P
fluorescence spectrometer and the data were treated as one-order ex-
ponential fitting using OriginPro 8 software. The thermoanalytical
analysis (TGA) was performed with a simultaneous NETZSCH STA 449C
thermal analyzer. The elemental analyses were measured on a Vario EL
Cube Analyzer system. All calculations were carried out with the
Gaussian 09 software package [16]. Density functional theory (DFT)
and time-dependent DFT (TD-DFT) calculation were employed with no
symmetry constraints to investigate the optimized geometries and

electron configurations with the Becke three-parameter Lee-Yang-Parr
(B3LYP) hybrid density functional theory [17–19]. Cyclic voltammetry
(CV) measurements were performed on a CHI 1210B electrochemical
workstation, with a glassy carbon electrode as the working electrode, a
platinum wire as the counter electrode, an Ag/Ag+ electrode as the
reference electrode, and 0.1M n-Bu4NClO4 as the supporting electro-
lyte.

2.2. Syntheses

Scheme 1 depicts the overall synthetic procedures of the ligands and
Ir(III) complexes, and all reactions were performed under nitrogen at-
mosphere, and all reagents were purchased and used without further
purification unless otherwise stated. 3-Bromobenzo[b]thiophene [20]
and potassium tetraphenylimidodiphosphinate (Ktpip) [21] were pre-
pared according to the previous reported methods. 1H, 19F and 31P NMR
were recorded on a Bruker AM 400MHz instrument, and chemical
shifts were reported in ppm relative to Me4Si as internal standard.

2.2.1. General syntheses of ligands
2.2.1.1. Synthesis of 2-(benzo[b]thiophen-3-yl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (SM-4) intermediate. To a degassed solution of 3-
bromobenzo[b]thiophene (1.00 g, 4.69mmol), bis(pinacolato)diboron
(1.43 g, 5.63mmol) and KOAc (921mg, 9.39mmol) in dry dioxane
(15mL), Pd(dppf)Cl2 (200mg) was added under stirring. After 3 h
refluxing, the reaction solution was cooled and filtered through Celite.
The solution was diluted with EtOAc (40mL) and water (10mL). The
phases were separated, and the aqueous phase was extracted with
EtOAc. The combined organic phase was washed with brine and
concentrated. The residue was purified by column chromatography
on silica gel, eluted with EtOAc/hexanes (1:200, v/v) to give SM-4
(0.86 mg, 70.9%) as a white solid. 1H NMR (400MHz, CDCl3) δ (ppm)
8.36 (d, J=7.9 Hz, 1H), 8.06 (s, 1H), 7.88 (d, J=7.8 Hz, 1H),
7.31–7.41 (m, 2H), 1.38 (s, 12H).

2.2.1.2. Synthesis of 2-(thiophen-2-yl)-4-(trifluoromethyl)pyridine

Scheme 1. Synthetic routes of ligands and Ir(III) complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip).
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(cf3thp), 2-(benzo[b]thiophen-2-yl)-4-(trifluoromethyl) pyridine (cf3btp)
and 2-(benzo[b]thiophen-3-yl)-4-(trifluoromethyl)pyridine (3-cf3btp). To
a degassed solution of 2-bromo-4-(trifluoromethyl)pyridine (500mg,
2.21mmol) and the corresponding boric acid (1.2 equiv) or boric acid
ester (SM-4, 1.2 equiv) in dry DMF (10mL) were added Pd(dppf)Cl2
(50mg) and K3PO4⋅3H2O (1.18 g, 4.42mmol). After 10 h heating at
100 °C, the reaction mixture was cooled to room temperature, diluted
with EtOAc (50mL) and filtered through a pad of Celite. The filtrate
was washed with H2O and brine. After the solvent was removed, the
residue was purified by column chromatography on silica gel, eluted
with EtOAc/hexanes (1:50, v/v) to give corresponding cyclometalated
ligands:

cf3thp: (0.48mg, yield: 85.9%), white solid. 1H NMR (400MHz,
CDCl3) δ (ppm) 8.97 (d, J=7.5 Hz, 1H), 7.66–7.69 (m, 2H), 7.44 (s,
1H), 7.31–7.34 (m, 2H). 13C NMR (101MHz, CDCl3) δ (ppm) 154.00,
150.71, 143.53, 139.48, 137.21, 129.03, 128.44, 125.93, 117.30,
114.46. HRMS (m/z): calcd for C10H6F3NS requires [M+H]+ 234.5690,
found: 234.5678. Elemental anal. calcd. for C14H8F3NS: C, 52.40; H,
2.64; N, 6.11. Found: C, 52.34; H, 2.66; N, 6.12%.

cf3btp: (0.68 g, yield: 89.6%), white solid. 1H NMR (400MHz,
CDCl3) δ (ppm) 8.79 (d, J=5.2 Hz, 1H), 7.98 (s, 1H), 7.93 (s, 1H),
7.87–7.90 (m, 1H), 7.82–7.85 (m, 1H), 7.38–7.42 (m, 3H). 13C NMR
(101MHz, CDCl3) δ (ppm) 154.00, 150.83, 143.36, 141.07, 140.33,
125.80, 124.92, 124.60, 122.79, 122.64, 118.01, 117.91, 115.24,
115.21. HRMS (m/z): calcd for C14H8F3NS requires [M+H]+ 280.0330,
found: 280.0404. Elemental anal. calcd. for C14H8F3NS: C, 60.21; H,
2.89; N, 5.02. Found: C, 60.22; H, 2.88; N, 5.01%.

3-cf3btp: (0.71 g, yield: 89.8%), white solid. 1H NMR (400MHz,
CDCl3) δ (ppm) 8.93 (d, J=5.2 Hz, 1H), 8.49 (d, J=7.6 Hz, 1H),
7.92–7.94 (m, 3H), 7.41–7.51 (m, 3H). 13C NMR (101MHz, CDCl3) δ
(ppm) 156.00, 150.74, 141.04, 139.02, 136.93, 135.43, 127.99,
125.15, 125.07, 124.12, 122.97, 118.12, 117.48, 117.44. HRMS (m/z):
calcd for C14H8F3NS requires [M+H]+ 280.0330, found: 280.0409.
Elemental anal. calcd. for C14H8F3NS: C, 60.21; H, 2.89; N, 5.02. Found:
C, 60.23; H, 2.89; N, 5.03%.

2.2.2. General syntheses of Ir(III) complexes
The Ir(III) dichloro-bridged dimers, [(CˆN)2Ir(μ-Cl)]2, were synthe-

sized by reaction of IrCl3⋅3H2O and 2.2 equiv of corresponding cyclo-
metalated ligands in a 3:1 mixture of 2-ethoxyethanol and deionized
water according to a similar method reported by Nonoyama [22]. And
the bis-cyclometalated Ir(III) complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip),
(cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) were obtained by the reaction
of corresponding Ir(III) dichloro-bridged dimers with 2.5 equiv of po-
tassium tetraphenylimidodiphosphinate (Ktpip) in anhydrous 2-ethox-
yethanol at 110 °C for 2 h. The cooled reaction mixture was diluted with
water and extracted with CH2Cl2. The combined organic phase was
washed with brine and concentrated, the residue was purified by flash
column chromatography to give the products.

(thp)2Ir(tpip): (36mg, yield: 45.8%), orange solid. 1H NMR
(400MHz, CDCl3): δ (ppm) 8.83 (d, J=5.6 Hz, 2H), 7.70–7.75 (m,
4H), 7.28–7.39 (m, 14H), 7.13–7.17 (m, 4H), 6.96–7.00 (m, 4H),
6.43–6.47 (m, 2H), 6.04 (d, J=4.8 Hz, 2H). 13C NMR (101MHz,
CDCl3) δ (ppm) 165.04, 149.72, 144.26, 139.59, 138.31, 136.97,
135.28, 131.31, 131.24, 131.13, 130.79, 130.68, 130.14, 129.68,
129.49, 128.04, 127.90, 127.64, 127.51, 127.23, 117.90, 116.42. 31P
NMR (162MHz, CDCl3): δ (ppm) 24.17. HRMS (m/z): calcd for
C42H32IrN3O2P2S2 requires [M+H]+ 930.1040, found: 930.1116.
Elemental anal. calcd. for C42H32IrN3O2P2S2: C, 54.30; H, 3.47; N, 4.52.
Found: C, 54.41; H, 3.40; N, 4.55%.

(cf3thp)2Ir(tpip): (43mg, yield: 56.2%), red solid. 1H NMR
(400MHz, CDCl3): δ (ppm) 8.97 (d, J=6.0 Hz, 2H), 7.73–7.78 (m,
4H), 7.66–7.68 (m, 2H), 7.32–7.39 (m, 10H), 7.24–7.26 (m, 2H), 7.17
(t, J=6.8 Hz, 2H), 6.95–7.00 (m, 4H), 6.55–6.57 (m, 2H), 6.04 (d,
J=4.8 Hz, 2H). 13C NMR (101MHz, CDCl3) δ (ppm) 166.10, 150.29,
147.27, 139.61, 139.19, 138.85, 138.34, 134.51, 131.20, 131.04,

130.93, 130.60, 130.55, 130.49, 130.27, 129.57, 128.25, 128.12,
127.83, 127.70, 113.45, 113.42, 112.09, 112.05. 19F NMR (377MHz,
CDCl3): δ (ppm) −64.93. 31P NMR (162MHz, CDCl3): δ (ppm) 24.71.
HRMS (m/z): calcd for C44H30F6IrN3O2P2S2 requires [M+H]+

1066.0788, found: 1066.0861. Elemental anal. calcd. for
C44H30F6IrN3O2P2S2: C, 49.62; H, 2.84; N, 3.95. Found: C, 49.59; H,
2.81; N 3.96%.

(cf3btp)2Ir(tpip): (47mg, yield: 53.8%), dark red solid. 1H NMR
(400MHz, CDCl3): δ (ppm) 9.20 (d, J=6.0 Hz, 2H), 7.67–7.75 (m,
6H), 7.55 (s, 2H), 7.30–7.40 (m, 10H), 7.22 (t, J=7.6 Hz, 2H), 7.12 (t,
J=8.0 Hz, 2H), 7.01–7.06 (m, 4H), 6.80 (t, J=7.6 Hz, 2H), 6.59 (dd,
J1=1.6 Hz, J2=6.0 Hz, 2H), 6.06 (d, J=8.0 Hz 2H). 13C NMR
(101MHz, CDCl3) δ (ppm) 167.27, 151.42, 146.10, 144.78, 142.52,
140.12, 139.78, 139.58, 138.29, 134.25, 130.85, 130.74, 130.55,
130.44, 128.30, 128.17, 127.95, 127.82, 125.80, 125.60, 124.07,
123.12, 113.60, 113.56, 113.37, 113.30. 19F NMR (377MHz, CDCl3): δ
(ppm) −64.63. 31P NMR (162MHz, CDCl3): δ (ppm) 24.10. HRMS (m/
z): calcd for C52H34F6IrN3O2P2S2 requires [M+H]+ 1166.1101, found:
1166.1179. Elemental anal. calcd. for C52H34F6IrN3O2P2S2: C, 53.60; H,
2.94; N, 3.61. Found: C, 53.58; H, 2.92; N, 3.62%.

(3-cf3btp)2Ir(tpip), (45mg, yield: 51.6%), yellow solid. 1H NMR
(400MHz, CDCl3): δ (ppm) 8.96 (d, J=6.0 Hz, 2H), 7.91–7.94 (m,
4H), 7.69–7.94 (m, 4H), 7.49 (d, J=7.6 Hz, 2H), 7.26–7.30 (m, 12H),
7.11 (t, J=7.2 Hz, 2H), 7.01 (t, J=7.2 Hz, 2H), 6.86–6.90 (m, 4H),
6.59 (dd, J1=1.6 Hz, J2=6.0 Hz, 2H). 13C NMR (101MHz, CDCl3) δ
(ppm) 167.69, 162.74, 147.34, 143.26, 137.22, 135.35, 131.25,
131.20, 131.15, 130.68, 130.54, 130.49, 130.43, 128.19, 128.13,
128.06, 127.82, 127.75, 127.69, 124.64, 122.86, 121.39, 120.15,
119.81, 118.30, 116.41. 19F NMR (377MHz, CDCl3): δ (ppm) −64.82.
31P NMR (162MHz, CDCl3): δ (ppm) 25.01. HRMS (m/z): calcd for
C52H34F6IrN3O2P2S2 requires [M+H]+ 1166.1101, found: 1166.1164.
Elemental anal. calcd. for C52H34F6IrN3O2P2S2: C, 53.60; H, 2.94; N,
3.61. Found: C, 53.61; H, 2.91; N, 3.65%.

3. Results and discussion

3.1. Synthesis and characterization

The syntheses of the cyclometalated ligands and their corresponding
Ir(III) complexes are showed in Scheme 1. The boric acid ester SM-4 for
the cyclometalated ligand 3-cf3btp could be easily synthesized via the
Miyaura Borylation reaction using Pd(dppf)Cl2 catalyst, which used 3-
bromobenzo[b]thiophene and bis(pinacolato)diboron (B2pin2) as raw
materials. The cyclometalated ligands 3-cf3thp, cf3btp and 3-cf3btp
were synthesized through the Suzuki coupling reaction in high yield
over 85%. The Ir(III) complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip),
(cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) were prepared by the chloride-
bridged dimer [(CˆN)2Ir(μ-Cl)]2 (1.0 equiv.) with Ktpip (2.5 equiv.) in
anhydrous 2-ethoxyethanol. All the desired complexes were obtained in
good yield and characterized by 1H, 19F, and 31P NMR spectroscopy and
mass spectrometry (supporting information).

The structures of bis-cyclometalated Ir(III) complexes (cf3thp)2Ir
(tpip) and (cf3btp)2Ir(tpip) were further confirmed by X-ray diffraction
crystallography and their ORTEP views are shown in Fig. 1. The cor-
responding crystallographic data and structure refinement details are
listed in Table S1, and selected bond lengths and angles are listed in
Table S2. Both Ir(III) complexes adopt distorted octahedral coordina-
tion geometry with cis-O,O, cis-C,C, and trans-N,N chelate disposition.
The IreC and IreN bands are in the range 1.92(2)∼ 2.011(15) Å and
2.02(2)∼ 2.050(18) Å, respectively, which are consistent with values
in previously reported Ir(III) complexes [23,24]. It is noteworthy that
the bond lengths of the IreO for (cf3thp)2Ir(tpip) (2.207(13) and
2.234(14) Å) are longer than that of (cf3btp)2Ir(tpip) (2.181(3) and
2.195(3) Å), which is probably due to the strong trans-influence of the
carbon donors [25]. In addition, the CeIreN, CeIreO and OeIreO
bond angles between the iridium center are good agreement with the
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corresponding parameters described in similarly constituted Ir(III)
complexes [13]. In the case of complex (cf3thp)2Ir(tpip), the planar
fused pyridyl ring (C1eC2eC3eC4eC5eN1) and the five-membered
ring planar (C6eC7eC8eC9eS1) are almost coplanar with relatively
small dihedral angle of 5.846°. While for complex (cf3btp)2Ir(tpip), the
relatively dihedral angle between pyridyl ring plane and the ben-
zothiophenyl ring plane is 11.555°, which is slightly larger than that of
the complex (cf3thp)2Ir(tpip).

Furthermore, thermal properties of Ir(III) complexes are very im-
portant for efficient OLEDs. Thus, thermal stability of these new Ir(III)
complexes were evaluated by thermogravimetric analysis (TGA) under
a nitrogen steam with a heating rate of 10 °C·min−1 (Fig. 2). From the
TGA curves of complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir
(tpip) and (3-cf3btp)2Ir(tpip), it can be seen that the decomposition
temperatures (5% loss of weight) are 345 °C, 350 °C, 355 °C and 388 °C,
respectively. Meanwhile, they all possess the decomposed temperatures
higher than 270 °C. These results suggest that all complexes have good
thermal stability and benefit their application in OLEDs.

3.2. Photophysical property

The UV–Vis absorption spectra of complexes (thp)2Ir(tpip),
(cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) in CH2Cl2

solution are depicted in Fig. 3a, and the data are provided in Table 1.
All complexes show intense bands in the UV region (< 320 nm), mostly
ascribed to spin-allowed π-π* ligand-centered (1LC) transitions arising
from the C∧N cyclometalated ligands and tpip ligands. The shoulders
observed in the region of 320–400 nm could be attributed to π-π* in-
terligand (ILCT) transitions and spin-allowed 1MLCT transitions
[26,27]. The weaker absorption tail in the visible region (> 400 nm) is
related to the mixed spin-forbidden 3MLCT transitions and ligand-cen-
tered 3π-π* transition [28]. With respect to the pristine complex (thp)2Ir
(tpip), the lowest-energy absorption band for (cf3thp)2Ir(tpip) with
electron-withdrawing eCF3 group display a red-shifted transition.
Furthermore, (cf3btp)2Ir(tpip) with more extended π conjugation of the
thp moiety shows more red-shifted transition than (cf3thp)2Ir(tpip)
[29,30]. However, (3-cf3btp)2Ir(tpip) with different phenyl connection
position on the thp-based cyclometalated ligand exhibit a tiny blue-shift
when compared with (cf3btp)2Ir(tpip). These experimental phenomena
will be proved by DFT calculations discussed below.

The room-temperature emission spectra of complexes (thp)2Ir(tpip),
(cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) in degassed
CH2Cl2 solution are displayed in Fig. 3b, and the corresponding pho-
tophysical data (the emission wavelengths, lifetimes, quantum yields)
are also summarized in Table 1. The complexes (cf3thp)2Ir(tpip) and (3-
cf3btp)2Ir(tpip) show a broad structureless emission, while complexes
(thp)2Ir(tpip) and (cf3btp)2Ir(tpip) exhibit a structured emission band,
despite the fact that complexes (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip)
are structural isomers. As expected, the emission maxima follow the
order: (3-cf3btp)2Ir(tpip)< (thp)2Ir(tpip)< (cf3thp)2Ir(tpip)< (
cf3btp)2Ir(tpip), in good agreement with those of the absorption
spectra. This observation suggests that the electronic transitions of
emissive excited states are the same with those of the lowest-energy
absorption bands, which are a dominant 3MLCT excited state and a
weaker 3LC contribution. To further prove the deduction, the emission
lifetimes (τ) of all complexes were measured in solution at room tem-
perature. The relatively long lifetimes of 2.21–2.81 μs indicate that the
luminescence is derived from triplet excited states [31]. Furthermore,
their photoluminescence quantum yields were determined based on the
Φem value of the standard reference fac-Ir(ppy)3 [32]. We found that the
fluorine atoms in complexes (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-
cf3btp)2Ir(tpip) play key role in the increasing of the phosphorescence
quantum yield, which are similar with previously reported complexes
in previous papers [33]. In particular, the quantum efficiency of com-
plex (3-cf3btp)2Ir(tpip) (86.4%) is the highest one, possibly due to the
steric hindrance of the CˆN cyclometalated ligand [34].

3.3. Theoretical calculations

To further investigate their electronic properties of complexes
(thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip),
density functional theory (DFT) and time-dependent DFT (TD−DFT)
calculations were performed using the Gaussian 09 program. The most
representative molecular frontier orbital diagrams for these complexes
are presented in Fig. 4 and the compositions of the orbitals are listed in
Table 2. The calculated spin-allowed electronic transitions are provided
in Table S3, as well as the experimental absorption spectra data. For the
investigated complexes, their HOMOs (highest occupied molecular or-
bital) are primarily composed of π-orbital of cyclometalated ligands
(56.90–67.07%) with some contributions from dπ orbital of the Ir(III)
ion (29.96–39.26%). Meanwhile, their LUMOs (lowest unoccupied
molecular orbital) are mostly located on π*-orbital of cyclometalated
ligands (83.47–89.41%). The LUMO-1 of (cf3btp)2Ir(tpip) has similar
contribution with the LUMO, mainly comprised of π* orbital of cyclo-
metalated ligand (89.65%). Thus, the lowest-energy electronic transi-
tion of absorptions and the lowest-energy triplet excited state of emis-
sions originating from HOMO→LUMO/LUMO+1 can be ascribed as
MLCT and ILCT π→π* transition [35,36].

From Table 2 it can be seen that the HOMO energy levels of

Fig. 1. ORTEP views of (cf3thp)2Ir(tpip) (CCDC No. 1852094) and (cf3btp)2Ir
(tpip) (CCDC No. 1852081) with the atom-numbering scheme at the 50%
probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Fig. 2. TGA curves of complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir
(tpip) and (3-cf3btp)2Ir(tpip).
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Fig. 3. (a) Absorption spectra of complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) in degassed CH2Cl2 solution at 298 K
(1.0×10−5 mol L−1) and (b) PL spectra of these iridium complexes in degassed CH2Cl2 solution at 298 K.

Table 1
Photophysical, electrochemical and theoretical data for complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip).

Complex Td(°C)a Absorptionb

λabs(nm)
Emission Electrochemical and Theoretical Data

λem(nm)b τ (μs)b Φem (%)c Eox (eV) Eopt, g (eV)d HOMO/LUMO (eV)e HOMO/LUMO (eV)f

(thp)2Ir(tpip) 345 229, 289, 323, 416, 472 571 2.21 40.5 0.90 2.63 −5.70/-3.07 −4.97/-1.35
(cf3thp)2Ir(tpip) 350 229, 296, 340, 386, 439, 509 598 2.63 63.6 1.12 2.57 −5.92/-3.35 −5.17/-1.85
(cf3btp)2Ir(tpip) 355 227, 297, 301, 357, 450, 530 652 2.81 69.4 1.00 2.34 −5.80/-3.46 −5.13/-2.04
(3-cf3btp)2Ir(tpip) 388 229, 294, 309, 352, 477 568 2.66 86.4 1.16 2.6 −5.96/-3.36 −5.26/-1.90

a Td: decomposition temperature.
b Data were collected from degassed CH2Cl2 solutions at room temperature.
c fac-Ir(ppy)3 as referenced standard (0.4) [32].
d Calculated from the UV–vis absorption edges.
e Deduced from the equation HOMO= ‒ (Eox+ 4.8 eV) and LUMO = HOMO + Eopt,g, respectively.
f Obtained from theoretical calculations.

Fig. 4. The frontier molecular orbital diagrams of complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) from DFT calculations.
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complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-
cf3btp)2Ir(tpip) are calculated as −4.97, −5.17, −5.13 and −5.26 eV,
respectively. The HOMO energies of (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip)
and (3-cf3btp)2Ir(tpip) are significantly higher than that of (thp)2Ir
(tpip), because the π-orbitals of the cyclometalated ligands are stabi-
lized by the electron-withdrawing eCF3 group. Similar results have also
been obtained for their LUMO levels (−1.35 eV for (thp)2Ir(tpip),
−1.85 eV for (cf3thp)2Ir(tpip), −2.04 eV for (cf3btp)2Ir(tpip) and
−1.90 eV for (3-cf3btp)2Ir(tpip). In addition, the energy bandgap of
(cf3btp)2Ir(tpip) (3.10 eV, HOMO-LUMO+1) is smaller than (cf3thp)2Ir
(tpip) (3.33 eV, HOMO-LUMO), whereas that of (3-cf3btp)2Ir(tpip)
(3.35 eV, HOMO-LUMO) is larger, thereby leading to red-shifted and
blue-shifted in spectra, respectively. From this it appears that the cal-
culated results could well explain the photophysical properties dis-
cussed above.

3.4. Electrochemical properties

The electronic properties of complexes (thp)2Ir(tpip), (cf3thp)2Ir
(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) were investigated by
cyclic voltammetry (CV) to obtain their HOMO and LUMO energy le-
vels. The electrochemical waves are shown in Fig. 5 and all calculated
data are listed in Table 1. On the basis of their oxidation potentials, the
HOMO and LUMO energy levels are estimated and summarized in
Table 1, as well as DFT-calculated values for comparison purposes. All
complexes exhibit a quasi-reversible oxidation peak in the region of
0.90–1.16 V, which corresponds to the Ir(III)/Ir(IV) redox couple with
contributions from the cyclometalated ligands fragments, as already
confirmed by DFT calculations (Table 2). With respect to complex
(thp)2Ir(tpip), the attachment of electron-withdrawing eCF3 sub-
stituents on the pyridyl ring of the cyclometalated ligands in complexes

(cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) gives rise to an
anodic shift, the finding in accordance with the decreasing electron
density around the Ir(III) center (Table 2) [37].

Furthermore, compared to (cf3thp)2Ir(tpip), the different extended
conjugations in complexes (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) leads
to different changes of oxidation potentials. As a result, the trend in
oxidation potentials (Eox) is (thp)2Ir(tpip)< (cf3btp)2Ir
(tpip)< (cf3thp)2Ir(tpip)< (3-cf3btp)2Ir(tpip), while the order of the
HOMO energy levels is (thp)2Ir(tpip)> (cf3btp)2Ir(tpip)> (cf3thp)2Ir
(tpip)> (3-cf3btp)2Ir(tpip) (Table 1). Besides, the variation of the
LUMO energy levels obtained from the HOMO and Eopt,g values is
(thp)2Ir(tpip)< (cf3btp)2Ir(tpip)< (cf3thp)2Ir(tpip)< (3-cf3btp)2Ir
(tpip), in line with the theoretical findings. Notably, the HOMO/LUMO
energy levels inferred from the CV data are systematically slightly lower
than the DFT data (Table 1), which is consistent with the previous lit-
erature [38,39].

3.5. OLEDs performance

In order to investigate the electroluminescent (EL) properties, the
monochrome OLED devices D1, D2 and D3 using complexes (thp)2Ir
(tpip), (cf3thp)2Ir(tpip) and (cf3btp)2Ir(tpip) as the emitters were fab-
ricated, respectively, with a simple architecture: ITO/MoO3 (mo-
lybdenum oxide, 5 nm)/TAPC (30 nm)/2,6-DCzPPy: Ir(III) complex
(2 wt%, 10 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (100 nm). The sche-
matic energy levels diagram of phosphorescent OLEDs and the mole-
cular structures of used materials are shown in Fig. 6. MoO3 and LiF
were used as hole-injection layer (HIL) and electron-injection layer
(EIL), respectively. TAPC (4,4'-(cyclohexane-1,1-diyl)bis(N,N-di-p-toly-
laniline)) was applied as hole transport/electron block layer (HTL/EBL)
due to its good hole mobility (1.0× 10−4 cm2 V−1 s−1) and high
LUMO level (−2.0 eV), while TmPyPB (1,3,5-tri[(3-pyridyl)-phen-3-yl]
benzene) was used as electron transport/hole block layer (ETL/HBL) for
its good electron mobility (1.0× 10−3 cm2 V−1 s−1) and low HOMO
level (−6.7 eV). Meanwhile, the bipolar material 2,6-DCzPPy (2,6-bis
(3-(9H-carbazol-9-yl)phenyl)pyridine) was employed as the host and
buffer layer to achieve the cascade hole-injection from HTL to the
emitting layer (EML) because its' nearly equal electron mobility (μe) and
hole mobility (μh) values (1–8×10−5 cm2 V−1 s−1 at an electric field
between 6.0× 105 and 1.0×106 V cm−1), which benefits the electron-
hole balance in the EML [40–42].

The EL spectra, luminance (L) – voltage (V) – current density (Cd),
current efficiency (ηc) – luminance (L) and external quantum efficiency
(EQE) – luminance (L) characteristics of the OLEDs are displayed in
Fig. 7, and the key EL data are summarized in Table 3. From Fig. 7a it
should be noted that the EL emissions of the single EML device D1∼D3
were observed at 551, 575 and 654 nm, respectively. Compared with PL
spectra of the corresponding Ir(III) complexes, the EL spectra are si-
milar with the PL spectra of these complexes, which indicated the en-
ergy can be transferred from 2,6-DCzPPy host to the emitters. Ob-
viously, the devices D1 and D3 display weak emission at 350–500 nm,
which originates from the emission of 2,6-DCzPPy and means that the

Table 2
Frontier orbital energy and electron density distribution for complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip), (cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip).

Complex Orbital Energy (eV) Ir(III) Cyclometalated ligand Ancillary ligand

(thp)2Ir(tpip) LUMO −1.35 6.45 83.47 10.08
HOMO −4.97 39.26 56.90 3.84

(cf3thp)2Ir(tpip) LUMO −1.85 6.17 89.41 4.42
HOMO −5.17 38.85 57.23 3.92

(cf3btp)2Ir(tpip) LUMO+1 −2.03 6.53 89.65 3.82
LUMO −2.04 7.41 89.41 3.17
HOMO −5.13 33.06 63.99 2.95

(3-cf3btp)2Ir(tpip) LUMO −1.90 6.42 88.77 4.81
HOMO −5.26 29.96 67.07 2.97

Fig. 5. Cyclic voltammograms for complexes (thp)2Ir(tpip), (cf3thp)2Ir(tpip),
(cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) in CH2Cl2 solution containing n-
Bu4NClO4 (0.1M) at a sweep rate of 100mV/s.
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Fig. 6. Energy level diagram of phosphorescent OLEDs and their molecular structures of used materials.

Fig. 7. Characteristics of devices D1, D2 and D3: (a) normalized EL spectra at 8 V; (b) luminance (L) – voltage (V) – current density (Cd); (c) current efficiency (ηc) –
luminance (L); (d) external quantum efficiency (EQE) – luminance (L).
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energy and/or charge transfer from the host to the phosphor is not
complete upon electrical excitation, which is possibly due to the great
difference between dopants and host. Their corresponding Commission
Internationale de L'Eclairage (CIE) coordinates operated at 8 V are
(0.41, 0.49), (0.53, 0.46) and (0.56, 0.28), respectively, which are
corresponded to the yellow, orange and deep-red light.

Due to the similar molecular structures of these phosphorescent
materials, their EL performance are mainly depend on their photo-
physical (Φem especially) and electrochemical properties [43]. For the
device D1, a maximum current efficiency (ηc,max) of 38.3 cd A−1 with
an external quantum efficiency (EQEmax) of 11.3%, a maximum power
efficiency (ηp,max) of 17.5 lm⋅W−1 and a maximum luminance (Lmax) of
15818 cdm−2 were obtained, respectively. Compared with the device
D1, the device D2 using (cf3thp)2Ir(tpip) as the emitter has better EL
performance with the Lmax of 21934 cdm−2, a ηc,max of 53.9 cd A−1, a
ηp,max of 25.3 lm⋅W−1 and an EQEmax of 17.9%, respectively. Further-
more, the device D2 still remains high efficiency even at relatively high
luminance with a low efficiency roll-off. For instance, even at a lumi-
nance of 1000 cdm−2, the device D2 still retains high EQE (ηc, ηp) of
15.4% (45.8 cd A−1, 15.8 lm⋅W−1). The higher Φem value of the emitter
(cf3thp)2Ir(tpip) (Φ=64.9%) than that of (thp)2Ir(tpip) (Φ=40.5%)
may be the main reason for the better EL performance of the device D2
than that of the device D1. The device D3 using the deep red light
phosphorescent material (cf3btp)2Ir(tpip) (Φ=69.4%) also exhibited
good performance with the Lmax, ηc,max, ηp,max and EQEmax of
6138 cdm−2, 9.1 cd A−1, 6.1 lm⋅W−1 and 10.8%, respectively. It is
noteworthy that the EL performances of the device D3 are obviously
lower than D2, which may be attributed to the difference excited state
lifetimes of (cf3thp)2Ir(tpip) (2.81 μs) and (cf3btp)2Ir(tpip) (2.63 μs).
The longer lifetime will lead to exciton quenching through triplet-tri-
plet annihilation (TTA) and triplet-polaron annihilation (TPA) effects,
which would result in relatively poor EL performances. Furthermore,
the emission band of D3 lasts to the near infrared (NIR) region, the
efficiency measured with the normal photodetector is much lower than
that in the yellow and orange regions. When the luminance rises to
1000 cdm−2, the EQE and the ηc of the device D3 are remained as 7.3%
and 6.1 cd A−1. In general, the good device performance should be
attributed to the application of tpip as the ancillary ligand, which
would results in good electron mobility of Ir(III) complexes caused by
the P]O bonds, and the emitters with good electron mobility will lead
to a well-balanced charge carrier transport and efficient recombination.

4. Conclusion

In summary, four phosphorescent bis-cyclometalated 2-(2-thienyl)
pyridine-based Ir(III) complexes: (thp)2Ir(tpip), (cf3thp)2Ir(tpip),
(cf3btp)2Ir(tpip) and (3-cf3btp)2Ir(tpip) were developed. By introducing
eCF3 group, increasing π-conjugation system and/or changing phenyl
connection position of the cyclometalated ligands, the emission colors
of these Ir(III) complexes can be adjusted from yellow to deep red in
CH2Cl2 solution at 298 K. Due to the HOMOs and LUMOs are primarily
located on the metal center and cyclometalated ligands, the variation of
the cyclometalated ligands can affect their photophysical and

electrochemical properties. The phosphorescent OLEDs comprising
(thp)2Ir(tpip), (cf3thp)2Ir(tpip) and (cf3btp)2Ir(tpip) as yellow, orange,
and deep red dopants realize state-of-art device performance with
EQEmax of 11.3%, 17.9% and 10.8% and low efficiency roll-off, which
still remain high EQE of 10.0%, 15.4% and 7.3% at a luminance of
1000 cdm−2, respectively. These results suggest that the rational de-
sign of Ir(III) complexes based on 2-(2-thienyl)pyridine derivatives is an
effective method for the development of high performance OLEDs.
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