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Conformationally restricted homotryptamines 3. Indole
tetrahydropyridines and cyclohexenylamines as selective
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Abstract—A series of indole tetrahydropyridine and indole cyclohexenylamines was prepared, and their binding affinities at the
human serotonin transporter (SERT) were determined. In particular, a nitrile substituent at the C5 position of the indole ring gave
potent SERT activity. The stereochemistry of the N,N-dimethylamine substituent was determined for the most potent indole cyclo-
hexenylamine, 6a. The enantiomers of 6a were energy minimized and compared to other conformationally restricted SSRIs. Com-
pound 6a was found to give a dose–response similar to the SSRI fluoxetine in microdialysis studies in rats.
� 2007 Elsevier Ltd. All rights reserved.
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5-Hydroxytryptamine (5-HT, serotonin) is a neurotrans-
mitter that plays an important role in a variety of
physiological functions in the central nervous system
and peripheral tissues. Consequently, the modulation
of serotonin function via therapeutic agents continues
to be an active and promising area of drug discovery
research.

The selective serotonin reuptake inhibitors (SSRIs) are
effective antidepressants, and are relatively safe despite
some recognized issues.1 Recent SSRI research has
focused on compounds with added properties that may
result in a more rapid onset of antidepressant action
such as serotonin transporter (SERT) inhibition com-
bined with 5-HT1A, 5-HT1B, or NK1 antagonism.2

The conformational restriction of serotonergic ligands is
a precedented way to improve the binding and selectiv-
ity of these agents. One of the earliest conformationally
restricted homo-serotonin analogs was the selective
5-HT1B agonist RU 24969, in which the amino ethylene
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side chain of 5-methoxy serotonin was replaced with a
tetrahydropyridin-4-yl moiety.3 Similar analogs have
been examined at various 5-HT receptor subtypes.4

We have previously reported SERT binding results with
homotryptamines 1,5 and conformationally restricted
analogs 2,5a 3,6 and 46 (Fig. 1). Based on SAR studies,
we have hypothesized that modifying the RU 24969 side
chain to an N-methyl tetrahydropyrid-4-yl moiety (5)
might yield analogs with high affinity for SERT. Also
of interest was the impact of extending the nitrogen
one more carbon away from the indole as in dimethyl-
amino cyclohexen-4-yl analogs (6). We now report the
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Table 2. SERT binding affinities11 of N,N-dimethylamino cyclohexen-

4-yl indoles, and of the enantiomers of 6a

N
H

N

R

Compound R SERT IC50 (nM)11

6a CN 1.6 ± 0.3

S-6a CN 1.1 ± 0.2

R-6a CN 0.72 ± 0.11

6b NO2 1 ± 0.3

6c F 14 ± 6

6d Br 5.3 ± 0.9

6e Cl 19 ± 5

able 1. SERT binding affinities11 of tetrahydropyrid-4-yl indoles

N
H

N

R

Compound R SERT IC50 (nM)11

5a CN 19 ± 3

5b NO2 40 ± 6

5c F 160 ± 50

5d Br 210 ± 50

5e Cl 240 ± 50

5f H 690 ± 270

5g OMe 730 ± 270

5h Me 910 ± 90
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SERT activity of N-methyl tetrahydropyrid-4-yl indoles,
5a–h, and N,N-dimethylamino cyclohexen-4-yl indoles,
6a–h (Fig. 1).

N-Methyl tetrahydropyrid-4-yl indoles 5a–h were pre-
pared by the reaction of commercially available 5-substi-
tuted indoles with N-methyl piperidone, as is shown in
Scheme 1.

N,N-Dimethylamino cyclohexen-4-yl indoles 6a–h were
prepared by reductive amination of commercially avail-
able 1,4-cyclohexanedione mono-ethylene ketal with
dimethylamine, then ketal hydrolysis, and coupling with
the analogous indoles,7 as shown in Scheme 2.

Since our previous work on indole SSRIs demonstrated
high eudesmic ratios for the enantiomers of compounds
3 and 46 (similar to the case of (S)- and (R)-citalopram8),
6a was resolved by chiral supercritical fluid chromato-
graphy (SFC).9 One enantiomer, R-6a, was then con-
verted to its N-tosyl derivative (p-TsCl, NaHMDS,
DMF, 0 �C, 30 min.) to determine its absolute stereo-
chemistry by X-ray crystallography (Fig. 2).10

The SERT binding affinities11 of compounds 5a–h are
shown in Table 1. Results for compounds 6a–h and
the enantiomers of 6a are shown in Table 2.

N-Methyl tetrahydropyrid-4-yl compound 5f is less po-
tent than 1 (X = H, SERT IC50 58 ± 6 nM),5a with the
same carbon linker length on the side chain. This loss
of binding affinity may be in part due to the lack of flex-
ibility present in the tetrahydropyrid-4-yl ring system.
By moving the nitrogen outside of the ring system and
incorporating the N,N-dimethylamine moiety, cyclohex-
en-4-yl compound 6f was found to have much improved
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Scheme 1. Reagents and condition: (a) pyrrolidine in ethanol/reflux.
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Scheme 2. Reagents and conditions: (a) Me2NH, NaBH(OAc)3; (b) aq

HCl; (c) pyrrolidine/reflux.
T

6f H 3.1 ± 0.5

6g OMe 150 ± 30

6h Me 770 ± 230
SERT potency. Compound 6f is greater than 200-fold
more potent than 5f. The difference in the two bridging
ring systems is consistent throughout the series, as the
N,N-dimethylamino cyclohexen-4-yl analogs are gener-
ally 10- to 40-fold more active than their N-methyl tetr-
ahydropyrid-4-yl counterparts. The combination of
carbon chain length extension and the preferred amino
functionality contributes to the SERT binding differ-
ences between these two groups of compounds.

In terms of SAR trends for the indole substituent, the
potency in both series is markedly influenced by the
5-substituent on the indole. The nitro (5b and 6b) and
cyano (5a and 6a) analog, were the most potent com-
pounds, suggesting that electron withdrawing substitu-
ents on the indole ring might be favored for SERT
binding. The same was true for the previously reported
5-cyano compounds 1 (X = CN, SERT IC50 2.0 ±
0.4 nM)5a and 2 (X = CN, SERT IC50 2.0 ± 0.3 nM),5a

as they were also the most potent analogs in that series.

As for the effect of chirality, the R-enantiomer12 of 6a
was found to be nearly equipotent to the corresponding



Table 4. SERT, DAT, and NET binding affinities13 of 6a and its

enantiomers

Compound SERT

IC50 (nM)13
DAT

IC50 (nM)13
NET

IC50 (nM)13

6a 0.34 97 57

S-6a 0.56 80 37

R-6a 0.40 290 390

Figure 2. ORTEP drawing of N-1-tosyl derivative of R-6a with

ellipsoids drawn at 30% probability level for non H-atoms and

arbitrary scaled open circles for H-atoms. Carbon and hydrogen atoms

are not labeled.
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S-enantiomer. 6a and its enantiomers are not as potent
as 3 (SERT Ki 0.18 ± 0.02 nM),6 which might suggest
that the constraint of the cyclohexen-4-yl ring system
gives a somewhat less favorable interaction with the
serotonin transporter as compared to the trans cyclopro-
pane moiety of 3.

To examine selectivity, the most active compounds at
SERT from this study were evaluated for binding affin-
ity at the human dopamine (DAT) and norepinephrine
(NET) transporters. The results are shown in Table 3,
where percent inhibition was determined at a single con-
centration of 1 lM.

Many of the compounds were weak to moderate inhib-
itors at either DAT, NET or both of these transporters.
Compound 6d was the only strong inhibitor of both
DAT and NET transporters while having single digit
nanomolar affinity at SERT. Compound 6a showed
moderate affinity at DAT and a higher percent inhibi-
tion at NET. This compound and its enantiomers,
Table 3. Inhibition of dopamine and norepinephrine transporters

Compound SERT IC50

(nM)a

DAT,

% inhibitionb

NET,

% inhibitionb

5a 19 ± 3 56 15

5b 40 ± 6 73 27

6a 1.6 ± 0.3 71 90

6b 1 ± 0.3 74 81

6c 14 ± 6 23 35

6d 5.3 ± 0.9 95 99

6e 19 ± 5 16 34

6f 3.1 ± 0.5 67 70

a From Tables 1 and 2.
b Test concentration 1 lM.
S-6a and R-6a, were then compared directly in a single,
20-point concentration experiment to determine their
binding affinities at SERT, DAT, and NET.13 The re-
sults of this selectivity study are shown in Table 4.

Both the racemate 6a and S-enantiomer S-6a showed
similar levels of selectivity for SERT over DAT (>140-
fold) and NET (>60-fold). Interestingly, the R-enantio-
mer R-6a gave much higher selectivity ratios for SERT,
>700-fold over DAT, and >900-fold over NET. For
comparison, the SSRI fluoxetine (SERT Ki 0.72 nM,
DAT Ki 1900 nM, and NET Ki 440 nM)6 has SERT
selectivity over DAT (>2600-fold) and NET (>600-
fold). Our previously reported SSRI compound 3 dem-
onstrated very high selectivity for the serotonin trans-
porter over DAT and NET (SERT Ki 0.18 nM, DAT
Ki 2100 nM, and NET Ki 4600 nM).6

In vivo studies with the racemate 6a were performed due
to the limited availability of the single enantiomers. In
microdialysis studies,14 6a robustly increased extracellu-
lar serotonin concentrations in the frontal cortex of
awake, freely moving rats. The maximal response was
achieved at 1 mg/kg (ip) as shown in Figure 3. In oral
studies, 6a increased serotonin levels to 150–200 percent
above baseline. This effect was similar to that produced
by fluoxetine, both given at 10 mg/kg po (Fig. 4).

In order to relate the potency of 6a to other potent
SSRIs, low-energy conformations of the individual
enantiomers were examined.15 Figure 5 shows the pre-
dicted lowest-energy conformation of R-6a and second
lowest-energy conformation of S-6a superimposed with
low-energy conformations of the SSRIs (1S,4S)-sertra-
line and (S)-citalopram (av SERT IC50 0.73 nM (n = 2)
and 1.45 nM (n = 2), respectively,16 Fig. 6). The pre-
dicted energy of the conformation of S-6a shown in
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Figure 4. Compound 6a versus fluoxetine and vehicle given po.
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the figure is 0.1 kcal/mol above that of the putative glo-
bal minimum. The conformations of sertraline and (S)-
citalopram shown in Figure 5 have energies within
1.5 kcal/mol of their respective predicted global minima.
The overlay shows good correspondence between two
key elements of the SSRI pharmacophore in each mole-
cule, namely a substituted aromatic ring and a basic
amine moiety.

This overlay also suggests that each enantiomer of com-
pound 6a may share common SERT binding interac-
tions with sertraline and (S)-citalopram. Of particular
note is the overall three-dimensional shape similarity
of the low-energy conformers of both enantiomers of
compound 6a, as shown in Figure 5. This suggests that
they can bind to the serotonin transporter in an analo-
gous manner, forming similar intermolecular interac-
tions with the protein. The high degree of similarity is
consistent with the nearly equal IC50 values determined
for the enantiomers.

In Figure 7, the same predicted low-energy conformers
of both enantiomers of compound 6a described above
are shown overlaid with putative global energy mini-
mum conformers of the potent SSRIs 3 (SERT Ki

0.18 ± 0.02 nM) and 4 (SERT Ki 14 ± 1.9 nM).6 In this
case as well, the correspondence between the aromatic
rings is quite good, and the close grouping of the puta-
tive hydrogen bond acceptor site points suggests that the
Figure 5. Superimposition of R-6a (gray carbon atoms, ball and stick

representation) and S-6a (gray carbon atoms, stick representation)

with the SSRIs sertraline ((1S,4S)-stereochemistry, orange carbon

atoms, stick representation) and (S)-citalopram (yellow carbon atoms,

stick representation). Magenta spheres are putative hydrogen bond

acceptor site points utilized in the RMS fitting procedure. The image

was created with DS Viewer ProTM 6.0 (Accelrys, Inc., San Diego, CA,

2005).
compounds should be able to interact with the same
H-bond acceptor in the serotonin transporter.

Overall, the results of the molecular modeling analysis
suggest that the enantiomers of compound 6a are capa-
ble of adopting similarly shaped low-energy conforma-
tions which match key elements of the SSRI
pharmacophore. Even with such a good fit in terms of
energy minimized conformations, it is the differences in
the conformations of the respective enantiomer pairs
that are reflected in their eudesmic ratios. The SERT
affinity ratio of the enantiomers of 6a is only 1.5, while
that of 3 and its enantiomer is nearly 50-fold.6

Compound 4 and its enantiomer also show a significant
difference, here about 7-fold.6

In conclusion, extending the basic nitrogen out of the
ring system and increasing the carbon side-chain length,
as with cyclohexen-4-yl compound 6a, gave a 10-fold in-
crease in affinity for the serotonin transporter over that
of tetrahydropyridine 5a. Compound 6a and especially
its R-enantiomer R-6a demonstrate selectivity for the
serotonin transporter over dopamine and norepineph-
rine transporters, but not to the same extent as the ratios
reported for 3. In vivo, 6a demonstrated a robust dose–
response in the microdialysis experiment, increasing
serotonin levels to a similar extent as fluoxetine
(10 mg/kg for both compounds given po). R-6a and
S-6a demonstrated nearly equal affinity for SERT.
Modeling studies suggest that both enantiomers can
adopt similar conformations which overlap well with
our potent and highly selective compounds, 3 and 4. This
Figure 7. Superimposition of R-6a (gray carbon atoms, ball and stick

representation) and S-6a (gray carbon atoms, stick representation)

with compounds 3 (orange carbon atoms, stick representation) and 4

(yellow carbon atoms, stick representation). Magenta spheres are

putative hydrogen bond acceptor site points utilized in the RMS fitting

procedure. The image was created with DS Viewer ProTM 6.0 (Accelrys,

Inc., San Diego, CA, 2005).
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work helps to further define the SAR and stereochemical
requirements of the indole alkyl amine SSRI series.
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