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Rhodium-catalyzed oxidative C–H/C–H cross-coupling of aniline 
with heteroarene: N-nitroso group enabled mild conditions 
Shuang He, Guangying Tan, Anping Luo, and Jingsong You* 

The development of transition metal-catalyzed oxidative C–H/C–H 
cross-coupling between two (hetero)arenes to forge aryl-
heteroaryl motifs under mild conditions is an appealing, yet 
challenging task. Herein, we disclose a rhodium-catalyzed oxidative 
C–H/C–H cross-coupling reaction of a N-nitrosoaniline with a 
heteroarene under mild conditions. The judicious choice of the N-
nitroso group as a directing group enables heightened reactivity. 
The coupled products could be transformed expediently to (2-
aminophenyl)heteroaryl skeletons. 

Aryl-heteroaryl motifs are highly valuable scaffolds widely existed 
in organic functional materials, pharmaceuticals, agrochemicals, 
organic synthetic intermediates, ligands and natural products.1 
Therefore, their synthesis has attracted much attention in the 
organic synthesis community. Among various synthetic approaches 
to aryl-heteroaryl motifs, transition metal-catalyzed oxidative C–
H/C–H cross-coupling reactions between two (hetero)arenes are 
regarded as one of the most straightforward approaches to aryl-
heteroaryl motifs in terms of step- and atom-economy.2 Over the 
past decade, various oxidative C–H/C–H cross-coupling reactions 
between two (hetero)arenes have been reported for the efficient 
synthesis of aryl-heteroaryl scaffolds, as exemplified by the 
pioneering works of Miura, Glorius, Zhang, Su, and You et al.3-7 
Despite significant advance, the vast majority of these established 
reactions need relatively harsh reaction conditions, and particularly 
elevated temperatures (often above 120 °C) owing to high 
dissociation energies of the cleavage of heteroarene C−H bonds, 
which may be incompatible with some sensitive functional groups. 
Thus, it is highly desirable to develop an innovative strategy to realize 
this type of cross-coupling reactions under mild conditions.  
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Scheme 1. Pharmaceutical and biologically active molecules 
containing the (2-aminophenyl)heteroaryl motifs. 

 

(2-Aminophenyl)heteroaryls are an important class of aryl-
heteroaryl motifs (Scheme 1).8 We recently demonstrated rhodium-
catalyzed oxidative C–H/C–H cross-coupling reactions of aromatic 
amines with heteroarenes to rapidly construct (2-
aminophenyl)heteroaryl frameworks using the pivaloyl group as the 
directing group.9 However, this reaction is nagged by harsh reaction 
conditions, such as extremely high temperature (160 °C), which limits 
the synthetic utility of this strategy to a certain extent. Recently, the 
N-nitroso moiety proves to be a versatile directing group for mild C−H 
functionalization because of its moderate coordination effect.10 As a 
part of our ongoing efforts in the construction of aryl-heteroaryl 
motifs, we herein wish to disclose a rhodium-catalyzed oxidative C–
H/C–H cross-coupling of a N-nitrosoaniline with a heteroarene under 
mild condition. In contrast with our previous work, using the N-
nitroso group as the directing group enables heightened reactivity. 
As a result, the reaction temperature is reduced from 160 °C to 60 °C 
(even 40 °C and room temperature) (Scheme 2). 
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Scheme 2. N-Nitroso group enabled mild oxidative C–H/C–H 
cross-coupling of aniline with heteroarene. 
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Table 1. Optimization of the reaction conditionsa 
 

N
N

O
N

N
O[RhCp*Cl2]2

 
(5.0 mol %)

AgSbF6
 
(20 mol %)

H

S

1a 3a

S
H

2a

+
oxidant (2.0 equiv)
additive (1.0 equiv)

solvent, 100 oC, 24 h

 

Entry Oxidant Additive Solvent 
 

Yieldb (%) 

1 Ag2CO3 PivOH toluene/1.0 14 
2 AgOAc PivOH toluene/1.0 11 
3 Ag2O PivOH toluene/1.0 23 
4 Cu(OAc)2 PivOH toluene/1.0 8 

5 Ag2O PivOH DCE/1.0 43 
6 Ag2O PivOH DMF/1.0 16 
7 Ag2O PivOH dioxane/1.0 52 

8 Ag2O PivOH MeOH/1.0 43 
9 Ag2O PivOH THF/1.0 71 

10 Ag2O PivOH THF/0.5 75 

11 Ag2O PivOH/NaOAc THF/0.5 84 
12c Ag2O PivOH/NaOAc THF/0.5 82 
13d Ag2O PivOH/NaOAc THF/0.5 51 

14e Ag2O PivOH/NaOAc THF/0.5 24 
a Reaction conditions: 1a (0.2 mmol, 1.0 equiv), 2a (0.6 mmol, 3.0 
equiv), [Cp*RhCl2]2 (5.0 mol %), AgSbF6 (20 mol %), oxidant (2.0 
equiv), acid (1.0 equiv), and base (30 mol %) at 100 °C for 24 h under 
an N2 atmosphere. b Isolated yield. c At 60 °C. d At 40 °C. e At room 
temperature for 36 h.

 

Our investigation commenced with the reaction between N-
methyl-N-phenylnitrous amide 1a and benzothiophene 2a (For 
detailed optimization, see Table S1, ESI†). Initially, the reaction 
was performed in toluene (1 mL) at 100 °C for 24 h in the 
presence of [RhCp*Cl2]2 (5 mol %), AgSbF6 (20 mol %), PivOH (1.0 
equiv), and Ag salt (2.0 equiv) as the oxidant (Table 1, entries 1-3). 
Gratifyingly, the coupled product N-(2-(benzo[b]thiophen-2-
yl)phenyl)-N-methylnitrous amide 3a was obtained in 23% yield by 
using Ag2O as the oxidant (Table 1, entry 3). Replacing Ag2O with 
Cu(OAc)2, 3a was delivered in only 8% yield (Table 1, entry 4). After 
the solvents were examined, THF proved to be superior to toluene, 
DCE, DMF, dioxane and MeOH (Table 1, entries 3 and 5-9). Reducing 
the dosage of THF to 0.5 mL, 3a could be afforded in 75% yield (Table 
1, entry 10). The addition of 30 mol % of NaOAc could further 
improve the yield to 84% (Table 1, entry 11). Furthermore, an equal 
yield of 3a could be obtained when running the reaction mixture of 
1a and 2a at 60 °C (Table 1, entry 12). In addition, we were surprised 
to find that the cross-coupling reaction could occur at 40 °C and even 
room temperature, albeit in reduced yields (Table 1, entries 13 and 
14). Finally, we established the optimal catalytic system composed of 
[RhCp*Cl2]2 (5 mol %), AgSbF6 (20 mol %), Ag2O (2.0 equiv), PivOH 
(1.0 equiv), and NaOAc (30 mol %) in 0.5 mL of THF at 60 °C for 24 h. 
In addition, we performed the reaction of N-phenylpivalamide 
instead of N-nitrosoaniline with 2a under the standard conditions, 
and the coupled product 3u was obtained in only 32% yield (ESI†, 
Part IV). 

Table 2. Scope of N-nitrosoanilinesa,b,c 
 

N
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N
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S
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a Reaction were performed with 1 (0.2 mmol, 1.0 equiv), and 2a (0.6 
mmol, 3.0 equiv) in THF (0.5 mL) at 60 °C for 24 h under an N2 
atmosphere. b Isolated yield. c The ratio of the syn to anti isomers 
relative to N–N bond, determined by the 1H NMR spectrum.

 

With the optimal conditions in hand, the scope of N-
nitrosoanilines was firstly examined. As shown in Table 2, various N- 
alkyl-substituted substrates could smoothly react with 
benzothiophene 2a, delivering the corresponding products in good 
yields (Table 2, 3a-3c). Due to steric hindrance effect, N-(tert-butyl)-
N-phenylnitrous amide was not tolerated and only a trace amount of 
3d was detected. N-Methyl-N-phenylnitrous amides bearing an 
electron-donating group on the benzene ring could react with 2a in 
good yields (Table 2, 3e-3i). This protocol was also compatible with a 
variety of electron-withdrawing groups such as halide (F, Cl and Br), 
CF3, acyl, formyl, and ester (Table 2, 3j-3q). The N-methyl-N-
phenylnitrous amide possessing two substituent groups could be 
engaged in this arylation, delivering 3r in 83% yield. N-Methyl-N-
(naphthalen-2-yl)nitrous amide provided the coupled product at the 
C3 position (Table 2, 3s). Moreover, 1-nitroso-1,2,3,4-
tetrahydroquinoline participated in this coupling reaction in 66% 
yield (Table 2, 3t). 
 
 

Page 2 of 4ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ju
ne

 2
01

8.
 D

ow
nl

oa
de

d 
by

 S
ta

te
 U

ni
ve

rs
ity

 o
f 

N
ew

 Y
or

k 
at

 S
to

ny
 B

ro
ok

 o
n 

6/
19

/2
01

8 
2:

57
:5

6 
A

M
. 

View Article Online
DOI: 10.1039/C8CC04027C

http://dx.doi.org/10.1039/c8cc04027c


Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

Table 3. Scope of heteroarenesa,b,c 
 

H HetAr

N
N

O
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1a

+

2

[RhCp*Cl2]2
 
(5.0 mol %)

AgSbF6
 
(20 mol %)

PivOH (1.0 equiv)
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N

N
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S
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Br
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CO2Et
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4i, 51% (12:1)

O

N
N

O

S
Br

4f, 85% (10:1)
Br

N
N

O

O

4l, 71% (12:1)

N
N

O

O

4k, 86% (12:1)

N
N

O

S

4j, 85% (12:1)

N
N

O

4m, 45% (11:1)Cl

N

4b, R = OMe, 90% (13:1)

THF, 60 οC, 24 h

H

 

a Reaction were performed with 1a (0.2 mmol, 1.0 equiv), and 2 (0.6 
mmol, 3.0 equiv) in THF (0.5 mL) at 60 °C for 24 h under an N2 
atmosphere. b Isolated yield. c The ratio of the syn to anti isomers 
relative to N–N bond, determined by the 1H NMR spectrum. 

 

Next, we employed 1a as the coupling partner to investigate the 
scope of heteroarenes (Table 3). To our delight, various thiophene 
derivatives possessing a wide range of functional groups such as 
methyl, methoxy, chloro, bromo, acyl, ester, and formyl were 
compatible with this protocol (Table 3, 4a-4i). 5-
Chlorobenzothiophene was engaged in this reaction (Table 3, 4j). 2,5-
Substituted thiophene such as 2-bromo-5-methylthiophene (2o) and 
2,5-dichlorothiophene (2p) did not give the desired product except 
for the recovery of starting materials. This methodology could also 
be extended to furan and indole derivatives (Table 3, 4k-4m), but 3-
substituted indoles, such as 1-(1H-indol-3-yl)ethan-1-one (2q), 1-
benzyl-1H-indole-3-carbaldehyde (2r), and methyl 1-benzyl-1H-
indole-3-carboxylate (2s), failed to deliver the desired products. 

To further highlight the synthetic utility of our strategy, we 
illustrated the scalability of the reaction. Under the standard 
conditions, 3a could be obtained without problem on a gram scale in 
76 % yield (Scheme 3, (a)). Furthermore, the N-nitroso group could 
be removed from the coupled product 3a or be converted into amino, 
delivering 2-(benzo[b]thiophen-2-yl)-N-methylaniline 5a and 1-(2-
(benzo[b]thiophen-2-yl)phenyl)-1-methylhydrazine 5b in 86% and 64% 
yields, respectively (Scheme 3, (b)).10d,11a Notably, treatment of 3b 
with Pd/C and NaH2PO2•H2O, the nitroso and benzyl groups could be 
removed in one pot, affording 2- (benzo[b]thiophen-2-yl)aniline 5c in 
78% yield (Scheme 3, (c)).11b 

To gain some insights into the reaction mechanism, 
hydrogen/deuterium exchange experiments were performed 
(Scheme 4, (a)-(c)). Under the standard conditions, N-methyl-N-
phenylnitrous amide 1a reacted with CD3OD (0.1 mL) in either the 
absence or present of 2a for 2 h, the H/D exchange ratios of 1a were 
10% and 4%, respectively (Scheme 4, (a) and (c)), suggesting that the 
cleavage of the C−H bond of 1a was a reversible process. Treatment 

of 2a with CD3OD (0.1 mL) in either the presence or absence of 1a did 
not led to any deuterated [D]-2a (Scheme 4, (b) and (c)), suggesting 
that the C−H metalation of 2a is an irreversible process. Then, the 
kinetic isotope effect (KIE) experiments for both coupling partners 
were investigated (Scheme 4, (d) and (e)). Two parallel competition 
reactions between 1a and [D5]-1a with 2a did not give a significant 
KIE value (kH/kD = 1.02) (Scheme 4, (d)). A significant KIE value of 2.93 
was observed for 2a and [D]-2a with 1a (Scheme 4, (e)). These above 
results reveal that the C−H cleavage of 2a might be related to the 
rate-determining step.12 Subsequently, we prepared the 
cyclometalated rhodium complex 6 according to the previous work 
by Zhu and coworkers (Scheme 4, (f)).10a,13 When running the 
reaction of 1m and 2a in the presence of 10 mol % of 6, the coupled 
product 3m could be afforded in 63% yield (Scheme 4, (g)), indicating 
that the complex 6 could be a possible intermediate. 
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Scheme 3. Gram-scale reaction and the conversion of 3a and 3b. 
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Scheme 4. Mechanistic study. 
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Scheme 5. Plausible mechanistic pathway. 
 

 
Based on the above observations and previous works on Rh(III)-

catalyzed C(sp2)–H heteroarylation,3 a plausible mechanistic 
pathway is proposed (Scheme 5). First, the cyclorhodium 
intermediate A is formed through the coordination of N-methyl-N-
phenylnitrous amide 1a with the Cp*Rh(III) species and the 
subsequent ortho-C−H bond activation of arene. Next, the resulting 
intermediate A reacts with heteroarene 2 to produce the 
intermediate B, which further undergoes a reductive elimination to 
release the desired product 3 or 4. Finally, the resulting Cp*Rh(I) 
species is reoxidized to the Cp*Rh(III) species by Ag salt to furnish the 
catalytic cycle. 

In summary, we have disclosed a rhodium-catalyzed oxidative C–
H/C–H cross-coupling reaction of a N-nitrosoaniline with a 
heteroarene to construct (2-aminophenyl)heteroaryl scaffolds. The 
protocol features mild reaction conditions, broad substrate scope 
and good tolerance of sensitive functional groups. The coupled 
products could be easily transformed to various (2-
aminophenyl)heteroaryl derivatives. Further investigation to extend 
the application of this methodology is in progress. 
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