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Reaction for the Synthesis of 2-aminopyridine-Decorated 
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ABSTRACT: A highly regioselective acid-catalyzed three-component reaction of 
2-aminopyridine and 3-phenylpropiolaldehyde for the construction of 
imidazo[1,2-a]pyridine has been developed. This strategy provides a broad range of 
substrates and represents an efficient approach to give various 
2-aminopyridine-decorated imidazo[1,2-a]pyridine in good yields. 
KEYWORDS: Pivalic acid, 2-aminopyridine, three-component reaction, 
imidazo[1,2-a] pyridine

Considerable efforts have been devoted to developing new 
Imidazo[1,2-a]pyridine-based heterocycles compounds1-4, that is, a single 
compound that displays the coexistence or synergism of two or more properties 
including obvious inhibitory effects on many target enzymes5-7 and  
good bioactivity in the aspect of anti-tumor8-12, anti-virus13-15, anti-bacterial16-18, 
anti-tuberculosis19,20, anti-inflammatory21, antiulcer22, anti-diabetic23, 
antipsychotic24,25, etc. 3-Substituted imidazo[1,2-a]pyridines are of particular 
interest, because of their potential applications in many commercially available 
drugs such as necopidem, alpidem, saripidem, minodronic acid. The versatility 
and value of these Imidazo[1,2-a]pyridine derivatives for a wide range of 
applications feeds the continuous synthetic drive for novel and better synthetic 
strategies, including oxidative cross-coupling, multi-component reaction26-34. 
Despite the fact that much progress has been made in the synthesis of these 
derivatives, there still remains great challenges for synthetic organic chemists in 
developing a facile approach for the direct synthesis of 
3-2-aminopyridine-decorated imidazo[1,2-a]pyridines. For example, Mareev35 et 
al. first reported the synthesis of 3-[2-pyridylamino(phenyl) 
methyl]imidazo[1,2-a]pyridine by employing phenylpropynal and 
2-aminopyridine (Scheme 1, a). Unfortunately, only one product has been 
synthesized under their protocol. Subsequently, we disclosed an efficient one-pot 
methodology for the synthesis of these compounds via AcOH catalysis (Scheme 
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1, b) and a series of imidazo[1,2-α]pyridines were obtained in high to excellent 
yields36. However ， there are still some limitations and inconveniences of this 
protocol. The substituted pyridine-2-amine used to undergo a Michael type 
addition to finish the transformation should be the same as the one reacted with 
the aldehyde to form the imine intermediate during the first step of the reaction. 
This seriously restricted the further application of a diversity oriented synthesis.

Therefore, the development of new catalytic systems to achieve two different 
2-aminopyridine reactions for the direct construction of multifunctional 
imidazo[1,2-a]pyridines is still of great importance. In this context, our group 
envisions to construct 2-aminopyridine-decorated imidazo[1,2-a]pyridine derivatives 
via a three-component reaction of 2-aminopyridines and 3-phenylpropionaldehyde.

Scheme 1  Syntheses of N-(imidazo[1,2-a]pyridin-3-yl(phenyl) methyl)2-aminopyridine 
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In the beginning, the model reaction of 2-amino-3-methylpyridin 1{1}, 
5-(trifluoromethyl)-2-aminopyridine 1{5} and 3-phenylpropiolaldehyde 2{1} were 
conducted to determine the suitable reaction conditions37. The results are described in 
Table 1. The desired product 3{1,5,1} was not obtained without any catalysts in 
dioxane at room temperature (entry 1). We then attempted to increase the yield of 
product 3{1,5,1} by adding variety of catalysts. Using 5 mol % PivOH in dioxane at 
room temperature afforded a yield of 42% (entry 2), but the addition of benzoic acid, 
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AcOH, TsOH, TFA, ZnCl2, FeCl3, FeCl2, showed that the product 3{1,5,1} was 
formed in relatively lower yield or not detected (entries 3-10). It is interesting to note 
that the temperature changes significantly affect the yield. The results indicated that 
the reaction at 60 °C was the most suitable (entry 2, 9-13). In order to improve the 
reaction efficiency, we evaluated the influence of various solvents. Among the 
solvents, we were delighted to find that the product 3{1,6,1} was readily formed in 92 % 
yield in CH2Cl2. Other solvents, such as DMSO, DMF, or toluene, did not lead to any 
improved result (entries 14-19).  

Table 1.   Optimization of the reaction conditionsa

N

NH2

N

NH2 catalyst, temp
+ +

1{1} 1{5} 2{1} 3{1,5,1}
Ph

CHO

solvent, N2, 8 h
N

N

N
H

Ph N
F3C CF3

Entry Catalyst Solvent T (oC) Yield b (%)
1 1,4-dioxane rt N.P.
2 PivOH 1,4-dioxane rt 42
3 Benzoic Acid 1,4-dioxane rt 28
4 AlCl3 1,4-dioxane rt 30
5 AcOH 1,4-dioxane rt 14
6 TsOH 1,4-dioxane rt 17
7 TFA 1,4-dioxane rt 14
8 ZnCl2 1,4-dioxane rt trace
9 FeCl3 1,4-dioxane rt trace

10 FeCl2 1,4-dioxane rt N.P.
11 PivOH 1,4-dioxane 60 67
12 PivOH 1,4-dioxane 80 65
13 PivOH 1,4-dioxane 100 64
14 PivOH DMSO 60 23
15 PivOH DMF 60 <5
16 PivOH CH2Cl2 60 92
17 PivOH toluene 60 32
18 PivOH DCE 60 56
19 PivOH THF 60 62

a Reaction conditions: 1{1} (0.5 mmol), 1{5} (0.5 mmol), 2{1} (0.6 mmol), catalyst 
(5 mol %), and solvent (2 mL), carried out in a sealed tube (25 mL); b Determined 
by GC analysis.
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Scheme 2   Synthesis of Imidazoles using different 2-aminopyridine and alkynal
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Table 2.   Structural diversity of 2-aminopyridine 1 and alkynal 2

N

NH2

N

NH2

N

NH2

N

NH2

N

NH2

I

N

NH2F3C

N

NH2

O2N N

NH2

Cl
N

NH2

Br N

NH2I

Cl

CHO CHO CHO CHO

{1} {2} {3} {4} {5}

{6} {7} {8} {9} {10}

{1} {2} {3} {4}

pyridin-2-amines 1

Alkynal 2

Under the optimized reaction conditions, we examined a series of amino pyridines 
and alkynals to probe the scope of this PivOH-catalyzed, three-component 
transformation. The structural diversity of the starting materials are summarized in 
Table 2. To our delight, a wide range substituted groups of aminopyridines all gave 
the corresponding imidazo[1,2-a]pyridine with great efficiency. The results are shown 
in Scheme 2. It was pleasing to find that methyl-substituted and iodized 
pyridine-2-amine successfully reacted with 1{5} and 2{1} under the optimized 
conditions to generate the corresponding product 3{1,5,1}, 3{2,5,1}, 3{3,5,1}, 
3{4,5,1}, 3{5,5,1} with good yield of 79-92%. 5-NO2 and 5-I or 5-methyl and 5-Cl 
monosubstituted aminopyridine also give the corresponding product 3{9,7,1} or 
3{3,7,1} in 81% or 70% yields, respectively. Additionally, the pyridine-2-amine 
substituted both with 5-Cl and 3-I reacted with 1{1} and 2{1} under the same 
conditions to generate the product 3{1,10,1} with yield of 88%. It is no surprise that 
the electron-withdrawing groups (4-CF3, 5-Br, 5-I) on the pyridine ring exhibit a 
beneficial effect for the improvement of yield and the desired product 3{5,5,1}, 
3{8,8,1}, 3{9,9,1} were obtained with the yield of 75-90%. With a electron donating 
group on the pyridine ring such as 3-methyl, 4-methyl, 5-methyl and 6-methyl, 
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reacted with 2{1} stably to afford the expected products 3{1,1,1}, 3{2,2,1}, 3{3,3,1}, 
3{4,4,1} in good isolated yield. Subsequently, a variety of alkyls were also tested as 
the substrate with various substituted 2-aminopyridines. For instance, 
3-(p-tolyl)propiolaldehyde 2{2} and 3-(3,5-dimethylphenyl)propiolaldehyde 2{3} 
reacted with 1{1} and 1{5} afforded products 3{1,5,2}, 3{1,5,3} in good yields. Then, 
when oct-2-ynal 2{4} was tested as substrate, the corresponding product 3{1,5,4}, 
3{2,5,4} was also isolated. These results clearly show that this scheme is general and 
suitable for the reaction of various substituted 2-aminopyridines and various alkynals. 
The molecular structure of product 3{1,5,1} was determined by X-ray crystallography 
(Figure S1). 

On the basis of the above results, a plausible mechanism for this transformation is 
described in Scheme 3. Initially, PivOH promotes dehydration of 2{1} by 1{1} to 
afford intermediate imine A, which then cyclizes to intermediate B via an 
intramolecular nucleophilic attack on the triple bond by the lone electron pair of the 
nitrogen atom on the pyridine ring. Intermediate B then is converted to Intermediate C 
via nuclephilic attack of 1{5} on its exocyclic double bond. Subsequent proton loss 
finally affords product 3{1,5,1}.

Scheme 3   Possible mechanism
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In summary, we have developed an efficient and general PivOH-catalyzed 
approach to prepare imidazole derivatives. This three-component reaction of 
2-aminopyridines and ynals has been demonstrated by the preparation of a broad 
range of functionalized imidazoles in moderate to good yields. This transformation 
provides a convenient route for the formation of C–N bonds to prepare 
amino-modified imidazo[1,2-a]pyridines. 

ASSOCIATED CONTENT
Supporting Information

Details of experimental and analytical procedures, along with spectroscopic data for 
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synthesized compounds. Crystallographic data for 3{1,5,1} (CCDC 1868963).
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A highly regioselective acid-catalyzed three-component reaction of 2-aminopyridine and 3-
phenylpropiolaldehyde for the construction of imidazo[1,2-a]pyridine has been developed. This strategy 

provides a broad range of substrates and represents an efficient approach to give various 2-aminopyridine-
decorated imidazo[1,2-a]pyridine in good yields. 

285x41mm (72 x 72 DPI) 

Page 10 of 10

ACS Paragon Plus Environment

ACS Combinatorial Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


