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A B S T R A C T

Herein we report the synthesis and X-ray crystallographic study of a per(meta-t-butyl) substituted trityl fluoride in order to explore possible intermolecular FeF
interactions, as inspired by the recent work of Schreiner et al. on close H contacts. Instead of proximate F atoms, we uncovered an unusual ordering effect caused by
an interaction between the polar fluorine and nearby CeH bonds, a result that may carry some interest in regards to fluorinated compounds’ interactions with
enzymes.

1. Introduction

Recently, Schreiner et al. reported the crystal structure of a re-
markable per(meta-t-butyl) substituted trityl derivative in which an
astonishingly close intermolecular contact (1.566 Å) between hydrogen
atoms exists. [1]. What would otherwise be an unfavorable steric in-
teraction in the crystal structure is more than counterbalanced by fa-
vorable London dispersion interactions between tert-butyl groups that
serve to enforce the close contact. It made us consider the effect that
fluorine substitution of the tertiary hydrogen could have on the struc-
ture - would a similar close contact result, or would fluorine's increased
size and electron density dictate another packing regime?
Regardless of the outcome, we thought it an interesting problem to

address, as fluorine is sometimes touted as an "isostere" for hydrogen,
[2,3] especially for medical chemistry purposes [4–7]. In our minds,
this supposition is simplistic if not naïve, and is always worth further
exploration given the prominence of fluorine in agricultural [8–10] and
pharmacological [4,5,7,11–13] chemistry. We therefore synthesized a
per(meta-t-butyl) substituted trityl fluoride analogue 2 to Schreiner’s
molecule, and crystallized it for an X-ray analysis.

2. Results

The synthesis of the target molecule began with the lithiation of 3,5-
t-butylbromobenzene (t-butyllithium in THF) followed by reaction with
ethyl carbonate to yield tertiary alcohol 3. Fluorination of 1 was ac-
complished with excess diethylaminosulfurtrifluoride (DAST) in MeCN.
The resulting tertiary fluoride 2 proved to be very highly moisture
sensitive, and was only isolable in our hands through direct crystal-
lization from the reaction mixture that only then afforded fine needles

suitable for X-ray structure determination. [14] The instability of 2
made spectroscopic characterization difficult, although 19F, 1H, and
proton-decoupled 13C NMR turned out to be feasible to obtain with
proper solvent choice and preparation (see supporting information)
(Scheme 1).
The single crystal X-ray analysis revealed that the introduction of

fluorine results in an entirely different crystal packing regime than the
one observed for Schreiner’s molecule. Although certain t-butyl groups
do interact closely with one another as noted by Schreiner, there is none
of the characteristic alkyl group interweaving observed in Schreiner’s
molecule. Nor was a head-to-head orientation of the tertiary F-sub-
stituent observed; the molecules in the unit cell adopt an off-center,
head-to-tail arrangement instead, with alternating lines of cells ar-
ranged antiparallel to one another (Scheme 2).
In the crystal of 2, fluorine exhibits relatively fewer interactions

with the atoms around it. In fact, it occupies a somewhat “open pocket”
in the observed structure - surrounded by t-butyl groups, but with only
two close contacts of ca. 2.57 Å and 2.62 Å to hydrogen atoms residing
on a t-butyl group of a neighboring molecule. Surprisingly, this weak
dipolar interaction had the effect of “locking down” the affected t-butyl
group in the crystal packing regime. Many other t-butyl groups within
the structure had a degree of rotational freedom - observed as disorder -
within the crystal structure; the t-butyl groups in contact with fluorine
maintain a single orientation, presumably due to a favorable dispersion
interaction between the oppositely polarized atoms that rigidly anchors
the group. Similar polar/nonpolar contacts have been noted in previous
studies of the interactions of fluorinated drugs bound to enzymes [15],
but to our knowledge this represents a rare instance in which the re-
sulting ordering effect has been acknowledged. Although the van der
Waals radii of hydrogen and fluorine are not that far apart (1.46 Å for
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fluorine and 1.20 Å for hydrogen) [3], the similarities don’t go much
further. Fluorine is highly electronegative; hydrogen is not. Fluorine
possesses three lone pairs of electrons whereas hydrogen possesses
none. Of course, although one cannot rule out alternative crystal
morphologies obtained through different crystallization regimens, in
several crystallization attempts we obtained only the form described
above.
To shed more light on the t-butyl group “locking” mechanism, we

carved out a minimalist motif of atoms from the crystal structure that
isolates the CeFeH interactions and subjected it to calculation. Several
of the atoms in the crystal structure had to be replaced with hydrogen
atoms (ideal, optimized bond lengths) in order to simply the motif. For
example, the dissociation energy of motif 4 is calculated to be 0.88 kcal
(ωB97xd/6-311++G**). No doubt, the dipolar interaction between
the CeF bond and the proximate hydrogen atoms is weak, but ca. one

kcal seems to be enough to achieve “anchoring” in the crystal (Scheme
3).
As a point of reference, the X-ray structure of alcohol 3, first syn-

thesized by Rösel et al. [16], was contrasted with 2. In 3, one set of
hydroxyl groups interacts through a key hydrogen bond (approximate
OHeO distance=2.33 Å), whereas the others, in analogy to fluorine,
interact with proximate t-butyl groups.

3. Conclusion

We have shown that trityl fluoride 2 crystallizes in a fundamentally
different way than the corresponding trityl hydride 1 of Schreiner et al.
Rather than in close contact, the F atoms orient themselves in order to
interact instead with proximate t-butyl groups. In each instance in
which a fluorine atom interacts with a proximate t-butyl group, that
group is ordered, whereas certain others in the crystal are not. One
could imagine that this “locking” phenomenon could manifest as rigi-
difying differences that we envision as having some effect on the bio-
chemical machinery of an enzyme– substrate complex [4,17,18], for
example. Given the prominence of fluorine in current high-impact
medicinal chemistry [19,20], it is our hope that such possibilities will
be explored further.

4. Experimental

4.1. Synthesis of tris(3,5-di-tert-butylphenyl)methanol (3)

3,5-Di-tert-butylbromobenzene (3.8 g, (14.0mmol, 3.0 eq.) was added
to a flame-dried three-neck flask equipped with a stir-bar under an inert
atmosphere. Freshly distilled THF (60mL) was added, and the mixture
was stirred until the bromide was completely dissolved. The reaction
mixture was then cooled to −78 °C, and 25mL of 1.7M t-butyllithium in
pentanes (42.0mmol, 6.0 eq) were added dropwise by cannulation under

Scheme 1. Synthesis of 2.

Scheme 2. Packing diagram of the crystal of 2.

Scheme 3. Dipolar interaction of a C–F bond with proximate methyl groups.
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continuous stirring. The reaction mixture was allowed to warm to room
temperature, at which point 0.150mL (1.23mmol, 1.0 eq) of diethyl
carbonate was added dropwise to the stirring solution. The reaction was
allowed to proceed for 1 h before quenching with water. The aqueous
layer was extracted with Et2O (3X). The combined organic layers were
washed with brine, dried over MgSO4, filtered, and concentrated in vacuo
to give the crude product as a white solid. Crystallization from acetoni-
trile afforded 3 as clear prisms. IR (solid ν/cm−1): 2962, 2903, 2866,
1595, 1476, 1392, 1361, 1248, 1202, 1173, 897, 880, 826, 737, 728, 718.
1H NMR (400MHz, CD3CN, 25 °C, TMS): δ 7.33 (t, 3 H, JHH=1.8Hz,
arom. H), δ 7.11 (d, 6 H, J=1.8Hz, arom. H), δ 4.16 (s, 1H, COH), δ 1.22
(s, 54 H, CH3). 13C NMR (400MHz, CD3CN): δ 31.82, δ 35.62, δ 118.36, δ
121.31, 123.41, δ 148.39, δ 150.79. EIMS, 200 °C, m/z (rel. int.):
592.9633 (5.59), 595.4906 (18.55), 596.4973 (100) [M+], 597.5003
(46.95), 598.5049 (10.93); HRMS (EI), m/z calcd. for C43H64O 596.4957
[M]+; found 596.4973.

4.2. Synthesis of tris(3,5-di-tert-butylphenyl)methylfluoride (2)

To a flame-dried three-neck flask equipped with a stir bar and under
an inert atmosphere were added 0.1 g (0.167mmol, 1.0 eq) of alcohol 3
and 10mL of freshly distilled MeCN. The mixture was stirred under
gentle heating until 2 had dissolved completely, then cooled to 0 °C.
0.16mL (0.20mmol, 1.2 eq) of diethylaminosulfurtrifluoride (DAST)
was then added dropwise while continuing to stir. Once all of the DAST
had been added the stir bar was removed, the reaction was allowed to
come to room temperature, and dry nitrogen was forced over the re-
action to remove solvent and produce fine needle crystals of 2. The
crystals were washed with freshly distilled MeCN while still under N2 to
remove any remaining DAST. A sample was taken and dried for NMR,
IR, and mass analysis before submitting for X-ray analysis [19]. IR
(solid, ν/cm−1): 2964, 2905, 2866, 1598, 1477, 1459, 1433, 1361,
1248, 1220, 1206, 984, 897, 880, 861, 829, 728, 715, 645, 604. NMR
data: 1H NMR (400MHz, CD3CN, 25 °C, TMS): δ 7.44 (dt, 3 H,
JHH=1.8 Hz, JHF= 0.9 Hz, arom. H), δ 7.05 (dd, 6 H, JHH= 1.8 Hz,
JHF= 1.0 Hz, arom. H), δ 1.23 (s, 54 H, CH3). 13C NMR (400MHz,
CD3CN): δ 31.81, δ 35.73, δ 118.33, δ 122.81 (d, JCF= 2.2 Hz), δ
123.22 (d, JCF= 5.9 Hz), δ 144.23 (d, JCF= 23.59 Hz), δ 151.50. 19F
NMR (300MHz, CD3CN); δ -127.0 (m, 1 F, CF). EIMS, 200 °C, m/z (rel.
int.): 598.4923 (61) [M]+, 583.4693 (100) [MeCH3]+; HRMS (EI),m/z
calcd. for C43H63F+ 598.4914 [M]+; found 598.4923.
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the

online version, at doi:https://doi.org/10.1016/j.jfluchem.2019.109377.
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