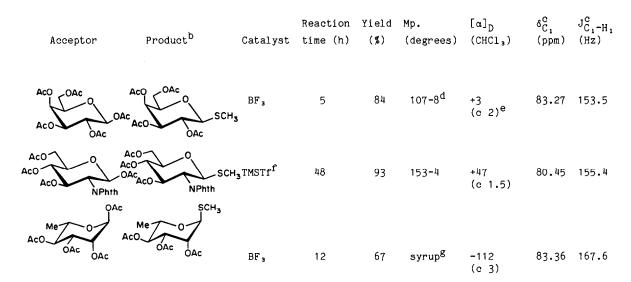
A NEW, STEREOSELECTIVE SYNTHESIS OF METHYL 1,2-TRANS-1-THIOGLYCOSIDES*

Vince Pozsgay and Harold J. Jennings Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6

SUMMARY: Per-O-acetylated glycopyranoses were converted by methylthiotrimethylsilane in the presence of boron trifluoride or trimethylsilyl trifluoromethanesulfonate to the corresponding methyl 1,2-trans-1-thioglycopyranosides in a highly stereoselective process.

The synthetic potential of thioglycosides^{1,2} has been dramatically increased by recent inventions of new methods for activation^{3,4,5} of the anomeric thioalkyl group. Thus, they can be converted in a one-step reaction to oligosaccharides³ and other complex natural products^{1,5} or to 1-halo-1-deoxy derivatives⁶ which are high-yielding glycosyl donors under catalysis by heavy-metal salts.⁷

1,2-<u>Trans</u>-thioglycosides may be synthesized by a variety of methods^{8,9,10}, of which the Lewis acid catalyzed reaction⁸ between 1,2-<u>trans</u>-glycosyl acetates and thiols appears to be the most often used. However, due to undesired side-reactions (<u>inter alia</u> formation of the 1,2-<u>cis</u>-isomers⁸ and dithioacetals¹¹) this method gives yields which are not always satisfactory. A further disadvantage is the disagreeable odour during the operation.


The observation that a methylthic group can be transferred from methylthictrimethylsilane (1) to an aldehyde or ketone carbonyl group in the presence of Lewis acid catalysts¹² prompted us to investigate the feasibility of such a transfer to the anomeric carbon atom of a carbohydrate-derived (di)oxocarbenium ion.⁷ And indeed, we have found that under Lewis acid catalysis, reaction between 1 and per-O-acetylated glycopyranoses gives the corresponding methyl 1-thioglycopyranosides, in good to excellent yields.

In a typical experiment, a solution of 1,2,3,4,6-penta-0-acetyl- β -D-galactopyranose (1.28 mM) and 1 (3.2 mM) in CH₂Cl₂ (5 mL) was treated with BF₃·Et₂O (200 µL of a 45% solution) at 20°C. Usual work-up gave methyl 2,3,4,6-tetra-0-acetyl-1-thio- β -D-galactopyranoside¹³ in 84% yield. The procedure is equally useful for the preparation of other 1,2-trans-1-thioglycopyranosides (TABLE).

^{*}This is N.R.C.C. publication No. 27150

TABLE

Examples for 1,2-trans-1-thioglycoside synthesis by methylthic group transfer from CH₃SSi(CH₃)₃

^aReactions were carried out in CH_2Cl_2 at 20°. ^bProducts gave satisfactory elementary analysis. ^CAt 300 K, 50 MHz, in $CDCl_3$. ^dLit.¹³ mp. 109°. ^eLit.¹³ [α]_D + 2.85. ^fTrimethylsilyl trifluoromethanesulfonate. ^gSee Ref. 15.

In contrast to the thiolysis⁸ of per-O-acetyl-glycopyranoses under catalysis by BF₃, formation of the 1,2-cis isomer was not observed in the procedure developed by us. This is indicative of the decreased nucleophilicity of the sulfur atom resulting in a more stereoselective attack on the anomeric carbon atom of the cyclic 1,2-0-dioxocarbenium ion, initially formed from the acetylated glycopyranoses under the influence of a Lewis acid.14

REFERENCES

- W.R. Roush and J.A. Straub, Tetrahedron Lett., 27 3349 (1986). 1.
- J.F. Cassidy and J.M. Williams, Tetrahedron Lett., 27 4355 (1986). 2.
- 3.
- H. Lönn, <u>Carbohydr. Res.</u>, <u>139</u> 105 (1985). P. Fügedi and P.J. Garegg, <u>Carbohydr. Res.</u>, <u>149</u> C9 (1986). 4.
- K.C. Nicolaou, S.P. Seitz and D.P. Papahatjis, J. Amer. Chem. Soc., 105, 2430 (1983). 5.
- K. Leontein, M. Nilsson and T. Norberg, Carbohydr. Res., 144, 231 (1985) and references 6. cited therein.
- 7. H. Paulsen, Angew. Chem. Int. Ed. Engl., 21 155 (1982).
- 8. R.J. Ferrier and R.H. Furneaux, Methods Carbohydr. Chem., 8 251 (1980), and references cited therein.
- 9. T. Ogawa and M. Matsui, Carbohydr. Res., 54 C17 (1977).
- 10. S. Hanessian and Y. Guindon, Carbohydr. Res., 86 C3 (1980).
- 11. M.L. Wolfrom and T.E. Whiteley, J. Org. Chem., 27 2109 (1962). 12. D.A. Evans, L.K. Truesdale, K.G. Grimm and S.L. Nesbitt, J. Amer. Chem. Soc., <u>99</u> 5009 (1977).
- 13. B. Helferich, H. Grünewald and F. Langenhoff, Chem. Ber., 86 873 (1953).
- 14. H. Paulsen and M. Paal, Carbohydr. Res., 135 53 (1984).
- 15. Methyl 2,3,4-tri-0-acety $1-\alpha$ -L-1-thiorhamnopyranoside has been synthesized simultaneously and independently by Professor A. Lipták (Debrecen, Hungary) and by the present authors, using Ferrier's procedure.* These studies will be reported in due course.

(Received in USA 2 January 1987)