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Abstract: An enantioselective synthesis of the Strychnos alkaloid (-)-tubifoline, 
involving the kinetic resolution of racemic 1-(3-pyridyl)ethanol, the orthoester Claisen 
rearrangement of the enantiopure allylic alcohol 5, Smith indolization of the resulting 4- 
pipefidineacetate 6, photocyclization of chloroacetamide 9, and final transannular 
cyclization, is reported. Copyright © 1996 Elsevier Science Ltd 

Although Strychnos indole alkaloids have received increasing attention from the synthetic standpoint 

during recent years and numerous alkaloids of this group have been synthesized in the racemic series, 1 the 

synthesis of these alkaloids in enantiopure form has been little explored. Until now, only two routes have 

culminated in the enantioselective synthesis of Strychnos alkaloids, providing access to Wieland-Gumlich 

aldehyde and (-)-strychnine, 2 ent-strych~fine, 2 and ent-tubotaiwine, la.3 In addition, a few enantiopure 

intermediates 4 and models 5 have been prepared. 

We report here the first enantioselective synthesis of the Strychnos alkaloid (-)-tubifoline. 6 Our approach 

is based on the consideration that in tubifoline all stereogenic carbons common to two or more rings are 

configurationally correlated because, starting from an enantiopure 3-substituted 4-(2-indolylmethyl)piperidine, 

the absolute configuration at the piperidine 4-position (C-15 in the biogenetic numbering 7) determines the 

configuration of C-3 (a bridgehead position) and C-7, the latter as a consequence of the axial disposition of the 

piperidine nitrogen with respect to the carbocyclic E ring. On the other hand, the configuration of C-20 (15- 

H/20-H cis-relationship) would be easily attainable by hydrogenation of an exocyclic ethylidene double bond 

from the most accessible face of a tetracyclic 3,7-seep derivative. 

Accordingly, we envisaged the enantiopure 4-(indolylmethyl)piperidine 8, in which the configuration at 

C-4 is the same as at C-15 in Strychnos alkaloids, as a suitable starting material for the synthesis of (-)- 

tubifoline. This piperidine was prepared from 3-acetylpyridine 1, as outlined in Scheme 1, the key steps being 

the kinetic resolution of the racemic alcohol rac-2, the orthoester Claisen rearrangement of the enantiopure 

allylic alcohol 5, and the Smith indolization of the resulting 4-piperidineacetate. 

The required enantiopure (1R)-(3-pyridyl)ethanoi (+)-28 was prepared in 45% yield by 

transesterification of the racemic alcohol rac-2 with vinyl acetate promoted by lipase PS (Amano, 

Pseudomonas sp.) followed by methanolysis of the resulting acetate 3.9A ° In order to transfer the chirality 

from the side chain to the pyridine 4-position, pyridine alcohol (+)-2 was converted to the allylic 
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tetrahydropyridine alcohol 5 as shown in Scheme 1 and then treated with methyl orthoacetate to 

stereoselectively afford the 3(Z)-ethylidene-4(R)-piperidineacetate 6 in 93% yield.ll,12 Smith indolization 13 

of 6 (60%) followed by deprotection of the piperidine nitrogen (77%) led to the enantiopure 4-(2- 

indolylmethyl)piperidine 8, which was then treated with chloroacetyl chloride to give chloroacetamide 9 in 

85% yield. Photocyclization of 914 upon irradiation with a medium-pressure mercury lamp took place in 45% 

yield to give the tetracyclic lactam 10 along with variable amounts (approximate ratio 3:1) of the E isomer 

coming from the photoisomerization of the ethylidene double bond. Interestingly, the NMR spectra of both 10 

and its E isomer showed the existence of two rotamers due to the restricted rotation of the amide group (no 

coalescence was observed at 100oc).15 LiA1H4 reduction of the major Z isomer 16 led to the unsaturated 

tetracyclic amine 1117 which was then hydrogenated using either 10% Pd-C or PtO2 as the catalyst. However, 

rather surprisingly, mixtures of the expected tetracyclic amine 1218,19 and the alkaloid (-)-tubifoline 20 were 

obtained. 21,22 Finally, amine 12 was converted to (-)-tubifoline (55% yield) by treatment with PtO2 in the 

presence of oxygen, following the procedure previously reported. 6c,23 Minor amounts (<5%) of condyfoline 6c 

were also isolated. The 1H- and 13C-NMR spectra of (-)-tubifoline were identical with those of the racemic 

product. 23b 
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Scheme 1. Reagents and Conditions: (i) NaBH4, MeOH, rt, 2h; (ii) AcOCH=CH2, Pseudomonas, sp, TBME, 
rt, 40 h; (iii) K2CO3, MeOH, rt, 1 h; (iv) C6H5CH2CI, MeOH, 80°C, 3 h; (v) NaBH4, MeOH, rt, 12 h; (vi) 
C1CO2Bn, CH2C12, reflux, overnight; (vii) CH3C(OMe)3, DME, pivalic acid, reflux, 48 h; (viii) o- 
MeC6H4NHSiMe3, n-BuLi, hexane, reflux, then 6, THF, -78oc to rt; (ix) Me3SiI, MeCN, 0oc, 30 min; (x) 
C1CH2COC1, 2N NaOH-CH2C12, 0°C to rt; (xi) hv, Na2CO3, H20, MeOH, 15 min; (xii) LiAIH4, THF, 
reflux; (xiii) H2, PtO2, EtOH; (xiv) 02, PtO2, AcOEt. 
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