

Tetrahedron: Asymmetry 14 (2003) 3019-3031

TETRAHEDRON: ASYMMETRY

Synthesis of enantiopure (2R)-configured muscarine alkaloids via selective alkoxyl radical ring-closure reactions

Jens Hartung* and Rainer Kneuer

Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received 30 May 2003; accepted 24 June 2003

Abstract—A new synthesis of (-)-muscarine, (+)-*allo*-muscarine, (-)-*epi*-muscarine, and (-)-*epiallo*-muscarine has been devised which utilizes selective alkoxyl radical cyclizations for constructing tri-substituted tetrahydrofuran units. Photolysis of (2R,3S)-*N*-(3-benzoyloxy-5-hexen-2-oxy)-4-methylthiazole-2(3*H*)thione in the presence of BrCCl₃ provided (2R,3S,5S)-3-benzoyloxy-5-bromomethyl-2-methyltetrahydrofuran as the major product and the corresponding (2R,3S,5R)-isomer as the minor. These building blocks were converted into enantiomerically pure (+)-*allo*-muscarine (from the major alkoxyl radical cyclization product) and (-)-muscarine (from the minor product). Temperature and substituent effects on the diastereoselectivity of the underlying alkoxyl radical cyclization have been investigated. (-)-*epi*-Muscarine and (-)-*epiallo*-muscarine have been prepared likewise, starting from (2R,3R)-*N*-(3-benzoyloxy-5-hexen-2-oxy)-4-methylthiazole-2(3*H*)thione.

© 2003 Published by Elsevier Ltd.

1. Introduction

The observation that (+)-muscarine chloride reliably reproduces some of the responses to a stimulation of the parasympathetic nervous system is generally regarded as the beginning of modern pharmacology.^{1,2} The significance of this alkaloid and its naturally occurring three diastereomers has led to a growing demand which at present cannot be covered from the current natural resources, such as fungi of the genera Amanita,³ Clitocybe⁴ and Inocybe⁵ alone. Therefore, methods for selectively preparing enantiomerically pure (+)-muscarine ent-1a,⁶ the major muscarine alkaloid from Amanita muscaria,⁷ and its diastereomers (-)-allo-muscarine ent-**1b**,⁸ (+)-epi-muscarine ent-**1c**,⁹ and (+)epiallo-muscarine ent-1d,10 have received considerable attention over the last few decades.¹¹ Two major strategies have evolved for this purpose: (i) selective transformations of monosaccharides¹² and (ii) electrophileinduced ring-closure reactions of ex-chiral poolderived substituted bis(homoallylic) alcohols.^{13,14} The latter approach has been supplemented recently by a concept that utilizes a selective alkoxyl radical cyclization for the construction of the heterocyclic core of

* Corresponding author. Present address: Fachbereich Chemie, Organische Chemie Universität Kaiserslautern, Erwin-Schrödinger-Straße 54, D-67663 Kaiserslautern, Germany. Tel.: +49-(0)631-205-2431; fax: +49-(0)631-205-3921; e-mail: hartung@chemie.uni-kl.de *allo*-muscarine **1b** under mild and neutral (i.e. non oxidative) conditions.^{15,16} In view of this achievement and the relevance of muscarine alkaloids in particular, we have extended our preliminary investigation to address three major areas. (i) The development of a synthesis of (2R,3S)- and (2R,3R)-(3-benzoyloxy-5-hexen-2-oxy)-4-methylthiazole-2(3H)thione. (ii) Accomplishment of a synthesis of all four (2R)-configured muscarine alkaloids **1a–d** (Fig. 1) starting from alkoxyl

Figure 1. Structures of (2R)-configured muscarine alkaloids 1a-d. X⁻ = monovalent anion.

^{0957-4166/\$ -} see front matter @ 2003 Published by Elsevier Ltd. doi:10.1016/j.tetasy.2003.06.006

radial cyclization products. (iii) An investigation of the substituent and temperature effects on the diastereoselectivity of 5-*exo*-trig cyclizations using 2,3-*unlike*-configured 3-substituted 5-hexen-2-oxyl radicals.^{15,17}

2. Results

2.1. Synthesis of alkoxyl radical precursors

The selective *O*-protection of methyl (*S*)-lactate **2** using 3,4-dihydro-2*H*-pyran and pyridinium *p*-toluenesulfonate (PPTS) in CH₂Cl₂ provided (2*S*)-(2-tetra-hydropyranyloxy)propanal (92%, not shown in Scheme 1)¹⁸ which was treated with 1.5 equiv. of diisobutylaluminum hydride (DIBAH) in hexane/Et₂O and subsequently with allyl magnesium bromide in Et₂O (both steps at -78° C) to furnish 2-tetrahydropyranyloxy-5-hexen-3-ol **3** as a mixture of diastereomers (69% starting from **2**, Scheme 1). *O*-Acylation of compound **3**

75 % 75 % $6 \xrightarrow{a} 33$ BzO BzOB

Scheme 1. Preparation of (2R,3S)-*N*-(3-benzoyloxy-5-hexen-2-oxy)thiazolethione **6** and its (2R,3R)-diastereomer **7**. *Reagents and conditions*: (a) 3,4-Dihydro-2*H*-pyran, PPTS, CH₂Cl₂, 41°C (92%); (b) DIBAH in hexanes/Et₂O, -78°C; (c) H₂C=CH-CH₂MgBr, Et₂O, -78 \rightarrow 0°C (75% for steps b and c); (d) BzCl, DABCO, CH₂Cl₂, 20°C (82%); (e) PPTS, EtOH, 78°C; (f) HPLC (91% for steps e and f); (g) TsCl, DABCO, CH₂Cl₂, 20°C (94% for conversion of **4** and **5**); (h) *N*-hydroxy-4-methylthiazole-2(3*H*)thione tetraethylammonium salt, DMF, 20°C (83% of **6** and 73% of **7**).

was achieved with a mixture of 1,4-diazabicyclo-[2.2.2]octane (DABCO)¹⁹ and benzoyl chloride in CH₂Cl₂ (82%). This step was followed by removal of the THP protecting group under acidic conditions²⁰ to yield a 54:46 mixture of 3-benzoyloxy-5-hexen-2-ols 4 and 5. Separation of this mixture into equal amounts of (2S,3S)-configured alkenol 4 and its (2S,3R)-stereoisomer 5 was accomplished on a preparative scale by HPLC (4:5=50:50). Both purified products 4 and 5 were esterified with the combination of p-toluenesulfonyl chloride and DABCO¹⁹ in dry CH₂Cl₂ (94% for both transformations, not shown in Scheme 1) followed N-hydroxy-4-methylthiazoletreatment with by 2(3H)thione tetraethylammonium salt²¹ in anhydrous DMF to provide 83% of (2R,3S)-N-(3-benzoyloxy-5hexen-2-oxy)thiazolethione 6 and 73% of its (2R,3R)diastereomer 7, respectively both as tan oils.

2.2. Preparation of muscarine alkaloids

A solution of (2R,3S)-N-(3-benzoyloxy-5-hexen-2oxy)thiazolethione **6** ($c_0 = 0.18$ M) and BrCCl₃ ($c_0 = 1.4$ M) was photolyzed at 20°C in a Rayonet[®] photoreactor equipped with 350 nm light bulbs (Scheme 2). The starting material **6** was consumed within 25 min to afford after work-up 26% of (2R,3S,5R)-tetra-

b, c

82 %

b, c

48 %

1a

1b

Figure 2. ¹H NMR spectra of muscarine alkaloids 1a-d (D₂O) showing the resonances of protons attached to C-4 (see text).

hydrofuran **8a**, 53% of the (2*R*,3*S*,5*S*)-diastereomer **8b**, and 77% of 2-trichloromethylsulfanyl-4-methylthiazole **9** (for structure see Fig. 3). Benzoates **8a** and **8b** were saponified using a solution of NaOH in CH₃OH to yield the corresponding 5-bromomethyl-2-methyltetrahydrofuran-2-ols (92% from **8a** and 66% from **8b**, both not shown in Scheme 2). These products were treated in a hot solution of N(CH₃)₃ (4.2 M) in EtOH for 7 days to furnish, after work-up, analytically pure (–)-muscarine **1a** in 89% yield { $[\alpha]_D^{25} = -15.5$ (*c* 0.64, EtOH)} and (+)-*allo*-muscarine **1b** in 73% yield { $[\alpha]_D^{25} = +36.8$ (*c* 0.57, EtOH)}.²²

(-)-*epi*-Muscarine **1c** and (-)-*epiallo*-muscarine **1d** were obtained starting from (2R,3R)-N-(3-benzoyloxy-5-hexen-2-oxy)thiazolethione **7** (Scheme 2). Near UV-light photolysis of a 0.18 M solution of thione **7** in the presence of 8 equiv. of BrCCl₃ afforded an equimolar ratio of (2R,3R,5R)-3-benzoyloxy-5-bromomethyl-2-methyltetrahydrofuran **8c** along with its (2R,3R,5S)-stereoisomer **8d** in a total yield of 79%. Products **8c** and **8d** were separated by column chromatography and subsequently treated with NaOH in CH₃OH to furnish the corresponding tetrahydrofuranols (not shown in

Scheme 2) which were heated in a solution of N(CH₃)₃ in EtOH to yield (–)-*epi*-muscarine **1c** { $[\alpha]_D^{25} = -62.7$ (*c* 0.42, EtOH)} and (–)-*epiallo*-muscarine **1d** { $[\alpha]_D^{25} = 0.0$ (*c* 0.33, EtOH)}.^{†,22}

The determined specific rotations of likewise prepared alkaloids 1a and 1b were in accord with the reported values for enantiomerically pure compounds.²²

2.3. Stereochemical analysis

Relative configurations of alkoxyl radical cyclization products **8a–d** and alkaloids **1a–d** were established from ¹H NMR analysis (chemical shifts and NOE experi-

[†] A specific rotation of $[\alpha]_{D}^{25} \leq 0$ has been reported for enantiopure (-)-*epiallo*-muscarine 1d.²² The negative sign for the specific rotation of alkaloid (-)-1d has been assigned in extension to Ref. 22 where the authors recorded negative α -values at 578, 546, 436, and 365 nm, but no specific rotation at 589 nm for an enantiomerically pure sample.

(42%).

ments). A chemical shift difference of ~0.6–1.0 ppm between both protons at C-4 was indicative of a 3,5-*cis*configuration [i.e. tetrahydrofurans **1b**, **1c** (Fig. 2) and **8b**, **8c** (Scheme 2)].¹⁶ Smaller $\Delta\delta$ values of ~0–0.5 between signals for 4-H^s and 4-H^a pointed to 3,5-*trans*diastereomers **1a**, **1d** (Fig. 2) and **8a**, **8d** (Scheme 2).¹⁶ A 2,5-*cis*-arrangement of substituents at C-2 and C-5 such as in **1a**, **1d** and **8a**, **8d**, was derived from the positive results of the NOE experiments: Upon irradiation at 2-H enhancements were observed at 5-H and vice versa.

The enantiomeric purity of bromocyclization products **8a–d** was determined via their derived (*R*)-Mosher esters²³ which exhibited, in all instances, a single set of resonances (¹H NMR). This result was indicative of >96% ee for heterocycles **8a–d** for the following reason: The enantiomers of **8a–d** (>96% ee) and enantiomerically enriched tetrahydrofurans **8a** and **8b** (34% ee) were available from earlier studies.^{14,15} These samples were converted into the corresponding (*R*)-configured Mosher esters. Their ¹H NMR spectra exhibited either a double set of resonances in a 68:32 ratio [i.e. for (*R*)-Mosher esters obtained from partially racemized **8a** and **8b** (both 34% ee)¹⁵] or markedly shifted signals (from *ent-***8a–d**).¹⁴

2.4. Temperature and substituent effects in the cyclizations of 2,3-*unlike*-configured 3-substituted 5-hexen-2oxyl radicals

Temperature effects on the diastereoselectivity of 5-exotrig reactions were investigated using an enantiomerically enriched sample of (2R,3S)-N-(3-benzoyloxy-5-hexen-2-oxy)thiazolethione **6** (34% ee).¹⁵ 3-O-Substituted derivatives of the alkoxyl radical precursor **6** were prepared in two steps. Saponification of the benzoate functionality was accomplished via the treatment of ester **6** with a solution of NaOH in CH₃OH. This step provided $(2R^*,3S^*)$ -N-(3-hydroxy-5-hexen-2-oxy)thiazole-2(3H)thione²⁴ (not shown in Scheme 3) which was treated with DABCO and either trifluoroacetic acid anhydride (formation of trifluoroacetate **10**, 81% from **6**) or diphenylchlorophosphate (synthesis of mixed phosphate **11**, 41% from **6**).

Scheme 3. Preparation of 2,3-*unlike*-configured 5-hexen-2oxythiazolethiones 10 and 11. *Reagents and conditions*: (a) NaOH, CH₃OH, 20°C (97%); (b) (CF₃CO)₂O, DABCO, CH₂Cl₂, 20°C (82%); (c) (C₆H₅O)₂P(O)Cl, DABCO, 20°C

Addition of O₂ into a solution of 2,3-*unlike*-3-benzoyloxy-*N*-hexenoxythiazolethione **6**, BrCCl₃, and BEt₃²⁵ in C₆H₆ at -10°C provided tetrahydrofurans **8a–b** in 75% yield (**8a:8b**=27:73, Table 1). If the same experiment was conducted at -78°C, only 32% of the target compounds **8a–b** were formed (**8a:8b**=21:79).

Photolysis of 2,3-unlike-N-(3-trifluoroacetyloxy-5hexen-2-oxy)thiazolethione 10 in the presence of BrCCl₃ at 20°C furnished 64% (¹H NMR) of trisubstituted tetrahydrofurans 12a-b (12a:12b=30:70). The conversion of the mixed phosphate 11, under these conditions provided 69% of cyclic ethers 13a-b (¹H NMR, 13a:13b=29:71).

3. Discussion

The results from the present study indicate that alkoxyl radicals serve as useful intermediates²⁶ for the construction of the heterocyclic core of enantiomerically pure muscarine alkaloids **1a**-**d** via selective ring-closure reactions. Key issues to be addressed in the present investigation were associated with the synthesis of (2R,3S)-N-(3-benzoyloxy-5-hexen-2-oxy)thiazole-2(3H)-thione **6**, its 3-epimer **7** and a study on substituent and temperature effects in cyclizations of 2,3-*unlike* 3-substituted 5-hexen-2-oxyl radicals (e.g. **14**, Fig. 3).

Table 1. Substituent and temperature effects on the synthesis of tetrahydrofurans 8, 12, and 13^{a}

		$ \begin{array}{c} & & \\ & N \\ H \\ H \\ O \\ RO \end{array} \xrightarrow{or b} \begin{array}{c} H \\ O \\ Or b \end{array} \xrightarrow{H \\ RO } \xrightarrow{H \\ RO \end{array} \xrightarrow{H \\ RO } \xrightarrow{H \\ RO \end{array} \xrightarrow{H \\ RO } \xrightarrow$				
		6, 10, 11		8a, 12a, 13a	8b, 12b, 13b	
Entry	R	T ℃	Cond.	Products	Yield a+b (%)	Selectivity a:b
1	C ₆ H ₅ CO	-10	a	8a, 8b	75	27:73
2	C ₆ H ₅ CO	-78	а	8a, 8b	32	21:79
3	CF ₃ CO	20	b	12a, 12b	64	30:70
4	$(C_6H_5O)_2P(O)$	20	b	13a, 13b	69	29:71

^a Reagents and conditions: (a) BrCCl₃, BEt₃/O₂, C₆H₆; (b) BrCCl₃, C₆D₆, hv.

Generation of alkoxyl radicals - e.g. 14

5-exo-trig Cyclization - proposed lowest energy transition state models

Carbon radical trapping - e.g. formation of 8a and 8b

Figure 3. The synthesis of muscarine and *allo*-muscarine precursors 8a and 8b starting from (2R,3S)-(3-benzoyloxy-5-hexen-2-oxy)thiazolethione 6 and BrCCl₃—selected elementary steps and transition state models.

3.1. Stereoselective synthesis of alkoxyl radical precursors and functional group interconversion

The synthesis of (2R,3S)-N-(3-benzoyloxy-5-hexen-2oxy)thiazole-2(3H)thione 6 and its (2R, 3R)diastereomer 7 has been achieved in six synthetic steps starting from methyl (S)-lactate 2 (Scheme 1). The strategy to THP-protect the hydroxyl substituent in the starting material 2 was the key to conserving the stereointegrity at C-2, which had been the major obstacle in previous investigations.^{15,27} The synthetic sequence which is outlined in Scheme 1 provided alkenol 3 as a mixture of four diastereomers. No attempts were made at this stage of the synthesis to purify and characterize any of these compounds, since the separation of (2S,3S)-3-benzoyloxy-5-hexen-2-ol 4 and its (2S,3R)-diastereomer 5 was attainable via HPLC. Alkenols 4 and 5 were converted into their derived tosylates (not shown in Scheme 1) which served as selective O-alkylation reagents for the synthesis of alkoxyl radical precursors 6 and 7 starting from *N*-hydroxy-4-methylthiazole-2(3*H*)thione tetraethylammonium salt. According to TLC analysis, this step

was not associated with the formation of the isomeric (S)-alkylation products (i.e. 2-alkenylsulfanylthiazole-*N*-oxides).²⁸

Functional group interconversion starting from thione **6** was feasible and provided trifluoroacetate **10** and mixed phosphate **11** in two synthetic steps. This result is noteworthy since the compatibility of cyclic thiohydroxamic acid *O*-esters in selective transformations was until then largely unexplored.^{29,30} It was, however refrained from preparing the same derivatives starting from (2R,2R)-*N*-(3-benzoyloxy-5-hexen-2-oxy)thiazole-thione **7** because the *like*-configured 5-hexen-2-oxyl radical **16** underwent 5-*exo*-trig cyclizations without notable facial selectivity (Fig. 4, Scheme 2).

3.2. Generation and ring-closure reactions of 3-substituted 5-hexen-2-oxyl radicals

Photochemically induced or BEt_3/O_2 -initiated reactions between (2R,3S)-(3-benzoyloxy-5-hexen-2-oxy)-4methylthiazole-2(3H)thione **6** and BrCCl₃ furnished bromocyclization products **8a** and **8b** in synthetically

Generation of alkoxyl radical 16

Transition state models for the preparation of *epi*-muscarine precursors (e.g. 8c)

Transition state models for the preparation of epiallo-muscarine precursors (e.g. 8d)

Figure 4. Generation of the (2R,3R)-3-benzoyloxy-5-hexen-2-oxyl radical 16 from thiazolethione 7 (top) and transition state models for the synthesis of *epi*-muscarine (center) or *epiallo*-muscarine precursors (bottom).

useful yields (Fig. 3). Signals of 6-endo-cyclized products (i.e. substituted tetrahydropyrans) were not noted in ¹H NMR spectra of the crude or purified products.^{31,32} The underlying radical chain reaction of this sequence started either with a photochemical excitation of the radical precursor 6^{33} or the addition of suitable radicals to the C,S π -bond of this compound (BEt₃/O₂) system) in order to induce selective N,O-homolysis. This step provided the (2R,3S)-(3-benzoyloxy-5-hexen-2-oxyl radical 14 which underwent diastereoselective 5-exo-trig ring closures. Subsequent bromine atom trapping of cyclized intermediates 15a and 15b furnished (+)-allo-muscarine precursor 8b as the major product and the (2R, 3S, 5R)-diastereomer 8a as the minor. The CCl₃ radical, which was formed in the latter reaction, added preferentially to the C,S double bond in thione 6 thus leading to 2-mercaptothiazole derivative 9 in a yield that nearly matched that of the bromides 8a and 8b when taken together. No efforts were made to use alternative bromine atom donors for the synthesis of products 8a-b since this aspect had been addressed in an earlier investigation.¹⁶

The stereochemical preference for the formation of bromocyclization product **8b** increased from 34% de at 20°C to 58% de upon lowering the reaction temperature to -78°C. Since it had been shown in previous work that under these conditions 4-penten-1-oxyl radical 5-*exo*-trig cyclizations follow kinetic control, the temperature–selectivity data compiled in Table 1 were used to

estimate differences in activation parameters for both modes of ring closure $(\Delta\Delta H^{\ddagger} = \Delta H^{\ddagger}_{\mathbf{14} \to \mathbf{15a}} - \Delta H^{\ddagger}_{\mathbf{14} \to \mathbf{15b}} =$ 3.0 kJ mol⁻¹, $\Delta\Delta S^{\ddagger} = \Delta S^{\ddagger}_{14 \rightarrow 15a} - \Delta S^{\ddagger}_{14 \rightarrow 15b} = -3 \times 10^{-3} \text{ kJ}$ mol⁻¹ K⁻¹).^{32,34} Based on this estimate, the observed diastereoselectivity for the O-radical reaction $14 \rightarrow 15b$ predominantly originated from its favorable activation enthalpy. This result in combination with data from earlier experimental³² and theoretical investigations³⁵ was translated into stereochemical models (Figs. 3 and 4). An approach of reacting entities in intermediate 14 leads to a restriction of conformational freedom-from freely rotating to a cyclic intermediate with a long and therefore weak C,O-bond. In this picture, a methylene, methyl, and a benzoyloxy group will be preferentially arranged in positions that resemble equatorial locations in cyclohexane (see chair-like I, Beckwith-Houk model).^{36–38} These stereochemical requirements are also fulfilled in the intermediate twist-I. This geometry is based on an ab-initio-calculated lowest transition structure for the 4-penten-1-oxyl radical cyclization.³⁵ A similar arrangement has recently been located as lowest energy transition structure in ab initio calculations dealing with 5-exo-trig cyclizations of anomeric carbon radicals.³⁹ Geometry twist-I, which probably reflects substituent effects onto the conformational behavior of such energetically favored transition structures more adequately, transposes the benzoyloxy and the methyl group into equatorial positions whereas the methylene end of the radical chain resides in the bisectional⁴⁰ location that has the largest distance from the C-1–C-2

bond (hereafter exo-bisectional). Both models favor an attack of the O-radical onto the Si face of C-4 thus leading to *allo*-muscarine precursor **8b** as major bromocyclization product. Cyclization onto the Re face of C-4 on the intermediate 14, e.g. by transposing the methylene group into an axial (Beckwith-Houk model) or an endo-bisectional location (twist-model, both not shown), is for steric reasons associated with higher activation enthalpies (see above) and therefore disfavors the formation of product 8a. By virtue of the same arguments the lack in diastereoselectivity in ring-closure reactions of the (2R,3R)-(3-benzoyloxy)-5-hexen-2-oxyl radical 16 was realized. The use of either chair-like-II and III (Beckwith-Houk) or twist-II and III as stereochemical models indicated no significant preference for any of the given structures.

The observation that β -trifluoroacetyloxy- and β -(diphenyl)phosphatyl-substituted 5-hexen-2-oxyl radicals furnished upon cyclisation and subsequent bromine atom trapping trisubstituted tetrahydrofurans (i.e. 12a-b and 13a-b) served in combination with results from the sequence $6 \rightarrow 8a.8b$ to establish the following guideline: β-O-acceptor-substituted 5-hexen-2-oxyl radicals prefer 5-exo-trig cyclization to β -C,Ccleavage. turn, β-hydroxy-, In а β -tert-butyldimethylsilyloxy and, less pronounced, β benzyloxy substituent in 5-hexen-2-oxyl radicals favor β -C,C-cleavages to intramolecular additions.^{15,24} This observation may be indicative of additional secondary orbital interactions within the RO-C-C-O[•] fragment that, however, have not been considered in the models which are depicted in Figures 3 and 4.41 Effects of a β -CF₃CO₂ or a pseudo tetrahedral (C₆H₅O)₂P(O)O group on alkoxyl radical 5-exo-trig cyclizations in this study were qualitatively similar to that of the $C_6H_5CO_2$ substituent, but furnished slightly improved diastereoselectivities (8b: 34% de, 12b: 40% de, 13b: 42% de, Scheme 3, Table 1).

3.3. Synthesis and stereochemical analysis of muscarine alkaloids

The final steps in the synthesis of (2R)-configured muscarine alkaloids 1a-d were performed starting from enantiomerically pure alkoxyl radical cyclization products 8a-d. 5-Bromomethyl-2-methyltetrahydrofuranols, which were prepared in the initial step turned out to be surprisingly volatile compounds. Therefore, it was advisable not to completely remove the solvent in the work-up step on a synthetic scale, but to purify target compounds 1a-d via two consecutive crystallizations. The stereochemical purity of target compounds 1a-d has been verified at different stages of the synthesis. The overall yields of likewise prepared alkaloids 1 starting from methyl (S)-lactate **2** ranged from 4% (**1a**, **1c**, and **1d**) to 5% (**1b**). These values were competitive to results obtained from syntheses that applied polar bromocyclizations for constructing the tetrahydrofuran nucleus, e.g. of *allo*-muscarine **1b** and *epi*-muscarine **1c**.¹⁴

4. Conclusion

Ring-closure reactions of the (2R,3S)-3-benzoyloxy-5hexen-2-oxyl radical 14 and its (2R,3R)-diastereomer 16 have been investigated and applied for the synthesis of enantiomerically pure (-)-muscarine 1a, (+)*allo*-muscarine 1b (both from 14), and (-)-epi-muscarine 1c, (-)-epiallo-muscarine 1d (the latter two from 16). Cyclizations of the unlikeconfigured 5-hexen-2-oxyl radical 14 exhibited a marked 2,5-trans-3,5-cis selectivity that was improved upon lowering the reaction temperature. In addition, diastereoselectivities of cyclizations using unlikeconfigured 3-trifluoroacetyloxy- and 3-diphenylphosphatyl-substituted 5-hexen-2-oxyl radicals have been investigated. In both instances minor improvements in diastereoselectivity were noted in comparison to the ring closure of the 3-benzoyloxy derivative 14.^{13,14}

5. Experimental

5.1. General remarks

¹H and ¹³C NMR spectra were recorded with Bruker AC 200, AC 250, WM 400, AC 400 instruments at 20°C in CDCl₃ solutions unless otherwise noted. Residual protons of deuterated solvents [e.g. $\delta_{\rm H} = 7.26$ (CDCl₃)] and the corresponding carbon resonances in ¹³C NMR spectra [e.g. $\delta_{\rm C} = 77.0$ (CDCl₃)] were taken as internal standards. Optical rotations were measured using a Perkin Elmer 241 polarimeter. IR spectra were recorded on either NaCl plates or samples embedded in KBr disks using a Perkin Elmer FT/IR 1600 spectrometer. C,H,N,S analyses were carried out in the Microanalytical Laboratory in the department of Inorganic Chemistry at the Universität Würzburg using Carlo Erba 1106 or LECO CHNS-932 machines. MS spectra were recorded with a Varian MATCH 7 spectrometer (electroimpact, EI, 70 eV). Column chromatography was performed with the use of SiO₂ (Merck, 0.063–0.2 mm). Photoreactions were carried out using a Southern New England Ultraviolet RPR-100 Rayonet® photoreactor, equipped with RPR 350 nm lamps. All solvents were distilled prior to use and were purified according to standard procedures.⁴² Methyl⁻ (S)-lactate 2, diisobutylaluminum hydride (DIBAH, 1 M in hexanes), 1,4-diazabicyclo[2.2.2]octane (DABCO), pyridinium p-toluenesulfonate (PPTS), diphenylchlorophosphate, trifluoroacetic acid anhydride, BrCCl₃, BEt₃ (1 M in hexane), (S)- α -methoxy- α -trifluoromethylphenylacetyl chloride, N(CH₃)₃ (4.2 M in EtOH) were obtained from commercial sources (Fluka, Aldrich and Merck) and were used as received. Methyl 2-(tetrahydropyran-2-yl)oxypropanoat,¹⁸ N-hydroxy-4-methylthiazole-2(3H)thione⁴³ and the corresponding tetraalkylammonium salt²¹ were prepared according to literature procedures. Petroleum ether refers to the fraction boiling between 35 and 50°C.

5.2. Preparation of alkoxyl radical precurors

5.2.1. 2-(Tetrahydropyran-2-yl)oxy-5-hexen-3-ol 3. A solution of methyl 2-(tetrahydropyran-2yl)oxypropanoat18 (1.18 g, 6.28 mmol) in dry Et₂O (30 mL) was treated under argon at -78°C dropwise with a solution of DIBAH (9.4 mL, 1 M in hexanes). The reaction mixture was stirred for 30 min at -78°C and treated at this temperature dropwise with a solution of allyl magnesium bromide in Et₂O prepared from magnesium turnings (336 mg, 13.8 mmol) and allyl bromide (1.52 g, 12.6 mmol) in dry Et_2O (13 mL). The reaction mixture was stirred for 16 h at -78°C and allowed to warm to 0°C. A saturated aqueous solution of NH₄Cl (25 mL) was added. The aqueous phase was separated from this mixture and was extracted with Et_2O (2×20) mL). The combined organic phases were successively washed with a saturated solution of aq. NaHCO₃ (20 mL) and H₂O (20 mL). The organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure to provide an oil which was then purified by chromatography [SiO₂, petroleum ether/ AcOEt, 5:1 (v/v)]. Yield: 955 mg (4.77 mmol, 76%), colorless liquid as a mixture of diastereomers; $R_{\rm f} = 0.37$ (petroleum ether/AcOEt, 5:1). ¹H NMR (250 MHz): δ 1.16-1.29 (m, 3H, 1-H), 1.44-1.83 (m, 6H, CH₂), 2.14-2.39 (m, 2H, 4-H), 3.33–4.03 (m, 4H, 2-H, 3-H, OCH₂), 4.98-5.21 (m, 3H, 6-H, OCHO), 5.73-5.94 (m, 1H, 5-H). ¹³C NMR (63 MHz): δ 14.1, 17.1, 17.7, 18.0, 19.3, 19.5, 19.9, 20.6, 25.4, 29.6, 30.7, 32.5, 33.9, 34.2, 34.5, 36.2, 36.7, 36.8, 36.9, 38.0, 62.2, 62.6, 67.3, 69.8, 73.7, 74.9, 77.7, 77.8, 81.2, 81.3, 82.6, 82.6, 98.7, 103.2, 103.3, 107.8, 117.5, 117.5, 118.0, 118.1, 133.7, 133.7, 134.3, 134.8. MS (70 eV, EI): m/z (%)=127 (14) $[C_7H_{11}O_2^+]$, 84 (89) $[C_5H_8O^+]$, 83 (48) $[C_5H_7O^+]$, 75 (100) $[C_{3}H_{7}O_{2}^{+}]$, 71 (34) $[C_{4}H_{7}O^{+}]$, 57 (100) $[C_{3}H_{5}O^{+}]$; C₁₁H₂₀O₃ (200.3) calcd: C, 65.97; H, 10.07. Found: C, 65.46; H, 10.28.

5.2.2. 3-Benzoyloxy-2-(tetrahydropyran-2-yl)oxy-5-hexene. A solution of 2-(tetrahydropyran-2-yl)oxy-5-hexen-3-ol 3 (481 mg, 2.40 mmol) and DABCO (538 mg, 4.80 mmol) in dry CH₂Cl₂ (2.4 mL) was treated at 0°C dropwise with neat benzoyl chloride (506 mg, 3.60 mmol). The reaction mixture was stirred for 30 min at 20°C and was then diluted with Et₂O (10 mL). The precipitated salts were dissolved in 2 M HCl (10 mL). The organic phase was separated and the aqueous layer was extracted with Et_2O (2×5 mL). The combined organic phases were successively washed with a saturated aqueous solution of NaHCO₃ (10 mL) and brine (10 mL). The organic phase was dried over $MgSO_4$ and the solvent removed under reduced pressure to provide an oil that was purified by chromatography [SiO₂, petroleum ether/Et₂O, 5:1 (v/v)]. Yield: 596 mg (1.96 mmol, 82%), colorless oil, mixture of diastereomisomers. $R_{\rm f} = 0.65$ (petroleum ether/Et₂O, 5:1). ¹H NMR (250 MHz): δ 1.16–1.33 (m, 3H, 1-H), 1.45–1.85 (m, 6H, CH₂), 2.41–2.62 (m, 2H, 4-H), 3.41–3.56 (m, 1H, OCH), 3.80–4.10 (m, 2H, OCH), 4.71–5.31 (m, 4H, 3-H, 6-H, OCHO), 5.74-5.92 (m, 1H, 5-H), 7.40-7.71 (m, 3H, Ar-H), 8.01–8.18 (m, 2H, Ar-H). ¹³C NMR (63 MHz): δ 17.37, 17.97, 18.56, 19.46, 19.52, 19.88, 20.13, 20.16, 25.79, 25.86, 25.93, 31.10, 31.21, 31.26, 31.32, 34.82, 34.88, 34.96, 35.67, 62.28, 62.40, 63.19, 63.34, 68.86, 69.37, 71.21, 74.98, 75.23, 76.38, 77.77, 78.03, 95.06, 95.67, 98.99, 100.7, 118.1, 118.2, 118.2, 118.6, 128.7, 128.8, 128.8, 129.3, 130.0, 130.1, 130.5, 130.9, 131.0, 133.2, 133.3, 133.5, 133.7, 134.0, 134.2, 134.4, 134.9, 162.8, 166.4, 166.4, 166.7. MS (70 eV, EI): m/z (%) = 122 (70) [C₇H₆O₂⁺], 105 (100) [C₇H₅O⁺], 85 (15) [C₅H₉O⁺], 77 (68) [C₆H₅⁺]. C₁₈H₂₄O₄ (304.4) calcd: C, 71.03; H, 7.95. Found: C, 70.98; H, 7.66.

5.2.3. (2S,3S)-3-Benzoyloxy-5-hexen-2-ol 4 and (2S,3R)-3-benzoyloxy-5-hexen-2-ol 5. A solution of (2S,3S)-3benzoyloxy-2-(tetrahydropyran-2-yl)oxy-5-hexene or the corresponding (2S, 3R)-diastereomer (491 mg, 1.61 mmol) in EtOH (16 mL) was treated at 20°C with PPTS (40.5 mg, 0.160 mmol). The reaction mixture was refluxed for 6 h. Afterwards, the solvent was removed under reduced pressure to afford an oil, which was purified by chromatography [SiO₂, petroleum ether/ Et₂O, 1:1 (v/v)]. Yield: 323 mg (1.47 mmol, 91%), colorless oil as a mixture of diastereomers (4:5=54:46). Diastereomeric pure alkenols 4 and 5 were obtained via HPLC [Nova Pak HR column, silica 6-8 µm, 19 mm× 30 cm, 2-propanol/*n*-hexane, 99:1 (v/v)]; isomer 4: $[\alpha]_{D}^{20} = -4.1$ (c 0.63, CHCl₃). isomer 5: $[\alpha]_{D}^{20} = +13.0$ (c 0.64, CHCl₃). Spectroscopic data of the alkenols 4 and 5 are in accord with published values.¹⁵

5.2.4. (2*S*,3*S*)-3-Benzoyloxy-5-hexen-2-yl *p*-toluenesulfonate, (2*S*,3*R*)-3-benzoyloxy-5-hexen-2-yl-*p*-toluenesulfonate. (2*S*,3*S*)-3-Benzoyloxy-5-hexen-2-yl *p*-toluene-sulfonate { $[\alpha]_D^{20} = -1.5$ (*c* 0.63, CHCl₃)} and (2*S*,3*R*)-3-benzoyloxy-5-hexen-2-yl *p*-toluenesulfonate { $[\alpha]_D^{20} = -43.9$ (*c* 0.73, CHCl₃)} were prepared by a literature procedure. All spectroscopic data of the compounds **8a** and **8b** were in accord with published values.¹⁵

5.2.5. (2*R*,3*S*)-*N*-(3-Benzoyloxy-5-hexen-2-oxy)-4methylthiazol-2(3*H*)thione 6. Compound 6 was prepared from (2*S*,3*S*)-3-benzoyloxy-5-hexen-2-yl *p*-toluenesulfonate by adapting a published procedure $\{[\alpha]_D^{20} = -50.2 \ (c \ 0.81, CHCl_3)\}$. All spectroscopical data of thione 6 were in agreement with those reported for an enantiomerically enriched sample.¹⁵

(2R,3R)-N-(3-Benzoyloxy-5-hexen-2-oxy)-4-5.2.6. methylthiazol-2(3H)thione 7. A flame-dried round-bottomed flask was charged with N-hydroxy-4methylthiazole-2(3*H*)thione tetraethylammmonium salt²¹ (174 mg, 0.630 mmol) and (2S,3R)-3-benzoyloxy-5-hexen-2-yl p-toluenesulfonate¹⁵ (216 mg, 0.577 mmol) in dry DMF (3 mL) under argon. The reaction mixture was sealed with a drying tube (CaCl₂), wrapped in aluminium foil, and stirred for 5 days at 20°C furnish a dark brown solution which was to poured into H₂O (10 mL) and subsequently extracted with Et_2O (3×10 mL). The combined organic phases were successively washed with 2 M NaOH (20 mL) and brine (20 mL) and dried over MgSO₄. The solvent was removed under reduced pressure to afford an oil that was purified by chromatography [SiO₂, petroleum ether/Et₂O, 1:1 (v/v)]. Yield: 104 mg (0.298

mmol, 73%, based on a conversion of 71% of (2S,3R)-3-benzoyloxy-5-hexen-2-yl p-toluenesulfonate, which was recovered in 62.5 mg (0.167 mmol, 29%), tan oil. $R_{\rm f} = 0.36$ (petroleum ether/Et₂O, 1:1). [α]_D²⁰ = -108.4 (c 0.39, CHCl₃); ¹H NMR (250 MHz): δ 1.28 (d, 3H, ${}^{3}J = 6.6$ Hz, 1-H), 2.25 (d, 3H, ${}^{4}J = 1.2$ Hz, CH₃), 2.60-2.72 (m, 1H, 4-H), 2.79–2.89 (m, 1H, 4-H), 5.09 (d, 1H, ${}^{3}J = 10.1$ Hz, 6-H), 5.18 (d, 1H, ${}^{3}J = 17.1$ Hz, 6-H), 5.41 (m_c, 1H, 3-H), 5.79–5.93 (m, 2H, 2-H, 5-H), 6.12 (q, 1H, ${}^{4}J$ =1.2 Hz, 5'-H), 7.45 (m_c, 2H, Ar-H), 7.58 (m_c, 1H, Ar-H), 8.06 (m_c, 2H, Ar-H). ${}^{13}C$ NMR (100 MHz): δ 13.94, 14.64 (C-1, CH₃), 35.26 (C-4), 74.50, 79.93 (C-2, C-3), 102.9 (C-5'), 118.6 (C-6), 128.4, 129.7, 130.8, 132.8, 133.2, 138.9 (C-4'), 165.9 (C=O), 180.7 (C=S). MS (70 eV, EI): m/z (%)=131 (6) $[C_4H_5NS_2^+]$, 105 (100) $[C_7H_5O^+]$, 77 (35) $[C_6H_5^+]$. $C_{17}H_{19}NO_3S_2$ (349.5) calcd: C, 58.43; H, 5.48; N, 4.01; S, 18.35. Found: C, 58.26; H, 5.37; N, 3.97; S, 17.95.

5.3. Preparation of muscarine alkaloids 1a-d

5.3.1. Formation of 3-benzoyloxy-5-bromomethyl-2methyltetrahydrofurans 8a and 8b. A solution of (2R,3S)-N-(3-benzoyloxy-5-hexen-2-oxy)-4-methylthiazol-2(3H)thione 6 (377 mg, 1.08 mmol) and BrCCl₃ (1.71 g, 8.64 mmol) in dry C_6H_6 (6 mL) was flushed for 5 min at 20°C with a gentle stream of argon. This solution was photolyzed for 25 min at 20°C in a Rayonet[®] chamber photoreactor and was subsequently concentrated under reduced pressure to furnish an oil that was purified by chromatography [SiO₂, petroleum ether/Et₂O, 5:1 (v/v)]. 8a: $R_f = 0.42$ (petroleum ether/ Et₂O, 5:1), 84.4 mg (0.282 mmol, 26%), colorless oil. $[\alpha]_{D}^{20} = +2.2$ (c 0.69, CHCl₃). **8b**: $R_{f} = 0.39$ (petroleum ether/Et₂O, 5:1), 172 mg (0.574 mmol, 53%), colorless oil. $[\alpha]_{D}^{20} = -28.7$ (c 0.59, CHCl₃); All spectroscopic data of the compounds 8a and 8b were in agreement with published values.15

5.3.1.1. 2-Trichloromethylsulfanyl-4-methylthiazole 9^{24} . $R_f = 0.52$ [petroleum ether/Et₂O/acetone, 10:1:1 (v/v/v)], 207 mg (77%). ¹H NMR (250 MHz): δ 2.57 (d, 3H, CH₃), 7.31 (q, 1H, CH). C₅H₄Cl₃NS₂ (248.6): MS (70 eV, EI): m/z (%) = 247/249/251/253 (15/13/5/2) [M⁺], 212/214/216 (53/38/9) [M⁺-Cl], 130 (100) [M⁺-CCl₃].

5.3.2. Synthesis of 3-benzoyloxy-5-bromomethyl-2methyltetrahydrofurans 8c and 8d. A solution of (2R,3R)-N-(3-benzoyloxy-5-hexen-2-oxy)-4-methylthiazole-2(3H)thione (7) (212 mg, 0.607 mmol) and BrCCl₃ (963 mg, 4.86 mmol) in dry C_6H_6 (3.4 mL) was flushed for 5 min at 20°C with a gentle stream of argon This solution was photolyzed for 25 min at 20°C in a Rayonet[®] chamber photoreactor and was subsequently concentrated under reduced pressure to furnish an oil that was purified by chromatography [SiO₂, petroleum ether/Et₂O, 5:1 (v/v)]. 8c: $R_f = 0.29$ (petroleum ether/ Et₂O, 5:1), yield: 72.4 mg (0.242 mmol, 40%), colorless oil. $[\alpha]_{D}^{20} = +16.2$ (c 0.53, CHCl₃); 8d: $R_{f} = 0.37$ (petroleum ether/Et₂O, 5:1), 71.2 mg (0.238 mmol, 39%), colorless oil. $[\alpha]_D^{20} = -45.1$ (*c* 0.20, CHCl₃). All spectroscopic data of the compounds 8c and 8d were in agreement with published values.¹⁵

5.3.3. Saponification of bromomethyltetrahydrofurans **8a–d (general procedure)**. 3-Benzoyloxy-5-bromomethyl-2-methyltetrahydrofuran **8** was dissolved in a solution of NaOH (0.18 M) in CH₃OH. The reaction mixture was stirred for 1 h at 20°C and subsequently poured into a mixture of Et₂O (20 mL) and H₂O (20 mL). The organic layer was separated and the aqueous phase was extracted with Et₂O (3×10 mL). The combined organic phases were dried over MgSO₄ and the solvent removed under reduced pressure to furnish an oil that was purified by chromatography [SiO₂, petroleum ether/ Et₂O, 1:1 (v/v)].

5.3.3.1. (2*R*,3*S*,5*R*)-5-Bromomethyl-2-methyltetrahydrofuran-3-ol. A solution of **8a** (87.4 mg, 0.292 mmol) was treated with a solution of NaOH in CH₃OH (5.7 mL, 0.18 M) as outlined above. R_f =0.26 (petroleum ether/Et₂O, 1:2), 53.0 mg (0.272 mmol, 92%), colorless liquid. ¹H NMR (250 MHz): δ 1.25 (d, 3H, ³*J*=6.4 Hz, CH₃), 1.95 (s br., 1H, OH), 2.02 (m_c, 2H, 4-H), 3.43–3.49 (m, 2H, CH₂Br), 3.95 (dq, 1H, ³*J*_d=3.5 Hz, ³*J*_q=6.4 Hz, 2-H), 4.06 (dt, 1H, ³*J*_d=3.5 Hz, ³*J*_t=4.7 Hz, 3-H), 4.37 (m_c, 1H, 5-H). ¹³C NMR (CDCl₃, 63 MHz): δ 19.6, 35.8, 39.3, 76.9, 77.4, 83.1.

5.3.3.2. (2*R*,3*S*,5*S*)-5-Bromomethyl-2-methyltetrahydrofuran-3-ol. A solution of **8b** (36.7 mg, 0.123 mmol) was treated with a solution of NaOH in CH₃OH (2.4 mL, 0.18 M) as described previously. $R_{\rm f}$ =0.40 (petroleum ether/Et₂O, 1:2), 15.9 mg (81.5 µmol, 66%), colorless liquid. ¹H NMR (250 MHz): δ 1.19 (d, 3H, ³*J*=6.4 Hz, CH₃), 1.83–1.92 (m, 2H, 4-H, OH), 2.44 (ddd, 1H, ³*J*=6.1, 7.9 Hz, ²*J*=14.0 Hz, 4-H), 3.52 (d, 2H, ³*J*=5.8 Hz, CH₂Br), 4.01–4.11 (m, 2H, 3-H, 2-H), 4.34 (ddd, 1H, ³*J*=5.8, 7.9, 11.3 Hz, 2-H). ¹³C NMR (CDCl₃, 63 MHz): δ 18.5, 36.5, 38.5, 76.6, 77.2, 82.2.

5.3.3.3. (2*R*,3*R*,5*R*)-5-Bromomethyl-2-methyltetrahydrofuran-3-ol. A solution of 8c (51.7 mg, 0.173 mmol) was treated with a solution of NaOH in CH₃OH (3.4 mL, 0.18 M) as outlined above. R_f =0.42 (petroleum ether/Et₂O, 1:2), 28.2 mg (0.145 mmol, 84%), colorless liquid. ¹H NMR (250 MHz): δ 1.30 (d, 3H, ³*J*=6.4 Hz, CH₃), 1.83 (s. br., 1H, OH), 1.88 (ddd, 1H, ³*J*=1.4, 4.9 Hz, ²*J*=14.3 Hz, 4-H), 2.41 (ddd, 1H, ³*J*=6.0, 8.9 Hz, ²*J*=14.3 Hz, 4-H), 3.50 (dd, 1H, ³*J*=4.6 Hz, ²*J*=10.4 Hz, CH₂Br), 3.61 (dd, 1H, ³*J*=5.3 Hz, ²*J*=10.4 Hz, CH₂Br), 3.86 (dq, 1H, ³*J*_d=3.1 Hz, ³*J*_q=6.4 Hz, 2-H), 4.13-4.22 (m, 2H, 3-H, 5-H). ¹³C NMR (CDCl₃, 63 MHz): δ 14.1, 36.5, 40.5, 74.2, 76.1, 79.0.

5.3.3.4. (2*R*,3*R*,5*S*)-5-Bromomethyl-2-methyltetrahydrofuran-3-ol. A solution of 8d (17.4 mg, 5.82 μmol) was treated with a solution of NaOH in CH₃OH (1.1 mL, 0.18 M) as described above. R_f =0.39 (petroleum ether/Et₂O, 1:2), 8.9 mg (4.56 μmol, 78%), colorless liquid. ¹H NMR (250 MHz): δ 1.27 (d, 3H, ³*J*=6.3 Hz, CH₃), 1.69 (s. br., 1H, OH), 2.04 (ddd, 1H, ³*J*=4.7, 9.2 Hz, ²*J*=13.8 Hz, 4-H), 2.20 (ddd, 1H, ³*J*=1.2, 6.7 Hz, ²*J*=13.8 Hz, 4-H), 3.46 (d, 1H, ³*J*=5.8 Hz, CH₂Br), 3.46 (d, 1H, ³*J*=4.9 Hz, CH₂Br), 4.12 (dq, 1H, ³*J*_d=2.8 Hz, ³*J*_q=6.3 Hz, 2-H), 4.25 (m_c, 1H, 3-H), 4.43–4.53 (m, 1H, 5-H). ¹³C NMR (CDCl₃, 63 MHz): δ 13.9, 36.7, 39.8, 73.3, 76.4, 79.7.

Conversion of 5-bromomethyl-2-methyltetra-5.3.4. hydrofuran-3-ols into (R)-configured Mosher esters (general procedure). A 1 M solution of the corresponding 5-bromomethyl-2-methyltetrahydrofuran-3-ol (5-20) μ mol) CH₂Cl₂ (1 mL) was treated with dimethylaminopyridine (DMAP, 2.0 equiv.) at 0°C. Neat (S)- α methoxy- α -trifluoromethylphenylacetyl chloride (1.5 equiv.) was added dropwise at 0°C and the mixture was stirred for 1 h at 20°C. The solution was diluted with Et₂O (2 mL). It was washed with 2N HCl, a satd aq. solution of NaHCO₃ and brine (2 mL each). Drying (MgSO₄) and concentration of the organic phase under reduced pressure afforded the derived Mosher esters in quantitative yields.

5.3.4.1. (*R*)-Mosher-ester of (2R,3S,5R)-5-bromomethyl-2-methyltetrahydrofuran-3-ol (derived from 8a). ¹H NMR (250 MHz): δ 1.31 (d, 3H, 6.6 Hz, CH₃), 2.13–2.18 (m, 2H, 4-H), 3.46 (m_c, 2H, CH₂Br), 3.53 (q, 3H, ⁵*J*=1.2 Hz, OCH₃), 4.07 (dq, 1H, ³*J*_d=2.7 Hz, ³*J*_t=6.6 Hz, 2-H), 4.24 (m_c, 1H, 5-H), 5.12 (m_c, 1H, 3-H), 7.39–7.45 (m, 3H, Ar-H), 7.49–7.52 (m, 2H, Ar-H).

5.3.4.2. (*R*)-Mosher-ester of (2*R*,3*S*,5*S*)-5-bromomethyl-2-methyltetrahydrofuran-3-ol (derived from 8b). ¹H NMR (250 MHz): δ 1.23 (d, 3H, 6.4 Hz, CH₃), 2.09 (ddd, 1H, ³*J*=2.9, 3.5 Hz, ³*J*=14.5 Hz, 4-H), 2.56 (ddd, 1H, ³*J*=6.6, 7.9 Hz, ³*J*=14.5 Hz, 4-H), 3.16 (dd, 1H, ³*J*=7.9 Hz, ²*J*=10.1 Hz, CH₂Br), 3.30 (dd, 1H, ³*J*=5.6 Hz, ²*J*=10.1 Hz, CH₂Br), 3.53 (q, 3H, ⁵*J*=1.2 Hz, OCH₃), 4.21 (dq, 1H, ³*J*_d=2.4 Hz, ³*J*_t=6.4 Hz, 2-H), 4.39 (m_c, 1H, 5-H), 5.14 (m_c, 1H, 3-H), 7.41–7.46 (m, 3H, Ar-H), 7.48–7.54 (m, 2H, Ar-H).

5.3.4.3. (*R*)-Mosher-ester of (2R,3R,5R)-5-bromomethyl-2-methyltetrahydrofuran-3-ol (derived from 8c). ¹H NMR (250 MHz): δ 1.22 (d, 3H, 6.6 Hz, CH₃), 1.83 (m_c, 1H, 4-H), 2.49 (m_c, 1H, 4-H), 2.91 (m_c, 1H, CH₂Br), 3.18 (m_c, 1H, CH₂Br), 3.51 (q, 3H, ⁵*J*=1.2 Hz, OCH₃), 3.92–4.16 (m, 2H, 2-H, 5-H), 5.31 (m_c, 1H, 3-H), 7.30–7.39 (m, 3H, Ar-H), 7.41–7.51 (m, 2H, Ar-H).

5.3.4.4. (*R*)-Mosher-ester of (2R,3R,5S)-5-bromomethyl-2-methyltetrahydrofuran-3-ol (derived from 8d). ¹H NMR (250 MHz): δ 1.20 (d, 3H, 6.4 Hz, CH₃), 2.18–2.23 (m, 2H, 4-H), 3.43 (m_c, 2H, CH₂Br), 3.54 (q, 3H, ⁵*J*=1.2 Hz, OCH₃), 4.21–4.36 (m, 2H, 2-H, 5-H), 5.46 (m_c, 1H, 3-H), 7.38–7.46 (m, 3H, Ar-H), 7.52–7.54 (m, 2H, Ar-H).

5.3.5. Muscarine alkaloids 1a–d (general procedure). Bromomethyl-2-methyltetrahydrofuran-3-ols (derived from **8a–d**, see above) were dissolved in a solution of $N(CH_3)_3$ in EtOH (4.2 M). The solution was stirred in a sealed tube for 6–7 days at 60°C. The solvent was removed under reduced pressure. Products **1a–d** crystallized from the residue upon addition of Et₂O The crude material was recrystallized from petroleum ether/acetone.

5.3.5.1. (2R,3S,5R)-Muscarine 1a. (2R,3S,5R)-5-Bromomethyl-2-methyltetrahydrofuran-3-ol (34.9)mg. 0.179 mmol) was dissolved in a solution of $N(CH_3)_3$ in EtOH (0.51 mL, 4.2 M). The reaction mixture was stirred for 6 days at 60°C and worked up as described above to furnish 40.4 mg (0.159 mmol, 89%) of the alkaloid **1a** as colorless hygroscopic crystals. $[\alpha]_{D}^{20} =$ -15.5 (c 0.64, EtOH). ¹H NMR (250 MHz, D₂O): δ 1.16 (d, 3H, ${}^{3}J=6.4$ Hz, CH₃), 1.94 (ddd, 1H, ${}^{3}J=5.2$, 9.5 Hz, ${}^{2}J=13.7$ Hz, 4-H), 2.06 (ddd, 1H, ${}^{3}J=2.8$, 6.4 Hz, ${}^{2}J=13.7$ Hz, 4-H), 3.15 (s, 9H, NCH₃), 3.42 (dd, 1H, ${}^{3}J=9.2$ Hz, ${}^{2}J=14.0$ Hz, CH₂N), 3.55 (dd, 1H, ${}^{3}J = 1.8$ Hz, ${}^{2}J = 14.0$ Hz, CH₂N), 4.01 (dq, 1H, ${}^{3}J_{d} = 2.4$ Hz, ${}^{3}J_{q} = 6.4$ Hz, 2-H), 4.08 (ddd, 1H, ${}^{3}J = 2.4$, 2.8, 5.2 Hz, 3-Ĥ), 4.61 (m_c, 1H, 5-H).

5.3.5.2. (2*R*,3*S*,5*S*)-*allo*-Muscarine 1b. (2R,3S,5S)-5-Bromomethyl-2-methyltetrahydrofuran-3-ol (12.2 mg, 62.5 µmol) was dissolved in a solution of N(CH₃)₃ in EtOH (0.20 mL, 4.2 M). The reaction mixture was stirred for 7 days at 60°C and worked up as described above to afford 11.6 mg (45.6 µmol, 73%) of alkaloid 1b as colorless hygroscopic crystals. $[\alpha]_{D}^{20}$ =+36.8 (*c* 0.57, EtOH). ¹H NMR (250 MHz, D₂O): δ 1.16 (d, 3H, ³*J*=6.1 Hz, CH₃), 1.55–1.65 (m, 1H, 4-H), 2.56 (ddd, 1H, ³*J*=6.4, 8.2 Hz, ²*J*=14.8 Hz, 4-H), 3.14 (s, 9H, NCH₃), 3.36 (dd, 1H, ³*J*=1.8 Hz, ²*J*=14.0 Hz, CH₂N), 3.63 (dd, 1H, ³*J*=10.1 Hz, ²*J*=14.0 Hz, CH₂N), 4.03 (m_c, 2H, 3-H, 2-H), 4.67 (m_c, 1H, 5-H).

5.3.5.3. (2*R*,3*R*,5*R*)-*epi*-Muscarine 1c. (2R,3R,5R)-5-Bromomethyl-2-methyltetrahydrofuran-3-ol (15.5 mg, 79.5 µmol) was dissolved in a solution of N(CH₃)₃ in EtOH (0.22 mL, 4.2 M). The reaction mixture was stirred for 7 days at 60°C and worked up as described above to provide 13.1 mg (51.5 µmol, 65%) of alkaloid 1c as colorless hygroscopic crystals. $[\alpha]_{D}^{20}$ =-62.7 (*c* 0.42, EtOH). ¹H NMR (250 MHz, D₂O): δ 1.24 (d, 3H, ³*J*=6.4 Hz, CH₃), 1.62 (ddd, 1H, ³*J*=1.8, 5.8 Hz, ²*J*=14.0 Hz, 4-H), 2.61 (ddd, 1H, ³*J*=6.1, 8.9 Hz, ²*J*=14.0 Hz, 4-H), 3.18 (s, 9H, NCH₃), 3.50 (dd, 1H, ³*J*=3.1 Hz, ²*J*=14.0 Hz, CH₂N), 3.58 (dd, 1H, ³*J*=8.5 Hz, ²*J*=14.0 Hz, CH₂N), 3.95 (dq, 1H, ³*J*=3.4 Hz, ³*J*_q=6.4 Hz, 2-H), 4.24 (ddd, 1H, ³*J*=1.8, 3.4, 6.1 Hz, 3-H), 4.46 (m_c, 1H, 5-H).

5.3.5.4. (2R,3R,5S)-epiallo-Muscarine 1d. (2R,3R,5S)-5-Bromomethyl-2-methyltetrahydrofuran-3ol (10.1 mg, 51.8 µmol) was dissolved in a solution of $N(CH_3)_3$ in EtOH (0.14 mL, 4.2 M). The reaction mixture was stirred for 7 days at 60°C and worked up as described above to yield 8.9 mg (35.0 µmol, 68%) of the alkaloid 1d as colorless hygroscopic crystals. $[\alpha]_{D}^{20} =$ 0.0 (c 0.41, EtOH). ¹H NMR (250 MHz, D_2O): δ 1.19 (d, 3H, ${}^{3}J=6.4$ Hz, CH₃), 1.92 (ddd, 1H, ${}^{3}J=4.9$, 8.5 Hz, ${}^{2}J=14.0$ Hz, 4-H), 2.20 (dd, 1H, ${}^{3}J=7.0$ Hz, $^{2}J = 14.0$ Hz, 4-H), 3.16 (s, 9H, NCH₃), 3.35 (dd, 1H, ${}^{3}J = 1.8$ Hz, ${}^{2}J = 14.0$ Hz, CH₂N), 3.50 (dd, 1H, ${}^{3}J = 9.7$ Hz, ${}^{2}J=14.0$ Hz, CH₂N), 4.07 (dq, 1H, ${}^{3}J_{d}=2.7$ Hz, ${}^{3}J_{q} = 6.4$ Hz, 2-H), 4.21 (dd, 1H, ${}^{3}J = 2.7$, 4.9 Hz, 3-H), 4.58 (m_e, 1H, 5-H).

5.4. Preparation of 3-substituted N-hexenoxythiazolethiones

(2R*,3S*)-N-(3-Hydroxy-5-hexen-2-oxy)-4-5.4.1. methylthiazole-2(3H)thione. (2R,3S)-N-(3-Hydroxy-5hexen-2-oxy)-4-methylthiazole-2(3H)thione (6, 37.8 mg, 0.108 mmol, 34% ee)15 was dissolved in a solution of NaOH in CH₃OH (2.1 mL, 0.18 M). The reaction mixture was stirred for 16 h at 20°C and then poured into a mixture of Et₂O (20 mL) and H₂O (20 mL). The aqueous phase was separated and extracted with Et₂O (3×10 mL). The combined organic phases were dried over MgSO₄ and concentrated under reduced pressure to afford an oil which was purified by chromatography [SiO₂, petroleum ether/Et₂O, 1:2 (v/v)]. $R_f = 0.16$ (petroleum ether/Et₂O, 1:2), 25.6 mg (0.104 mmol, 97%), tan oil. ¹H NMR (250 MHz): δ 1.36 (d, 3H, ${}^{3}J = 6.4$ Hz, 1-H), 2.08–2.22 (m, 1H, 4-H), 2.27–2.39 (m, 1H, 4-H), 2.31 (d, 3H, ${}^{4}J$ =1.2 Hz, CH₃), 4.03–4.13 (m, 2H, 3-H, OH), 4.50 (dq, 1H, ${}^{3}J_{d}$ =1.5 Hz, ${}^{3}J_{q}$ =6.4 Hz, 2-H), 5.09 (d, 1H, ${}^{3}J$ =10.7 Hz, 6-H), 5.14 (d, 1H, ${}^{3}J$ =17.1 Hz, 6-H), 5.83 (ddt, 1H, ${}^{3}J_{d}$ =10.7, 17.1 Hz, ${}^{3}J_{t} = 7.0$ Hz, 5-H), 6.25 (q, 1H, ${}^{4}J = 1.2$ Hz, 5'-H). ${}^{13}C$ NMR (63 MHz): δ 11.3, 13.7 (C-1, CH₃), 36.6 (C-4), 68.6 (C-3), 87.6 (C-2), 104.0 (C-5'), 117.5 (C-6), 134.2 (C-5), 138.7 (C-4'), 182.4 (C=S). IR (NaCl): v=3381 cm⁻¹ (s), 3078 (m), 2937 (s), 1643 (m), 1594 (m), 1434 (m), 1391 (m), 1318 (s), 1175 (m), 1141 (m), 1040 (s), 1011 (s), 983 (s), 917 (m), 835 (w), 720 (s). MS (70 eV, EI): m/z (%) = 245 (2) [M⁺], 147 (100) [C₄H₅NOS₂⁺], 131 (34) $[C_4H_5NS_2^+]$, 71 (23) $[C_4H_7O^+]$. $C_{10}H_{15}NO_2S_2$ (245.4) calcd: C, 48.95; H, 6.16; N, 5.71; S, 26.14. Found: C, 49.04; H, 5.97; N, 5.61; S, 25.89.

(2R*,3S*)-N-(3-Trifluoroacetyloxy-5-hexen-2-5.4.2. oxy)-4-methylthiazole-2(3H)thione 10. A solution of $(2R^*, 3S^*)$ -N-(3-hydroxy-5-hexen-2-oxy)-4-methylthiazole-2(3H)thione (100 mg, 0.408 mmol) and DABCO (91.4 mg, 0.815 mmol) in dry CH₂Cl₂ (0.4 mL) was treated at 0°C dropwise with neat trifluoroacetic anhydride (129 mg, 0.612 mmol). The reaction mixture was stirred for 2 h at 20°C. Afterwards it was diluted with *tert*-butyl methyl ether (2 mL). The precipitated salts were dissolved in 2N HCl (2 mL). The organic phase was separated, and washed with a saturated ag, solution of NaHCO₃ (2 mL) and brine (2 mL). The combined organic phases were then dried over MgSO₄ and concentrated under reduced pressure to furnish an oil that was purified by chromatography [SiO₂, petroleum ether/Et₂O, 1:1 (v/v)]. $R_f = 0.34$ (petroleum ether/Et₂O, 1:1), 114 mg (0.333 mmol, 82%), tan oil. ¹H NMR (250 MHz): δ 1.33 (d, 3H, ${}^{3}J = 6.4$ Hz, 1-H), 2.18 (d, 3H, ${}^{4}J$ = 1.2 Hz, CH₃), 2.53 (m_c, 2H, 4-H), 5.18 (d, 1H, ${}^{3}J$ = 12.2 Hz, 6-H), 5.19 (d, 1H, ${}^{3}J$ = 17.4 Hz, 6-H), 5.58 (dt, 1H, ${}^{3}J_{d} = 2.4$ Hz, ${}^{3}J_{d} = 7.3$ Hz, 3-H), 5.68–5.84 (m, 2H, 2-H, 5-H), 6.19 (q, 1H, ${}^{4}J=1.2$ Hz, 5'-H). ${}^{13}C$ NMR (100 MHz): δ 12.2, 13.6 (C-1, CH₃), 35.0 (C-4), 77.0, 79.8 (C-2, C-3), 103.0 (C-5'), 114.5 (q, ${}^{1}J_{C,F}=286$ Hz, CF₃), 120.0 (C-6), 131.0 (C-5), 138.6 (C-4'), 156.6 $(q, {}^{2}J_{C,F} = 42.9 \text{ Hz}, C=O), 180.8 (C=S). \text{ MS} (70 \text{ eV}, \text{EI}):$ m/z (%)=341 (19) [M⁺], 147 (84) [C₄H₅NOS₂⁺], 131 (100) $[C_4H_5NS_2^+]$. HRMS $(C_{12}H_{14}F_3NO_3S_2, M^+)$ calcd: 341.0367. Found: 341.0360.

5.4.3. $(2R^*, 3S^*)$ -N-(3-Diphenoxyphosphoryl-5-hexen-2oxy)-4-methylthiazole-2(3H)thione 11. A solution of $(2R^*, 3S^*)$ -N-(3-hydroxy-5-hexen-2-oxy)-4-methylthiazole-2(3H)thione (22.1 mg, 90.1 µmol) and DABCO (20.2 mg, 0.180 mmol) in dry CH₂Cl₂ (0.2 mL) was treated dropwise at 0°C with neat diphenylchlorophosphate (36.3 mg, 0.135 mmol). The reaction mixture was stirred for 24 h at 20°C and subsequently diluted with tert-butyl methyl ether (2 mL). The precipitated salts were dissolved in 2 M HCl (2 mL) and the organic phase separated. and washed with a saturated aq. solution of NaHCO₃ (2 mL) and brine (2 mL). After drying over MgSO₄ the organic solvent was removed under reduced pressure to provide an oily residue that was purified by chromatography [SiO₂, petroleum ether/ *tert*-butyl methyl ether, 1:2 (v/v)]. $R_{\rm f} = 0.46$ (petroleum ether/tert-butyl methyl ether, 1:2), 20.1 mg (42.1 µmol, 47%), tan oil. ¹H NMR (250 MHz): δ 1.29 (d, 3H, ${}^{3}J = 6.6$ Hz, 1-H), 2.08 (d, 3H, ${}^{4}J = 1.2$ Hz, CH₃), 2.47 (m_c, 1H, 4-H), 2.71 (m_c, 1H, 4-H), 5.09–5.20 (m, 3H, 2-H, 6-H), 5.62 (m_c, 1H, 3-H), 5.80 (ddt, 1H, ${}^{3}J_{d} = 10.4$, 16.9 Hz, ${}^{3}J_{1} = 6.7$ Hz, 5-H), 6.10 (d, 1H, ${}^{4}J = 1.2$ Hz, 5'-H), 7.14–7.36 (m, 10H, Ar-H); ¹³C NMR (63 MHz): δ 12.1, 13.8 (CH₃, C-1), 36.7 (d, ${}^{3}J_{C,P}=2.9$ Hz, C-4), 80.0 (d, $J_{C,P}$ =6.7 Hz), 80.9 (d, $J_{C,P}$ =6.7 Hz) (C-2, C-3), 102.6 (C-5'), 119.3, 120.0 (d, ${}^{3}J_{C,P}$ =4.8 Hz), 120.1 (d, ${}^{3}J_{C,P}$ = 5.7 Hz), 125.3, 129.7, 129.8, 131.5, 139.1, 150.6 $(d, ^{2}J_{C,P} = 8.6 \text{ Hz}), 180.7 \text{ (C=S)}.$ MS (70 eV, EI): m/z $(\%) = 264 (52) [C_{13}H_{13}O_4P], 131 (75) [C_4H_5NS_2], 77 (67)$ $[C_6H_5^+]$. $C_{22}H_{24}NO_5PS_2$ (477.5) calcd: C, 55.33; H, 5.07; N, 2.93; S, 13.45. Found: C, 54.00; H, 5.19; N, 2.72; S, 12.25.

5.5. Photolysis of thiazolethiones 10 and 11 in the presence of BrCCl₃

5.5.1. General procedure. A Schlenk flask was charged with a solution of thiazolethione **10** or **11** in the dark $(c_0=0.18 \text{ M})$. A defined amount of anisole or 2,2-dichloro-5,5-dimethylcyclohexane-1,3-dione (internal standards for ¹H NMR analysis) was then added. The flask was closed with a rubber septum and cooled to liquid-nitrogen temperature. The flask was evacuated $(1 \times 10^{-2} \text{ mbar})$ and subsequently flushed with argon after which BrCCl₃ was added. The sample was degassed by two freeze-pump-thaw cycles, subsequently thermostated to 18° C (H₂O bath) and then photolyzed for 25 min in a Rayonet[®] photoreactor to furnish a reaction mixture that was immediately analyzed by either ¹H NMR or GC.

5.5.1.1. 5-Bromomethyl-3-trifluoroacetyloxy-2methyltetrahydrofuran 12 and 12b. To a solution of thiazolethione **10** (17.4 mg, 51.0 µmol) and BrCCl₃ (80.9 mg, 0.408 mmol) in dry deoxygenated C_6D_6 (0.8 mL) was added anisole (internal standard, ¹H NMR). The solution was treated as described in the general procedure and analyzed by ¹H NMR and MS. Yield: 32.9 µmol (64%), mixture of diastereomers (**12a:12b**= 29:71). $C_8H_{10}O_3BrF_3$ (291.1). HRMS ($C_7H_8F_3O_3$, M⁺– CH₂Br) calcd: 197.0426. Found: 197.0425. MS (70 eV, EI): m/z (%)=197 (100) $[C_7H_8O_3F_3^+]$, 167 (39) $[C_6H_6O_2F_3^+]$, 83 (54) $[C_5H_7O^+]$, 43 (85) $[C_2H_3O^+]$. **12a**: ¹H NMR (250 MHz, C_6D_6): δ 0.88 (d, 3H, ³J=6.6 Hz, CH₃), 1.47–1.57 (m, 2H, 4-H), 2.85–2.93 (m, 2H, CH₂Br), 3.66–3.75 (m, 2H, 2-H, 5-H), 4.45 (m_c, 1H, 3-H). **12b**: ¹H NMR (250 MHz, C_6D_6): δ 0.70 (d, 3H, ³J=6.6 Hz, CH₃), 1.37–1.45 (m, 1H, 4-H), 1.75 (ddd, 1H, ³J=6.6, 7.6 Hz, ²J=14.5 Hz, 4-H), 2.89 (dd, 1H, ³J=7.6 Hz, ²J=10.1 Hz, CH₂Br), 3.01 (dd, 1H, ³J=5.5 Hz, ²J=10.1 Hz, CH₂Br), 3.77–3.87 (m, 2H, 2-H, 5-H), 4.40 (dt, 1H, J_t =3.1 Hz, J_q =6.6 Hz, 3-H).

5.5.1.2. (5-Bromomethyl-2-methyltetrahydrofuran-3yl)diphenoxyphosphate 13a and 13b. To a solution of thiazolethione 11 (14.1 mg, 29.5 µmol) and BrCCl₃ (47.6 mg, 0.239 mmol) in dry and deoxygenated C_6D_6 (0.8 mL) was added 2,2-dichloro-5,5-dimethylcyclohexane-1,3-dione. The solution was treated as described in the general procedure to provide a reaction mixture that was analyzed by ¹H NMR and MS. Yield: 20.4 μ mol (69%), mixture of diastereomers (13a:13b = 30:70). $C_{18}H_{20}O_5PBr$ (427.2). MS (70 eV, EI): m/z (%)=264 (100) $[C_{13}H_{13}O_4P^+]$, 251 (15) $[C_{12}H_{12}O_4P^+]$, 170 (66) $[C_6H_5PO_4^+]$, 94 (36) $[C_6H_6O^+]$, 77 (82) $[C_6H_5^+]$. 13a: ¹H NMR (250 MHz, C₆D₆): δ 0.95 (d, 3H, ³J=6.4 Hz, CH₃), 1.25–1.40 (m, 2H, 4-H), 2.89 (d, 2H, ${}^{3}J$ =4.9 Hz, CH₂Br), 3.84–4.01 (m, 1H, 5-H), 4.09 (dq, ${}^{3}J_{d} = 2.8$ Hz, ${}^{3}J_{1} = 6.4$ Hz, 2-H), 4.58–4.68 (m, 1H, 3-H), 6.79–6.87 (m, 2H, Ar-H), 6.92–7.02 (m, 4H, Ar-H), 7.23–7.30 (m, 4H, Ar-H). 13b: ¹H NMR (250 MHz, C_6D_6): δ 0.83 (d, ^{3}H , $^{3}J = 6.4$ Hz, CH₃), 1.13–1.18 (m, 1H, 4-H), 1.53– 1.66 (m, 1H, 4-H), 2.99 (dd, 1H, ${}^{3}J = 7.6$ Hz, ${}^{2}J = 10.1$ Hz, CH₂Br), 3.09 (dd, 1H, ${}^{3}J=5.5$ Hz, ${}^{2}J=10.1$ Hz, CH₂Br), 3.84–4.01 (m, 1H, 5-H), 4.16 (dq, ${}^{3}J_{d} = 3.4$ Hz, ${}^{3}J_{t} = 6.4$ Hz, 2-H), 4.55–4.62 (m, 1H, 3-H), 6.79–6.87 (m, 2H, Ar-H), 6.92-7.02 (m, 4H, Ar-H), 7.23-7.30 (m, 4H, Ar-H).

5.6. BEt₃/O₂-initiated reactions

5.6.1. General procedure and reaction at -78°C. A Schlenk flask was charged with a solution of thiazolethione 6 (70.2 mg, 0.201 mmol, 34% ee)¹⁵ in CH₂Cl₂ (1.2 mL) in the dark ($c_0 = 0.18$). The flask was sealed with a rubber septum, cooled to liquid-nitrogen temperature and evacuated (1×10^{-2} mbar). Afterwards, the sample was flushed with argon. BrCCl₃ (319 mg, 1.61 mmol) was then added and the reaction mixture deaerated in two freeze-pump-thaw cycles after which it was allowed to warm to 18°C (H₂O bath). A solution of BEt₃ (0.1 mL, 1 m in hexane) was and the reaction mixture cooled to -78°C. O2 (4.4 mL) was then bubbled through the reaction mixture (syringe pump) over a period of 30 min The solvent was removed under reduced pressure and the residue purified by chromatography [SiO₂, petroleum ether/Et₂O, 2:1 (v/v)] to furnish 19.2 mg (64.2 µmol, 32%) of a 21:79-mixture of tetrahydrofurans 8a and 8b as a colorless oil.

5.6.2. Reaction at -10°C. A solution of thiazolethione **6** (116 mg, 0.332 mmol, 34% ee),¹⁵ BrCCl₃ (658 mg, 3.32 mmol), and BEt₃ (0.17 mL, 1 M in hexane) in dry CH₂Cl₂ (1.8 mL) was prepared as outlined above. O₂

(7.4 mL) was then bubbled through the reaction mixture using a syringe pump over a period of 30 min at -10° C. The solvent was removed under reduced pressure and the residue purified by chromatography [SiO₂, petroleum ether/Et₂O, 2:1 (v/v)] to furnish 74.5 mg (0.249 mmol, 75%) of a 27:73 mixture of tetrahydrofurans **8a** and **8b** as a colorless oil.

Acknowledgements

Generous financial support was provided by the Deutsche Forschungsgemeinschaft (Grants, Ha 1705/3-2 and 3-3) and the Fonds der Chemischen Industrie. We also express our gratitude to Dipl.-Chem. Thomas Gottwald for helpful discussions and technical assistance.

References

- (a) Waser, P. G. *Pharmacol. Rev.* **1961**, *13*, 465–515; (b) Eugster, C. H.; Waser, P. G. *Experientia* **1954**, *10*, 298– 300.
- 2. Wilkinson, S. Quart. Rev. Chem. Soc. 1961, 15, 153-171.
- (a) Eugster, C. H. Naturwissenschaften 1968, 55, 305–313;
 (b) Bollinger, H.; Eugster, C. H. Helv. Chim. Acta 1971, 54, 2704–2730;
 (c) Eugster, C. H. Helv. Chim. Acta 1956, 39, 1002–1023;
 (d) Kögl, F.; Salemink, C. A.; Schouten, H.; Jellinek, F. Recl. Trav. Chim. Pays Bas 1957, 76, 109–127.
- Nitta, K.; Stadelmann, R. J.; Eugster, C. H. Helv. Chim. Acta 1977, 60, 1747–1753.
- (a) Bollinger, H.; Eugster, C. H. Helv. Chim. Acta 1971, 54, 1332–1335; (b) Catalformo, P.; Eugster, C. H. Helv. Chim. Acta 1970, 53, 848–851; (c) List, H. P.; Müller, H. Arch. Pharm. 1959, 292, 777–787; (d) Eugster, C. H.; Müller, G. Helv. Chim. Acta 1959, 42, 1189–1190.
- (a) Kang, K. H.; Cha, M. Y.; Pae, N. A.; Choi, K. I.; Cho, Y. S.; Koh, H. Y.; Chung, B. Y. *Tetrahedron Lett.* **2000**, *41*, 8137–8140; (b) Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Chem. Soc. Chem. Commun. **1989**, 1371–1372; (c) Mulzer, J.; Angermann, A.; Münch, W.; Schlichthörl, G.; Hentzschel, A. *Liebigs Ann. Chem.* **1987**, 7–14; (d) Amouroux, R.; Gerin, B.; Chastrette, M. *Tetrahedron* **1985**, *41*, 5321–5324; (e) Still, W. C.; Schneider, J. A. J. Org. Chem. **1980**, *45*, 3375–3376.
- (a) Wang, P.-C.; Joullié, M. M. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: New York, 1984; Vol. 23, pp. 327–380; (b) Lewis, J. R. *Nat. Prod. Rep.* **1998**, *15*, 417–437; (c) Lewis, J. R. *Nat. Prod. Rep.* **1998**, *15*, 371–395.
- (a) Norrild, J. C.; Pedersen, C. Synthesis 1997, 1128– 1130; (b) Popsavin, V.; Beric, O.; Csanádi, J.; Popsavin, M.; Miljkovic, D. J. Serb. Chem. Soc. 1995, 60, 625–628; (c) Chmielewski, M.; Guzik, P.; Hintze, B.; Daniewski, W. M. J. Org. Chem. 1985, 50, 5360–5362; (d) Fronza, G.; Fuganti, C.; Grasselli, P. Tetrahedron Lett. 1978, 19, 3941–3942; (e) Corrodi, H.; Hardegger, E.; Kögl, F. Helv. Chim. Acta 1957, 40, 2454–2461.
- (a) Angle, S. R.; El-Said, N. A. J. Am. Chem. Soc. 2002, 124, 3608–3613;
 (b) Popsavin, V.; Beric, O.; Popsavin,

M.; Radic, L.; Csanádi, J.; Cirin-Novta, V. *Tetrahedron* **2000**, *56*, 5929–5940; (c) Popsavin, V.; Beric, O.; Popsavin, M.; Lajsic, S.; Miljkovic, D. *Carbohaydr. Lett.* **1998**, *3*, 1–8.

- Popsavin, V.; Beric, O.; Popsavin, M.; Csanádi, J.; Miljkovic, D. *Carbohydr. Res.* 1995, 269, 343–347.
- 11. Oshiba, Y.; Yoshimitsu, T.; Ogasawara, K. Chem. Pharm. Bull. 1995, 43, 1067–1069.
- From L-arabinose: (a) Hardegger. E.; Lohse, F. Helv. Chim. Acta 1957, 40, 2383–2389; From L-rhamnose: (b) Mantell, S. J.; Fleet, G. W. J.; Brown, D. J. Chem. Soc., Perkin Trans. 1 1992, 3023–3027; From 2-deoxy-L-ribose: (c) Pochet, S.; Huynh-Dinh, T. J. Org. Chem. 1982, 47, 193–198; From D-mannose: (d) Mubarak, A. M.; Brown, D. M. J. Chem. Soc., Perkin Trans. 1 1982, 809–813; (e) Hardegger, E.; Furter, H.; Kiss, J. Helv. Chim. Acta 1958, 41, 2401–2410; From D-glucosamine: (f) Cox H. C.; Hardegger, E.; Kögl, F.; Liechti, P.; Lohse, F.; Salemink, C. A. Helv. Chim. Acta 1958, 41, 229–235.
- For example, see: (a) Knight, D. W.; Shaw. D.; Fenton, G. Synlett 1994, 295–296; (b) Chan, T. H.; Li, C. J. Can. J. Chem. 1992, 70, 2726–2729; (c) Amouroux, R.; Gerin, B.; Chastrette, M. Tetrahedron Lett. 1982, 23, 4341–4344.
- Hartung, J.; Kunz, P.; Laug, S.; Schmidt, P. Synlett 2003, 51–54.
- Hartung, J.; Kneuer, R. Eur. J. Org. Chem. 2000, 1677– 1683.
- Hartung, J.; Kneuer, R.; Laug, S.; Schmidt, P.; Spehar, K.; Svoboda, I.; Fuess, H.; *Eur. J. Org. Chem.* 2003, in press.
- 17. Hartung, J. Eur. J. Org. Chem. 2001, 619-632.
- Mash, E. A.; Arterburn, J. B.; Fryling, J. A.; Mitchel, S. H. J. Org. Chem. 1991, 56, 1088–1093.
- Hartung, J.; Hünig, S.; Kneuer, R.; Schwarz, M.; Wenner, H. Synthesis 1997, 1433–1438.
- Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772–3774.
- 21. Hartung, J.; Kneuer, R.; Schwarz, M.; Svoboda, I.; Fuess, H. *Eur. J. Org. Chem.* **1999**, 97–106.
- De Amici, M.; De Micheli, C.; Molteni, G.; Pitrè, D.; Carrea, G.; Riva, S.; Spezia, S.; Zetta, L. J. Org Chem. 1999, 56, 67–72.
- Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543–2549.
- 24. Hartung, J.; Kneuer, R.; Kopf, T. M.; Schmidt, P. CR Acad. Sci. Paris Chim. 2001, 649–666.
- Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 2547–2549.
- 26. Hartung, J.; Gottwald, T.; Spehar, K. Synthesis 2002, 1469–1498.
- (a) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. *Tetrahedron* 1986, 42, 3021–3028; (b)

Heathcock, C. H.; Kiyooka, S.-I.; Blumenkopf, T. A. J. Org. Chem. 1984, 49, 4214–4223.

- 28. Hartung, J.; Schwarz, M.; Svoboda, I.; Fuess, H. Eur. J. Org. Chem. 1999, 1275–1290.
- 29. Walter, W.; Schaumann, E. Synthesis 1971, 111-130.
- Chimiak, A.; Przychodzen, W.; Rachon, J. *Heteratom. Chem.* 2002, 13, 169–194.
- Giese, B. Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds; Pergamon Press: Oxford, 1986; pp. 2–35.
- Hartung, J.; Gallou, F. J. Org. Chem. 1995, 60, 6706– 6716.
- Adam, W.; Hartung, J.; Okamoto, H.; Marquardt, S.; Nau, W. M.; Pischel, U.; Saha-Möller, C. R.; Špehar, K. *J. Org. Chem.* 2002, *67*, 6041–6049.
- 34. This analysis was performed using the equation: $\Delta\Delta H^{\ddagger}/RT \Delta\Delta S^{\ddagger}/R = \ln(k_{14 \rightarrow 15b}/k_{14 \rightarrow 15a})$ for $\Delta\Delta H^{\ddagger} = \Delta H^{\ddagger}_{14 \rightarrow 15a} \Delta H^{\ddagger}_{14 \rightarrow 15b}$ and $\Delta\Delta S^{\ddagger} = \Delta S^{\ddagger}_{14 \rightarrow 15a} \Delta S^{\ddagger}_{14 \rightarrow 15b}$. For fundamentals of this correlation see: Giese, B.; Keller, K. *Chem. Ber.* **1979**, *112*, 1743–1750 and references cited therein.
- Hartung, J.; Stowasser, R.; Vitt, D.; Bringmann, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 2820–2823; Angew. Chem. 1996, 108, 3056–3059
- 36. Beckwith, A. L. J.; Schiesser, C. Tetrahedron 1985, 41, 3925–3941.
- 37. Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1987, 52, 959–974.
- 38. The terms axial and equatorial have originally been coined in order to denote the positions of the substituents in the undistorted chair conformer of cyclohexane. In extension to this definition, axial and equatorial positions have been specified in cyclopentane and its saturated heterocyclic derivatives. These positions are found in twist conformers and refer to exocyclic locations at the two carbon which are transposed above and below the plane that is defined by the remaining three atoms. See: Testa, B. *Grundlagen der Organischen Chemie*; VCH: Weinheim, 1983; pp. 103–104.
- Corminboeuf, O.; Renaud, P.; Schiesser, C. H. Chem. Eur. J. 2003, 9, 1478–1584.
- For the definition of bisectional positions at cyclopentane and its heterocyclic derivatives, see: Bogner, J.; Duplan, J.-C.; Infarnet, Y.; Delmut, J.; Huet, J. *Bull. Chim Soc. Fr.* **1972**, 3616–3624.
- 41. Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer: Berlin, 1983.
- Perrin, D. D.; Armatego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon Press: Oxford, 1980.
- 43. Barton, D. H. R.; Crich, D.; Kretzschmar, G. J. Chem. Soc., Perkin Trans. 1 1986, 39–53.