A General Method of generating Agostic Interaction between Ru^{II} and C–H Bonds of *tert*-Butyl, Methyl, Aryl, Heterocyclic or Alkenyl Groups using Azine Phosphines

Sarath D. Perera and Bernard L. Shaw*

School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

Treatment of $[RuCl_2(PPh_3)_3]$ 2 with the azine phosphine Z,E-PPh_2CH_2C(Bu')=N-N=C(Me)Bu' 3a, derived from MeC(=0)Bu^t, gave the δ -agostic tert-butyl complex mer,trans-[RuCl₂(PPh₂){PPh₂CH₂- $C(Bu^{t})=N-N=C(Me)Bu^{t}]$ 4a, in which all nine hydrogens of the tert-butyl group are agostically interacting with ruthenium on the NMR time-scale at 20 °C. The analogous δ -agostic *tert*-butyl complex mer, trans - [RuCl₂(PPh₃){PPh₂CH₂C(Bu^t)=N-N=C(H)Bu^t}] 4b was also prepared. Treatment of 2 with the symmetrical azine diphosphine $Z_{,}Z_{,}PPh_{2}CH_{2}C(Bu^{t})=N-N=C(Bu^{t})CH_{2}PPh_{2}$ 5 gave the δ agostic *tert*-butyl complex *mer,trans*-[RuCl₂(PPh₃){PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂}] **6**, in which one of the PPh₂ groups is unco-ordinated. Treatment of 2 with the azine phosphine Z,E- $PPh_2CH_2C(Bu^t)=N-N=C_{10}H_{16}$ 7, derived from pinacolone-fenchone mixed azine, gave the δ -agostic methyl complex mer, trans-[RuCl₂(PPh₃){PPh₂CH₂C(Bu^t)=N-N=C₁₀H₁₆}] 8, in which the methyl group $(C^{10}H_3)$ in the 1-position of the fenchone residue interacts with ruthenium (fenchone = 1,3,3trimethylbicyclo[2.2.1]heptan-2-one). The unsymmetrical camphor azine monophosphine Z,Z-PPh,- $\begin{array}{l} C_{1_0}H_{1_5}=N-N=C_{1_0}H_{1_6} \hspace{0.1cm} \textbf{9} \hspace{0.1cm} also \hspace{0.1cm} gave \hspace{0.1cm} a \hspace{0.1cm} similar \hspace{0.1cm} \delta-agostic \hspace{0.1cm} methyl \hspace{0.1cm} complex \hspace{0.1cm} \textit{mer,trans-}[RuCl_2(PPh_3)\{PPh_2^-, C_{1_0}H_{1_5}=N-N=C_{1_0}H_{1_6}\}] \hspace{0.1cm} \textbf{10} \hspace{0.1cm} (camphor=1,7,7-trimethylbicyclo[2.2.1]heptan-2-one). \hspace{0.1cm} Treatment \hspace{0.1cm} of \hspace{0.1cm} \textbf{2} \hspace{0.1cm} \end{array}$ with the azine $Z, E-PPh_2CH_2C(Bu')=N-N=CH(C_6H_4NMe_2-4)$ **11a**, derived from 4-dimethylaminobenzaldehyde, gave the δ -agostic complex mer, trans-[RuCl₂(PPh₃){PPh₂CH₂C(Bu^t)=N-N=CH(C₆H₄NMe₂-4)}] 12a, in which the hydrogens in the 2 and 6 positions of the aryl group are agostically interacting with ruthenium. Similarly, the azines 11b and 11c, derived from 4-methoxybenzaldehyde or 4-nitrobenzaldehyde, gave the δ -agostic complexes **12b** and **12c**, respectively. Treatment of **2** with the azine 13, derived from 1-methylpyrrole-2-carbaldehyde, gave the δ -agostic complex 14, in which the hydrogen in the 3-position of the heterocyclic group is agostically interacting with ruthenium. Treatment of 2 with the azine 15, derived from benzylideneacetone, gave the δ -agostic alkenyl complex 16. Proton, ³¹P-{¹H} and some ¹³C-{¹H} NMR data are given.

In a previous paper¹ we have described the synthesis of a very reactive phosphino hydrazone Z-PPh₂CH₂C(Bu^t)=NNH₂ 1 from the corresponding phosphino N,N-dimethylhydrazone Z- $PPh_2CH_2C(Bu')=NNMe_2$ by a hydrazine exchange reaction. We have shown that 1 is a convenient reagent for converting aldehydes or ketones QC(=O)R into azines of type Z, \vec{E} -PPh₂CH₂C(Bu^t)=N-N=C(Q)R¹⁻¹¹ (Q = H or Me; R = an aryl, heterocyclic or alkyl group) which were then cyclometal-lated using transition metal centres such as $Ir^{1,2-5} W^{0.6}$ or Pt^{II.2.7} We have also promoted co-ordination of an aryl fluoride to ruthenium(II).¹⁰ In this paper we have used the strategy to promote C-H (agostic) interactions with ruthenium(II). The first suggestion of a C-H · · · metal interaction came from the crystal structure of [RuCl₂(PPh₃)₃]¹² as determined by LaPlaca and Ibers¹³ and shown diagrammatically in 2; the agostic interaction is represented by a single headed arrow.¹⁴ Since then many other examples of agostic interaction have been reported and the area has been reviewed.¹⁴⁻¹⁸ We anticipated that an azine phosphine of type $Z_{,E}$ -PPh₂CH₂C(Bu^t)=N-N=C(Q)R would displace two PPh₃ ligands from the labile ruthenium(II) complex $[RuCl_2(PPh_3)_3]$ 2 to give a sixmembered (P-N) chelate, through P and N=C(Q)R nitrogen. This would force the R group to be in close proximity to the metal and induce interaction, *i.e.* agostic interaction, between a C-H bond in the R group and the ruthenium. We found this to be the case and report examples of agostic interactions with tert-butyl, methyl, aryl, heterocyclic and alkenyl groups. A preliminary account of some of this work has been published.¹⁹

Results and Discussion

For the convenience of the reader the various reactions are shown in Schemes 1–3. Elemental analytical, IR, mass spectral and some selected carbon-13 NMR data are in the Experimental section, and phosphorus-31 and proton NMR data in Tables 1 and 2, respectively. Carbon-13 spectra were assigned using Attached Proton Tests (APT) and by comparison with published data.^{11,20,21}

We first attempted to generate agostic interactions with a C-H of a tert-butyl group. We have shown that treatment of the phosphino hydrazone Z-PPh₂CH₂C(Bu¹)=NNH₂ 1 with pinacolone, MeC(=O)Bu^t, gives the azine Z, E-PPh₂CH₂C(Bu^t)= N-N=C(Me)Bu^t 3a; ⁵ 1 when treated with $[RuCl_2(PPh_3)_3]$ 2 in benzene at ca. 50 °C for 1 min displaced two triphenylphosphine ligands and gave the hoped for δ -agostic *tert*-butyl complex mer, trans-[RuCl₂(PPh₃){PPh₂CH₂C(Bu^t)=N-N=C(Me)Bu^t}] 4a (Scheme 1) essentially quantitatively $({}^{31}P-{}^{1}H)$ NMR evidence). This complex was isolated in 88% yield as brick-red microcrystals. The ${}^{31}P{}^{1}H$ NMR spectrum of the complex showed two doublets $[\delta(P_A) 74.7 (d) \text{ and } \delta(P_B) 44.0 (d)]$ with $^{2}J(PP) = 40$ Hz, typical of *cis*-phosphine ligands.¹⁹ The occurrence of an infrared band at 320s cm⁻¹ for v(Ru-Cl) indicates a *trans* Cl-Ru-Cl moiety,²² therefore, this complex must have the mer, trans-geometry at the metal centre. At 20 °C the proton NMR spectrum of this remarkable ruthenium(II) complex 4a showed a doublet for one of the tert-butyl protons at δ 1.17 with coupling only to $P_A [^2 J(P_A H) = 2.4 \text{ Hz}]$ as shown by selective decoupling of P_A , indicating the presence of

Table 1 ${}^{31}P-{}^{1}H$ NMR data"

Compound	$\delta(\mathbf{P}_{\mathbf{A}})$	$\delta(P_B)$	$^{2}J(PP)$	Compound	$\delta(\mathbf{P}_{\mathbf{A}})$	$\delta(\mathbf{P}_{\mathbf{B}})$	$^{2}J(PP)$
3a	-12.4 (s)			11a	-11.3 (s)		
3b	-10.5 (s)			11b	-10.0 (s)		
4a ^b	74.7 (d)	44.0 (d)	40	11c	-10.4 (s)		
4b ^b	73.7 (d)	43.3 (d)	37	12a	78.4 (d)	45.8 (d)	37
5	-14.4 (s)			12b	78.6 (d)	45.9 (d)	37
6 ^{c,d}	75.2 (d)	43.9 (d)	39	12c ^b	81.3 (d)	45.7 (d)	38
7	-12.4 (s)			13	-10.9 (s)	. ,	
8 ^b	76.7 (d)	43.1 (d)	39	14	78.2 (d)	44.0 (d)	37
9	-0.3 (s)			15	-10.7 (s)		
10°	81.4 (d)	38.8 (d)	41	16 ^b	90.1 (d)	47.0 (d)	37

^{*a*} Recorded at 36.2 MHz, chemical shifts $\delta(P)$ are in ppm relative to 85% H₃PO₄, ²*J*(PP) values are in Hz, solvent CDCl₃ unless otherwise stated, s = singlet and d = doublet. ^{*b*} In CD₂Cl₂. ^c In C₆D₆. ^{*d*} Unco-ordinated PPh₂ at $\delta - 8.8$.

Scheme 1 (i) $QC(=O)Bu^{t}$; (ii) $[RuCl_{2}(PPh_{3})_{3}]$ 2

δ-agostic interactions between ruthenium and all nine hydrogens of the tert-butyl group. The appearance of this tertbutyl resonance as a doublet suggests that all nine hydrogens of the tert-butyl group are chemically equivalent and equally coupled to P_A due to the rapid rotation around the C-Bu^t bond on the NMR time-scale. Since the observed ${}^{2}J(P_{A}H)$ value (2.4 Hz) is an averaged value over the nine hydrogens we infer that the agostic interaction is quite strong. When the NMR sample was cooled to -50 °C, only three hydrogens (*i.e.* one methyl group) showed coupling to P_A , δ (Me-agostic) 0.92 [²J(P_AH) = 7.3 Hz], and the other two methyl resonances appeared as singlets at δ 1.19 and 1.28 (see Fig. 1); *i.e.* rotation around the Bu'-C bond has slowed down or stopped. At -50 °C, the ¹H- ${}^{31}P$ NMR spectrum showed an AB-pattern with ${}^{2}J(HH) \approx 12$ Hz for the CH₂ protons (Fig. 1) as previously observed for methylene protons in similar six-membered chelate rings.^{6,8} We were unable to stop the rotation of the interacting methyl group by cooling the NMR solution to -85 °C. The ¹³C-{¹H} NMR data (Experimental section) also support the fuxional behaviour referred above; at room temperature, the resonance for the three agostic methyl carbons was a very broad peak at $\delta \approx 29$, but at -50 °C, three separate signals were observed at δ 19.9 [d, ³*J*(PC) = 13.6 Hz], 27.7 (s) and 30.3 (s) for these methyl carbons of which the doublet resonance with coupling to phosphorus was assigned to the agostic methyl carbon. This is the first example of a δ -agostic *tert*-butyl complex showing spin-spin coupling of the tert-butyl hydrogens through the metal atom to a co-ordinated tertiary phosphine ligand, *i.e.* a ²*J*(PH) coupling. The azine phosphine **3b**, derived from HC(=O)Bu⁴, gave the analogous δ -agostic *tert*-butyl complex [RuCl₂(PPh₃){PPh₂CH₂C(Bu⁴)=N-N=C(H)Bu⁴}] **4b** in excellent (92%) yield. In the proton NMR spectrum, the resonance due to the agostic *tert*-butyl group was a doublet at δ 1.12 with ²*J*(P_AH) = 2.0 Hz whilst the imine proton (HC=N) resonance gave a doublet of doublets at 8.24 [dd, ⁴*J*(P_BH) = 6.1, ⁴*J*(P_AH) = 0.6 Hz]; *i.e.* the imine proton is strongly coupled to P_B (which is *trans* to the imine nitrogen HC=N) as reported for similar complexes *e.g.* [RuCl₂(PPh₃){PPh₂CH₂C(Bu⁴)=N-N=C(H)C₆H₄ - _nF_n] (n = 1 or 2).¹⁰

Similarly, other azine phosphine ligands discussed below readily displaced two PPh₃ ligands from $[RuCl_2(PPh_3)_3]$ 2 to give *mer*,*trans*-ruthenium(II) complexes as shown by their ³¹P-{¹H}NMR [²J(PP) \approx 40Hz]and IR data[v(Ru-Cl) \approx 320 cm⁻¹].

We have described the azine diphosphine, $Z,Z-Ph_2PCH_2-C(Bu')=N-N=C(Bu')CH_2PPh_2 5^{23}$ and this when treated with [RuCl_2(PPh_3)_3] displaced only two PPh_3 to give the δ -agostic *tert*-butyl complex 6 *i.e.* the *tert*-butyl groups again interacts agostically on to ruthenium, showing coupling to P_A [²J(P_AH) = 2.7 Hz] and one of the PPh_2 groups is uncoordinated with the resonance occurring as a singlet at $\delta(P_C)$ – 8.8; *i.e.* the ruthenium prefers the agostic interaction to the *tert*-butyl group rather than co-ordination to P_C.

Treatment of $[RuCl_2(PPh_3)_3]$ with the phosphine 7,²⁴

Table 2 Proton NMR data^a

Compound	δ(Bu')	$\delta(CH_2P)$	Others
3a	0.99 (9 H, s)	3.23 [2 H, d, ² <i>J</i> (PH) 4.4]	1.83 (3 H, s, =CMe)
31	1.02 (9 H, s)	2415211 + 27011 + 01	
30	0.98 (9 H, s) 1.06 (9 H, s)	3.41[2 H, d, -J(PH) 4.0]	
4a ^{b.c}	0.64 (9 H, s)	3.23 (1 H, br)	2.27 (3 H, s, =CMe)
	$1.17 [9 H, d, {}^{2}J(P_{A}H) 2.4]$	3.92 (1 H, br)	
4b ^{<i>o</i>,<i>a</i>}	0.66 (9 H, s)	3.55 (2 H, br)	8.24 [1 H, dd, $J(P_BH)$ 6.1, $J(P_AH)$ 0.6, =CH]
5	0.90 (18 H, s)	3.26 [4 H. d. ² J(PH) 3.9]	
6 ^{<i>b</i>,<i>e</i>}	0.57 (9 H, s)	3.62 (4 H, m, br)	
_	$0.83 [9 H, d, {}^{2}J(P_{A}H) 2.7]$		1.00 (2.11 1110)
7	1.05 (9 H, s)	$3.31 [1 H, dd, ^{2}J(HH) 12.7, ^{2}J(PH) 4.4]$	$1.08 (3 H, s, H^{20})$ 1.24 (3 H s H ⁸ or H ⁹)
		5.45 [111, dd, 5(111) 12.7, 5(111) 4.4]	$1.25 (3 H, s, H^8 \text{ or } H^9)$
8 ^b	0.69 (9 H, s)	3.19 [1 H, dd, ² J(HH) 11.7, ² J(P _A H) 12.0]	0.99 [3 H, d, ${}^{2}J(P_{A}H)$ 7.1, agostic Me]
		$3.83 [1 \text{ H}, \text{dd}, {}^{2}J(\text{HH}) 11.7, {}^{2}J(\text{P}_{A}\text{H}) 12.2]$	1.26 (3 H, s, H^8 or H^9)
a			$1.57 (3 \text{ H}, \text{ s}, \text{ H}^{\circ} \text{ or } \text{H}^{\circ})$ 0.13s 0.68s 0.74s 0.76s 0.96s and 1.04s
3			(camphor methyls)
			3.28 [1 H, d, ² J(PH) 2.7, CHP]
10			-0.20s, 0.51s, 0.59s, 0.96s and 1.12s
			(camphor methyls) 0.94 [3 H d ² /(P, H) 3.8 agostic Me]
			$4.45 [1 \text{ H, d, }^2 J(P_A \text{ H}) 18.8, CHP]$
11a	1.19 (9 H, s)	3.54 [2 H, d, ² <i>J</i> (PH) 2.9]	2.99 (6 H, s, NMe ₂)
			$6.57 [2 H, d, {}^{3}J(HH) 9.0, H_{m}]$
116	1.22(9 H s)	3 52 [2 H d ² //PH) 3 2]	3.03 (1 H, S, CH=) $3.81 (3 H \le OMe)$
110	1.22 (9 11, 3)	5.52 [211, u , v (111) 5.2]	8.04 (1 H, s, CH=)
11c	1.25 (9 H, s)	3.50 [2 H, d, ² <i>J</i> (PH) 2.9]	8.03 [2 H, d, ${}^{3}J$ (HH) 8.6, H _m]
12.	0.72 (0.11)	2 44 F2 II 4 2 KD II) 15 27	8.14(1 H, s, CH)
12a	0.72 (9 H, s)	$3.44 [2 H, d, J(P_AH) [5.2]$	2.85 (6 H, S, NMe ₂) 5 95 [2 H d 3 ((HH) 8 5 H]
			$6.57 [2 \text{ H}, \text{ dd}, {}^{3}J(\text{HH}) 8.5, {}^{2}J(\text{P}_{A}\text{H}) 2.1, \text{H}_{a}]$
			9.00 [1 H, d, ${}^{4}J(P_{B}H)$ 6.4, CH=]
12b	0.73 (9 H, s)	$3.42 [2 H, d, {}^{2}J(P_{A}H) 15.1]$	3.62 (3 H, s, OMe)
			$6.18[2 \text{ H}, d, ^{-}J(\text{HH}) 8.6, H_m]$ $6.83[2 \text{ H}, dd ^{-3}J(\text{HH}) 8.6 ^{-2}J(\text{P}, \text{H}) 2.0 \text{ H}]$
			9.10 [1 H, d, ${}^{4}J(P_{B}H)$ 6.4, CH=]
12c ^{b,f}	0.75 (9 H, s)	$3.41 [2 H, d, {}^{2}J(P_{A}H) 14.3]$	7.36 [2 H, dd, ${}^{3}J(HH)$ 8.6, ${}^{2}J(P_{A}H)$ 1.8, H _o]
			7.50 [2 H, d, ${}^{3}J$ (HH) 8.6, H _m] 8.01 [1 H, d, ${}^{4}J$ (P, H) 6.4, CH-1
13 ^{<i>g</i>}	1.15 (9 H. s)	3.49 [2 H. d. ² J(PH) 3.4]	3.56 (3 H. s. NMe)
			6.09 [1 H, dd, J(HH) 2.6, 3.8, H ⁴]
			6.41 [1 H, dd, <i>J</i> (HH) 1.8, 3.8, H ³]
			$6.62 [1 H, t, J(HH) 2.2, H^3]$
14 ^g	0.77 (9 H. s)	3.54 [2 H. d. ² /(PH) 15.0]	3.76(3 H. s. NMe)
			5.74 [1 H, m, J(HH) 0.5, 2.4, 3.8, H ⁴]
			$6.67 [1 \text{ H, m, } J(\text{HH}) 1.6, 3.8, {}^{2}J(\text{P}_{A}\text{H}) 3.8, \text{H}^{3}]$
			$6.86[1 \text{ H}, \text{ dd}, J(\text{HH}) 1.6, 2.4, \text{H}^{3}]$
15	1.20 (9 H. s)	3.31 [2 H. d. ² J(PH) 3.4]	1.93 (3 H. s. Me)
-			6.51 [1 H, d, ³ J(HH) 16.4, =CH]
			6.80 [1 H, d, ³ J(HH) 16.4, =CH]
16 ^{<i>v</i>, <i>j</i>}	0.74 (9 H, s)	$3.47 [2 H, d, J(P_AH)]$	2.71 (3 H, s, Me) 6 88 [1 H dd ³ <i>I</i> (HH) 15 6 ² <i>I</i> (D H) 1.8 prostic H
			7.34 [1 H. d. ${}^{3}J(HH)$ 15.6. =CH]

^{*a*} Recorded at 100 MHz, unless stated otherwise; chemical shifts are in ppm relative to SiMe₄, *J* values are in Hz; solvent CDCl₃ unless otherwise stated; s = singlet, d = doublet, t = triplet, dd = doublet of doublets. Multiplicities refer to ¹H spectra although ¹H-{³¹P} spectra were also measured and ¹H-{³¹P} and ¹H-{³¹P} spectra, when necessary. ^{*b*} In CD₂Cl₂. ^{*c*} At -50 °C, δ 0.62 (9 H, s, Bu'), 0.92 [3 H, d, ²*J*(P_AH) 7.3, agostic Me], 1.19 (3 H, s, Me of Bu'), 1.28 (3 H, s, Me of Bu'), 3.2 [1 H, dd, br, ²*J*(HH) 12, ²*J*(P_AH) 13, CH₂] and 3.7 [1 H, dd, br, ²*J*(HH) 12, ²*J*(P_AH) 13, CH₂], and the resonance due to the agostic Bu' group is broad even at -70 °C. ^{*c*} At -40 °C, δ 1.0 (br, agostic Bu'), 3.1 [1 H, m, ²*J*(HH) 12, CH₂], 3.3 [1 H, m, ²*J*(HH) 13, CH₂], 4.0 [1 H, m, ²*J*(HH) 12, CH₂] and 4.3 [1 H, m, ²*J*(HH) 13, CH₂]. ^{*f*} At 400 MHz. ^{*f*} At 250 MHz.

derived from pinacolone fenchone mixed azine (fenchone = 1,3,3-trimethylbicyclo[2.2.1]heptan-2-one), gave the δ -agostic methyl complex **8** in which the methyl group in the 10-position of the fenchone residue interacts with ruthenium, and all three

hydrogens are equally coupled to P_A , $\delta(Me) 0.99$, ${}^2J(P_AH) = 7.1$ Hz (Scheme 2).

We anticipated that a similar agostic interaction of a methyl group in the 10-position of camphor (1,7,7-trimethylbicyclo-

Fig. 1 Part of the proton NMR spectra of **4a** at -50 °C in CDCl₃. (*a*) ¹H-{³¹P} spectrum (*b*) ¹H spectrum. The spectra show that, for the *tert*-butyl group which interacts agostically and dynamically with Ru at 20 °C, only one of its methyls is agostically interacting at -50 °C (see Discussion and Table 2 for data)

Scheme 2 (i) $[RuCl_2(PPh_3)_3]$

[2.2.1]heptan-2-one) would be induced by complexing the phosphine generated from camphor azine to ruthenium. Treatment of (1R)-(+)-camphor azine²⁵ with 1 mol of LiBuⁿ, followed by addition of PPh₂Cl introduced a PPh₂ group into the *exo*-3-position of one of the camphor residues *i.e.* giving the camphor azine phosphine 9. Preparative details are in the Experimental section and characterizing data are in Tables 1 and 2 (we are very grateful to Dr. N. Iranpoor, who was the first to make 9 and to characterize it). Treatment of [RuCl₂(PPh₃)₃] with 9 for *ca.* 1 min gave the hoped for

J. CHEM. SOC. DALTON TRANS. 1995

derivative 10 in 69% yield; characterizing data are in the Experimental section and in the Tables; in particular the δ -agostic methyl showed coupling to the phosphorus in *trans*-position, δ (Me) 0.94, ²J(P_AH) = 3.8 Hz.

We can similarly induce δ -agostic interaction with aromatic C-H bonds (Scheme 3). The mixed azine phosphine **11a** from 4-dimethylaminobenzaldehyde reacted with $[RuCl_2(PPh_3)_3]$ to give the δ -agostic aryl complex **12a** in which both ortho hydrogens (*i.e.* at the 2,6-positions of the C₆H₄NMe₂ ring) interact with ruthenium, $\delta(H_o)$ 6.57, ${}^2J(P_AH_o) = 2.1$, ${}^3J(H_oH_m) = 8.5$ Hz. Similar results were obtained with the azine phosphine **11b**,⁷ derived from 4-methoxybenzaldehyde; and **11c**,⁵ from 4-nitrobenzaldehyde. In each case agostic interaction with both ortho-hydrogens occurred *i.e.* for **12b** ${}^2J(P_AH_o) = 2.0$ Hz and for **12c** ${}^2J(P_AH_o) = 1.8$ Hz. Thus an electron-releasing group (NMe₂) or electron-withdrawing group (NO₂) in the 4-position had essentially no substantial effect on the agostic interaction of the two hydrogens in the 2,6-positions with the ruthenium; similarly for a 4-methoxy group.

We have described the mixed azine phosphine 13 made by condensing the hydrazone phosphine 1 with *N*-methylpyrrole-2-carbaldehyde⁵ and have shown that, when treated with [IrCl(CO)₂(MeC₆H₄NH₂-*p*)], cyclometallation occurs at the carbon in the 3-position of the pyrrole residue. We therefore hoped that treatment with [RuCl₂(PPh₃)₃] would give a product which would show agostic interaction of the C³-H on the pyrrole residue and the ruthenium. This we have found to be the case and 14 was isolated in 85% yield with the agostic hydrogen showing a coupling to P_A of 3.8 Hz (see Table 2). The coupling constants within the pyrrole residue were assigned using selective decoupling experiments *i.e.* for both H–H and P–H couplings.

The mixed azine phosphine **15** from benzylideneacetone reacted with $[RuCl_2(PPh_3)_3]$ to give an agostic alkenyl complex in which one of the alkenyl hydrogens was agostically interacting with the ruthenium, and was coupled to P_A, $\delta(CH=)$ 6.88, $^2J(P_ACH=) = 1.8$, $^3J(HC=CH) = 15.6$ Hz. We tentatively suggest that it has the structure **16** having δ -agostic interaction with the =CHPh alkenyl hydrogen, however, we cannot rule out a γ -agostic interaction with the CH=CPh hydrogen.

We found no evidence of carbon metallation by ruthenium in any of these reactions. For example, prolonged treatment of the agostic tert-butyl complex 5 with a base, e.g. NEt₃ or NaO₂CMe did not lead to ruthenium-carbon bond formation nor did prolonged exposure of a solution of 5 to CO or H₂ at 20 °C lead to any reaction. The failure of agostic interactions with these ruthenium complexes, of the types shown in the Schemes, to lead to metal-carbon bond formation is probably because the chlorides in the trans-Cl-Ru-Cl moiety are very poor leaving groups. In our previously reported work on the reactions of mixed azines of type $Z_{,E}$ -PPh₂CH₂C(Bu')=N-N=C(Q)R with iridium(1)^{2 5} cyclometallation occurred, accompanied by oxidative addition with four-co-ordinate iridium(I) going to sixco-ordinate iridium(III); and treatment of $[PtMe_2(cod)]$ (cod = cycloocta-1,5-diene) with the mixed azines, a methyl group was lost as methane and cyclometallation of the R group occurred.2,7

Experimental

All the reactions were carried out in an inert atmosphere of dry nitrogen or dry argon. Infrared spectra were recorded using a Perkin-Elmer model 457 grating spectrometer. The NMR spectra were recorded using a JEOL FX-90Q spectrometer (operating frequencies for ¹H and ³¹P of 89.5 and 36.2 MHz respectively), a JEOL FX-100 spectrometer (operating frequencies for ¹H and ³¹P of 99.5 and 40.25 MHz respectively), a Bruker ARX-250 spectrometer (operating frequencies for ¹H, ³¹P and ¹³C of 250.1, 101.3 and 62.9 MHz respectively) or a Bruker AM-400 spectrometer (operating frequencies for ¹H, ³¹P and ¹³C of 400.13, 161.9 and 100.6 MHz respectively). The

Scheme 3 (i) [RuCl₂(PPh₃)₃]

¹H and ¹³C chemical shifts are relative to tetramethylsilane and ³¹P shifts are relative to 85% phosphoric acids, and all coupling constants are in Hz. Electron impact (EI) and fast atom bombardment (FAB) mass spectra were recorded using a VG Autospec spectrometer with 8 kV acceleration, and for metal complexes the m/z values are quoted for ¹⁰²Ru.

Preparation of Phosphine Ligands.—The phosphines $1, 13a, 55, 237, 2411b, 711c^7$ and 13^5 were prepared according to our published procedures.

The following three azine phosphines, **3b**, **11a** and **15**, were prepared and isolated as crystalline solids in a similar manner to that described for **11b**.⁷ *Z*,*E*-PPh₂CH₂C(Bu')=N-N=C(H)-Bu' **3b**. Yield 81% (Found: C, 74.9; H, 8.4; N, 7.35. $C_{23}H_{31}N_2P$ requires C, 75.35; H, 8.5; N, 7.65%). *m*/*z* (EI) 309 (*M* – Bu'). *Z*,*E*-PPh₂CH₂C(Bu')=N-N=CH(C₆H₄NMe₂-4) **11a**. Yield 78% (Found: C, 75.45; H, 7.8; N, 9.85. $C_{27}H_{32}N_3P$ requires C, 75.5; H, 7.5; N, 9.8%). *m*/*z* (EI): 372 (*M* – Bu'). *Z*,*E*-PPh₂CH₂C(Bu')=N-N=C(Me)CH=CHPh **15**. Yield 79% (Found: C, 78.9; H, 7.45; N, 6.7. $C_{28}H_{31}N_2P$ requires C, 78.85; H, 7.35; N, 6.55%). *m*/*z* (EI); 426 (*M*⁺) and 369 (*M* – Bu').

 $PPh_2C_{10}H_{15}=N-N=C_{10}H_{16}$ 9 (with Dr. N. Iranpoor). A solution of lithium diisopropylamide (0.05 mol) was prepared by treating a solution of LiBuⁿ (0.05 mol) in hexane (3.4 cm³) with diisopropylamine (5.1 g, 0.05 mol) in tetrahydrofuran (thf) (7 cm³). A solution of (1*R*)-(+)-camphor azine (15.0 g, 0.05 mol) in thf (70 cm³) was then added to the lithium diisopropylamide solution at -20 °C, with stirring. After a further 30 min a solution of PPh₂Cl (11.1 g, 0.05 mol) in thf (150

cm³) was added dropwise with stirring at -15 °C; the solution was then stirred for a further 30 min and then allowed to warm to room temperature. The resultant mixture was evaporated to low bulk on a Rotavap; ethanol was added to the residue, which was then cooled to *ca.* + 5 °C. The required product crystallized as microcrystals which were filtered off, washed with ethanol and dried. Yield 9.8 g, 67% (Found: C, 77.85; H, 8.45; N, 5.6. C₃₂H₄₁N₂P•0.2EtOH requires C, 77.8; H, 8.35; N, 5.65%).

Preparation of Ruthenium(II) Complexes.—mer, trans-[Ru-Cl₂(PPh₃){PPh₂CH₂C(Bu¹)=N-N=C(Me)Bu¹}] **4a**. The complex [RuCl₂(PPh₃)₃] (80 mg, 0.083 mmol) and the azine phosphine **3a** (33 mg, 0.083 mmol) were warmed (*ca*. 60 °C) in benzene (*ca*. 2 cm³) for 1 min. The resulting cherry red solution was concentrated to a low volume (*ca*. 0.5 cm³). Addition of hexane (*ca*. 1.5 cm³) to the residue gave the *mer,trans*ruthenium(II) complex **4a** as brick-red microcrystals (60 mg, 88%) (Found: C, 63.0; H, 6.25; Cl, 8.2; N, 3.05. C₄₂-H₄₈Cl₂N₂P₂Ru-0.5C₆H₆ requires C, 63.3; H, 6.0; Cl, 8.3; N, 3.3%). *m/z* (FAB): 814 (*M*⁺), 779 (*M* − Cl) and 743 (*M* − Cl − HCl). v(Ru-Cl) 320 cm⁻¹. ¹³C-{¹H} NMR (100.6 MHz, CD₂Cl₂, −50 °C): δ_C 19.9 [1 C, d, ³J(PC) 13.6, agostic Me], 20.5 (1 C, s, *MeC*=), 26.7 (3 C, s, *CMe*₃), 42.0 (1 C, s, *CMe*₃) of agostic Bu¹), 30.3 (1 C, s, *CMe*₃ of agostic Bu¹), 30.8 [1 C, d, ¹J(P_AC) 29.2, CH₂], 40.7 (1 C, s, *CMe*₃), 42.0 (1 C, s, *CMe*₃), 170.4 (1 C, s, C=N) and 185.2 (1 C, s, C=N). The ¹³C-{¹H} NMR spectrum, recorded at room temperature (20 °C), showed a very broad peak at δ ≈ 29 for the three methyl carbons of the agostic *tert*-butyl group.

The following mer, trans-ruthenium(11) complexes were mer, trans-[RuCl₂(PPh₃){PPh₂CH₂Cprepared similarly. (Bu')=N-N=C(H)Bu'}] 4b. Yield 92% (Found: C, 61.6; H, 5.6; Cl, 8.45; N, 2.8. C₄₁H₄₆Cl₂N₂P₂Ru requires C, 61.5; H, 5.8; Cl, 8.85; N, 2.5%). m/z (FAB): 800 (M^+), 765 (M - Cl) and 729 (M - Cl - HCl). v(Ru-Cl) 315 cm⁻¹. mer, trans- $[RuCl_2(PPh_3){PPh_2CH_2C(Bu^t)=N-N=C(Bu^t)CH_2PPh_2}]$ 6. Yield 72% (Found: C, 64.8; H, 5.55; Cl, 6.8; N, 2.8. C₅₄H₅₇Cl₂N₂P₃Ru requires C, 64.9; H, 5.75; Cl, 7.1; N, 2.8%). m/z (FAB): 998 (M^+), 963 (M – Cl) and 927 (M – Cl – HCl). v(Ru-Cl) 320 cm⁻¹. mer, trans-[RuCl₂(PPh₃){PPh₂CH₂C- $(Bu^t)=N-N=C_{10}H_{16}$] 8. Yield 61% (Found: C, 65.4; H, 5.85; Cl, 7.6; N, 2.8. C₄₆H₅₂Cl₂N₂P₂Ru·0.6C₆H₆ requires C, 65.2; H, 6.15; Cl, 7.7; N, 3.05%). m/z (FAB): 866 (M^+), 831 (M - Cl) and 795 (M - Cl - HCl). v(Ru-Cl) 320 cm⁻¹. mer, trans- $[RuCl_2(PPh_3){PPh_2C_{10}H_{15}=N-N=C_{10}H_{16}}] 10. Yield 69\%.$ m/z (FAB): 918 (M⁺), 883 (M - Cl) and 847 (M - Cl - HCl). $v(Ru-Cl) 315 cm⁻¹. mer, trans-[RuCl_2(PPh_3){PPh_2CH_2C-Ch_2C-Ch_2C}] (Ru-Cl) (R$ $(Bu^{t})=N-N=CH(C_{6}H_{4}NMe_{2}-4)$] 12a. Yield 83% (Found: C, 62.4; H, 5.4; Cl, 8.15; N, 4.6. C₄₅H₄₇Cl₂N₃P₂Ru requires C, 62.55; H, 5.5; Cl, 8.2; N, 4.85%). m/z (FAB): 863 (M^+), 828 (M - Cl) and 792 (M - Cl - HCl). v(Ru-Cl) 320 cm⁻¹. ¹³C-¹H} NMR (100.6 MHz, CDCl₃): δ 27.3 (3 C, s, CMe₃), 31.3 $[1 \text{ C}, d, {}^{1}J(P_{A}C) 28.2, CH_{2}], 39.8 [1 \text{ C}, d, {}^{3}J(P_{A}C) 2.6, CMe_{3}],$ [1 C, d, $5(1_{AC})$ 20.2, $C11_{21}$, 53.6 [1 C, d, 61_{AC} 2.6, $C11_{31}$, 40.1 (2 C, s, NMe_2), 111.9 (2 C, s, C_{meta} of $C_6H_4NMe_2$), 120.8 (1 C, s, C_{ipso} or C_{para} of $C_6H_4NMe_2$], 133.0 [2 C, d, $^3J(P_AC)$ 5.2, C_{ortho} of $C_6H_4NMe_2$], 151.7 (1 C, s, C_{ipso} or C_{para} of C_6H_4 - NMe_2), 168.2 (1 C, s, HC=N) and 170.8 (1 C, s, $Bu^{\dagger}C=N$). mer, $trans-[RuCl_2(PPh_3){PPh_2CH_2C(Bu')=N-N=CH(C_6H_4OMe-N)}]$ 4)}] 12b. Yield 81% (Found: C, 62.35; H, 5.35; Cl, 8.25; N, 3.05 $C_{44}H_{44}Cl_2N_2OP_2Ru$ requires C, 62.1; H, 5.2; Cl, 8.35; N, 3.3%). m/z (FAB): 850 (M^+), 815 (M - Cl) and 779 (M -S.5%). m/2 (FAB). 656 (m⁻¹, 615 (m⁻² - Ci) and (m⁻¹) (m⁻¹). (P-HC). v(Ru-Cl) 320 cm⁻¹. $mer, trans-[RuCl_2(PPh_3)-{PPh_2CH_2C(Bu')=N-N=CH(C_6H_4NO_2-4)}]$ 12c. Yield 97% (Found: C, 61.6; H, 4.65; Cl, 7.25; N, 4.5. $C_{43}H_{41}Cl_2N_3O_2-{Product}$ P₂Ru·0.6C₆H₆ requires C, 61.35; H, 4.95; Cl, 7.75; N, 4.6%). m/z (FAB): 865 (M^+), 829 (M – HCl) and 794 (M – Cl – HCl). v(Ru-Cl) 320 cm⁻¹. mer, trans-[RuCl₂(PPh₃){PPh₂CH₂. $C(Bu')=N-N=CH(C_4H_3NMe)$] 14. Yield 85% (Found: C $63.45;\,H,\,5.35;\,Cl,\,8.35;\,N,\,4.65,\,C_{42}H_{43}Cl_2N_3P_2Ru\cdot0.75C_6H_6$ requires C, 63.3; H, 5.45; Cl, 8.05; N, 4.75%). m/z (FAB): 823 (M^+) and 788 (M -Cl). v(Ru–Cl) 320 cm⁻¹. mer, trans $[RuCl_2(PPh_3){PPh_2CH_2C(Bu')=N-N=C(Me)CH=CHPh)}]$

16. Yield 90% (Found: C, 64.0; H, 5.25; Cl, 8.1; N, 3.15. $C_{46}H_{46}Cl_2N_2P_2Ru$ requires C, 64.2; H, 5.4; Cl, 8.25; N, 3.25%). m/z (FAB): 860 (M^+), 825 (M - Cl) and 789 (M -Cl - HCl). v(Ru-Cl) 320 cm⁻¹.

Acknowledgements

We thank the SERC for a fellowship (to S. D. P.) and for other support, and Johnson Matthey for the generous loan of ruthenium salts.

References

- 1 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 2361.
- 2 K. K. Hii, S. D. Perera and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1994, 3589.
- 3 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1203.
- 4 S. D. Perera, B. L. Shaw and M. Thornton-Pett, Inorg. Chim. Acta, 1995, 233, 103.
- 5 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1995, 1689.
- 6 S. D. Perera and B. L. Shaw, J. Organomet. Chem., 1994, 479, 117.
- 7 S. D. Perera and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1995, 641.
- 8 S. D. Perera, M. Shamsuddin and B. L. Shaw, Can. J. Chem., 1995, 73, 1010.
- 9 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 103.
- 10 S. D. Perera and B. L. Shaw, Inorg. Chim. Acta, 1995, 228, 127.

- 11 K. K. Hii, S. D. Perera and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1995, 625.
- 12 P. S. Hallman, T. A. Stephenson and G. Wilkinson, Inorg. Synth., 1970, 12, 237.
- 13 S. J. LaPlaca and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
- 14 M. Brookhart, M. L. H. Green and L.-L. Wong, Prog. Inorg. Chem., 1988, 36, 1.
- 15 R. Crabtree and D. G. Hamilton, Adv. Organomet. Chem., 1988, 28, 199
- 16 A. Albinati, P. S. Pregosin and F. Wombacher, Inorg. Chem., 1990, 29, 1812 and refs. therein.
- 17 F. M. Conroy-Lewis, L. Mole, A. D. Redhouse, S. A. Lister and J. L. Spencer, J. Chem. Soc., Chem. Commun., 1991, 1601 and refs. therein.
- 18 F. Neve, M. Ghedini and A. Crispini, Organometallics, 1992, 11, 3324 and refs. therein.
- 19 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1201 and refs. therein.
- 20 G. C. Levy, R. L. Lichter and G. L. Nelson, Carbon-13 Nuclear Magnetic Resonance Spectroscopy, 2nd edn., Wiley, New York, 1980.
- 21 B. E. Mann and B. E. Taylor, ¹³C-NMR Data for Organometallic Compounds, Academic Press, New York, 1981
- 22 E. Lindner, A. Möckel, H. A. Mayer, H. Kühbauch, R. Fawzi and M. Steinmann, Inorg. Chem., 1993, 32, 1266 and refs. therein.
- 23 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 1469.
- 24 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 713.
- 25 K. A. Taipale, Chem. Ber., 1930, 63, 243.

Received 13th June 1995; Paper 5/03801D