

# Synthesis and characterization of diiron ethane-1,2-dithiolate complexes with tricyclohexylphosphine, methyl diphenylphosphinite, or tris(2-thienyl)phosphine coligands

Lin Yan<sup>1</sup> · Ao Li<sup>2</sup> · Qi-Min Xiao<sup>2</sup> · Xu-Feng Liu<sup>1</sup> · Yu-Long Li<sup>2</sup> · Zhong-Qing Jiang<sup>3</sup> · Hong-Ke Wu<sup>4</sup>

Received: 11 January 2019 / Accepted: 15 June 2019 © Springer Nature Switzerland AG 2019

#### Abstract

We have prepared three diiron ethane-1,2-dithiolate complexes  $[Fe_2(CO)_5L(\mu-SCH_2CH_2S)]$   $[L=P(C_6H_{11})_3$ , **2**; Ph<sub>2</sub>POCH<sub>3</sub>, **3**; P(2-C<sub>4</sub>H<sub>3</sub>S)<sub>3</sub>, **4**] by CO exchange of the starting complex  $[Fe_2(CO)_6(\mu-SCH_2CH_2S)]$  (1) with the corresponding phosphine ligands tricyclohexylphosphine, methyl diphenylphosphinite, or tris(2-thienyl)phosphine in the presence of Me<sub>3</sub>NO as an oxidant for CO. The complexes have been characterized by elemental analysis, spectroscopy, and single-crystal X-ray diffraction analysis.

# Introduction

Since the initial characterization of the active site of [FeFe]hydrogenases [1–5], much effort has been devoted to the design and synthesis of a large number of diiron complexes of the general formula [Fe<sub>2</sub>(CO)<sub>6–n</sub>(L)<sub>n</sub>( $\mu$ -SRS)] (n=0–6) in order to mimic the structural and functional attributes of these enzymes. [FeFe]-hydrogenases are efficient catalysts for the reduction of protons to H<sub>2</sub> which is a promising source of clean energy [6–8]. X-ray crystallographic studies have revealed that the active site of [FeFe]-hydrogenases consists of a diiron cluster with a bridging dithiolate cofactor, also ligated by carbonyls, cyanides, and a cysteinyl ligand connected to a tetrairon cluster [9, 10]. FTIR [11] and density functional theory (DFT) [12] studies have confirmed that the bridging dithiolate cofactor is 2-azapropane-1,3-dithiolate and furthermore that the nitrogen atom plays

Xu-Feng Liu nkxfliu@126.com

- <sup>2</sup> College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- <sup>3</sup> Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- <sup>4</sup> College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

a significant role in shuttling protons to and from the iron atoms [13]. Guided by this structural information, a great number of diiron azadithiolate complexes of general formula [Fe<sub>2</sub>(CO)<sub>6</sub>{ $\mu$ -SCH<sub>2</sub>N(R)CH<sub>2</sub>S}] have been prepared and characterized in recent decades [14–17]. In addition, alternative ligands such as cyanides [18], phosphines [19], thioethers [20], and *N*-heterocyclic carbenes (NHC) [21] have also been introduced, in order to mimic the ligands at the active site of these enzymes.

The diiron ethane-1,2-dithiolate complex  $[Fe_2(CO)_6(\mu$ -SCH<sub>2</sub>CH<sub>2</sub>S)] (1) was reported more than 30 years ago [22], being prepared by heating  $Fe_3(CO)_{12}$ with 1,2-ethanedithiol in toluene solution. The reactions of complex 1 with other ligands have been widely studied, due to its structural similarity with the diiron propane-1,3-dithiolate complex  $[Fe_2(CO)_6(\mu$ -SCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S)] [23, 24]. In continuation of our ongoing interests in diiron chemistry, we have investigated the synthesis of some diiron ethane-1,2-dithiolate complexes by CO exchange of the parent complex 1 with phosphine ligands. We believe that such phosphine ligands can mimic the cyanides found in the active site of [FeFe]-hydrogenases. In this contribution, we report the synthesis and characterization of three diiron ethane-1,2-dithiolate complexes with tricyclohexylphosphine, methyl diphenylphosphinite, or tris(2-thienyl)phosphine coligands, together with their X-ray crystal structures.

<sup>&</sup>lt;sup>1</sup> School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China

# Experimental

Tricyclohexylphosphine, methyl diphenylphosphinite, tris(2thienyl)phosphine, and  $Me_3NO\cdot 2H_2O$  were commercial products that were used as received. Complex **1** was prepared according to the literature procedure [22]. IR spectra were recorded on a Nicolet MAGNA 560 FTIR spectrometer. <sup>1</sup>H, <sup>31</sup>P{<sup>1</sup>H}, <sup>13</sup>C{<sup>1</sup>H} NMR spectra were obtained on a Bruker Avance 500 MHz spectrometer. Elemental analyses were obtained with a Perkin-Elmer 240C analyzer.

# Synthesis of $[Fe_2(CO)_5{P(C_6H_{11})_3}(\mu-SCH_2CH_2S)]$ (2)

To a solution of  $[Fe_2(CO)_6(\mu$ -SCH<sub>2</sub>CH<sub>2</sub>S)] (0.037 g, 0.1 mmol) and tricyclohexylphosphine (0.028 g, 0.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added a solution of Me<sub>3</sub>NO·2H<sub>2</sub>O (0.011 g, 0.1 mmol) in MeCN (5 mL). The mixture was stirred at room temperature for 1 h, and then, the solvent was reduced on a rotary evaporator. The residue was subjected to TLC using  $CH_2Cl_2$ /petroleum ether = 1:3 (v/v) as eluent. From the main red band, 0.042 g (68%) of complex 2 was obtained as a red solid. IR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>):  $\nu_C \equiv_0 2043$ (vs), 1977 (vs), 1921 (m). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 2.27-2.18 (m, 4H, CyH), 2.06-2.03 (m, 6H, CyH, and SCH<sub>2</sub>), 1.92–1.91 (m, 6H, CyH, and SCH<sub>2</sub>), 1.83–1.77 (m, 6H, CyH), 1.55-1.47 (m, 6H, CyH), 1.32-1.26 (m, 9H, Cy*H*) ppm. <sup>31</sup>P{<sup>1</sup>H} NMR (200 MHz, CDCl<sub>3</sub>, 85% H<sub>3</sub>PO<sub>4</sub>): 71.57 (s) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>): 216.90 (d,  $J_{P-C} = 10.5$  Hz, PFeCO), 210.71 (FeCO), 38.38 (d, J<sub>P-C</sub>=16.4 Hz, CyC), 30.18 (CyC), 36.31 (SCH<sub>2</sub>), 27.89  $(d, J_{P-C} = 9.9 \text{ Hz}, \text{Cy}C)$ , 26.42 (CyC) ppm. Anal. Calcd. for C<sub>25</sub>H<sub>37</sub>Fe<sub>2</sub>O<sub>5</sub>PS<sub>2</sub>: C, 48.09; H, 5.97. Found: C, 48.28; H, 6.19%.

# Synthesis of [Fe<sub>2</sub>(CO)<sub>5</sub>(Ph<sub>2</sub>POCH<sub>3</sub>)(µ-SCH<sub>2</sub>CH<sub>2</sub>S)] (3)

The procedure was similar to that for complex **2**, except that methyl diphenylphosphinite (0.022 g, 0.1 mmol) was used instead of tricyclohexylphosphine; 0.039 g (70%) of complex **3** was obtained as a red solid. IR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>):  $\nu_C \equiv_0$  2046 (vs), 1987 (vs), 1935 (m). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.71 (s, 4H, Ph*H*), 7.47 (s, 6H, Ph*H*), 3.59 (d, *J* = 11 Hz, 3H, CH<sub>3</sub>), 2.01 (s, 2H, SCH<sub>2</sub>), 1.73 (s, 2H, SCH<sub>2</sub>) ppm. <sup>31</sup>P{<sup>1</sup>H} NMR (200 MHz, CDCl<sub>3</sub>, 85% H<sub>3</sub>PO<sub>4</sub>): 168.07 (s) ppm. Anal. Calcd. for C<sub>20</sub>H<sub>17</sub>Fe<sub>2</sub>O<sub>6</sub>PS<sub>2</sub>: C, 42.89; H, 3.06. Found: C, 42.68; H, 3.14%.

# Synthesis of $[Fe_2(CO)_5{P(2-C_4H_3S)_3}(\mu-SCH_2CH_2S)]$ (4)

The procedure was similar to that for complex 2, except that tris(2-thienyl)phosphine (0.028 g, 0.1 mmol) was used

instead of tricyclohexylphosphine; 0.045 g (73%) of complex **4** was obtained as a red solid. IR (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>):  $\nu_{\rm C} \equiv_{\rm O} 2048$  (vs), 1991 (vs), 1943 (m). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.67 (s, 3H, thienyl*H*), 7.53 (s, 3H, thienyl*H*), 7.17 (s, 3H, thienyl*H*), 2.06 (d, *J* = 8 Hz, 2H, SC*H*<sub>2</sub>), 1.63 (d, *J* = 8 Hz, 2H, SC*H*<sub>2</sub>) ppm. <sup>31</sup>P{<sup>1</sup>H} NMR (200 MHz, CDCl<sub>3</sub>, 85% H<sub>3</sub>PO<sub>4</sub>): 30.26 (s) ppm. Anal. Calcd. for C<sub>19</sub>H<sub>13</sub>Fe<sub>2</sub>O<sub>5</sub>PS<sub>5</sub>: C, 36.56; H, 2.10. Found: C, 36.31; H, 2.28%.

#### X-ray crystal structure determination

A single crystal of each complex was mounted on a Bruker D8 QUEST diffractometer. Data were collected at 296(2) K using a graphite monochromator with MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å) in the  $\omega - \phi$  scanning mode. Data collection and reduction were accomplished with APEX2 software [25]. Absorption corrections were made with the SADABS program [26]. Using OLEX2 [27], the structure was solved by direct methods using the SHELXS program [28] and refined by full-matrix least-squares techniques on  $F^2$ . Hydrogen atoms were located using geometric methods. Details of crystal data, data collections, and structure refinements are summarized in Table 1.

#### **Electrochemical experiments**

The electrochemical properties of complexes 2–4 were studied by cyclic voltammetry (CV) in MeCN solution. Electrochemical measurements were taken under nitrogen using a CHI 620 Electrochemical work station. The supporting electrolyte n-Bu<sub>4</sub>NPF<sub>6</sub> was recrystallized several times from CH<sub>2</sub>Cl<sub>2</sub> solution by the addition of hexane. CV scans were obtained in a three-electrode cell with a glassy carbon electrode (3 mm diameter) as the working electrode, a platinum wire as the counter electrode, and a nonaqueous Ag/Ag<sup>+</sup> electrode as the reference electrode. The potential scale was calibrated against the Fc/Fc<sup>+</sup> couple, and all values are reported versus this reference.

# **Results and discussion**

#### Synthesis and characterization of complexes 2–4

The synthetic route to complexes 2-4 is shown in Scheme 1. Treatment of the starting complex 1 with one equivalent of the corresponding phosphine ligand tricyclohexylphosphine, methyl diphenylphosphinite, or tris(2-thienyl)phosphine in the presence of Me<sub>3</sub>NO as an oxidant for CO afforded the target complexes in satisfactory yields. All three complexes are air-stable red solids, soluble in medium-polarity solvents such as CH<sub>2</sub>Cl<sub>2</sub> and THF.

Table 1 Crystal data and structure refinements details for the complexes 2-4

| Complex                                   | 2                                                                              | 3                                                              | 4                                                                              |
|-------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|
| Empirical formula                         | C <sub>25</sub> H <sub>37</sub> Fe <sub>2</sub> O <sub>5</sub> PS <sub>2</sub> | $C_{20}H_{17}Fe_2O_6PS_2$                                      | C <sub>10</sub> H <sub>13</sub> Fe <sub>2</sub> O <sub>5</sub> PS <sub>5</sub> |
| Formula weight                            | 624.33                                                                         | 560.12                                                         | 624.26                                                                         |
| Temperature (K)                           | 296(2)                                                                         | 296(2)                                                         | 296(2)                                                                         |
| Crystal system                            | Monoclinic                                                                     | Orthorhombic                                                   | Triclinic                                                                      |
| Space group                               | $P2_1/n$                                                                       | Pbca                                                           | P-1                                                                            |
| a (Å)                                     | 11.7852(6)                                                                     | 16.3721(7)                                                     | 9.2969(4)                                                                      |
| b (Å)                                     | 11.7247(6)                                                                     | 15.7473(7)                                                     | 10.4370(4)                                                                     |
| <i>c</i> (Å)                              | 21.7489(12)                                                                    | 17.8364(8)                                                     | 13.4614(6)                                                                     |
| α (°)                                     | 90                                                                             | 90                                                             | 88.5670(10)                                                                    |
| β(°)                                      | 103.700(2)                                                                     | 90                                                             | 75.6860(10)                                                                    |
| γ(°)                                      | 90                                                                             | 90                                                             | 72.6510(10)                                                                    |
| $V(Å^3)$                                  | 2919.7(3)                                                                      | 4598.5(4)                                                      | 1206.38(9)                                                                     |
| Z                                         | 4                                                                              | 8                                                              | 2                                                                              |
| $D_{\text{calc}}$ (g cm <sup>-3</sup> )   | 1.420                                                                          | 1.618                                                          | 1.719                                                                          |
| $\mu (\mathrm{mm}^{-1})$                  | 1.223                                                                          | 1.547                                                          | 1.731                                                                          |
| <i>F</i> (000)                            | 1304.0                                                                         | 2272.0                                                         | 628.0                                                                          |
| Crystal size (mm <sup>3</sup> )           | $0.3 \times 0.2 \times 0.18$                                                   | 0.32×0.22×0.18                                                 | $0.2 \times 0.2 \times 0.2$                                                    |
| Radiation                                 | MoK $\alpha$ ( $\lambda = 0.71073$ )                                           | MoK $\alpha$ ( $\lambda = 0.71073$ )                           | MoK $\alpha$ ( $\lambda = 0.71073$ )                                           |
| $2\theta$ range (°)                       | 4.43-61.512                                                                    | 4.254-50.226                                                   | 4.742-55.172                                                                   |
| hkl range                                 | $-16 \le h \le 16$<br>$-16 \le k \le 16$<br>$-31 \le l \le 31$                 | $-19 \le h \le 18$<br>$-18 \le k \le 18$<br>$-21 \le l \le 21$ | $-12 \le h \le 12$<br>$-13 \le k \le 13$<br>$-17 \le l \le 17$                 |
| Reflections collected                     | 96939                                                                          | 90360                                                          | 51965                                                                          |
| Independent reflections                   | 8453 $[R_{int}=0.0427]$                                                        | $4099 [R_{int} = 0.0484]$                                      | 5518 [ $R_{int} = 0.0297$ ]                                                    |
| Data/restraints/parameters                | 8453/0/316                                                                     | 4099/0/281                                                     | 5518/18/289                                                                    |
| Goodness of fit on $F^2$                  | 1.029                                                                          | 1.185                                                          | 1.062                                                                          |
| Final <i>R</i> indexes $(I > 2\sigma(I))$ | 0.0357/0.0769                                                                  | 0.0244/0.0657                                                  | 0.0761/0.2307                                                                  |
| Final R indexes (all data)                | 0.0603/0.0847                                                                  | 0.0362/0.0793                                                  | 0.0798/0.2355                                                                  |
| Largest diff peak and hole/e $Å^{-3}$     | 0.40/-0.34                                                                     | 0.46/-0.48                                                     | 2.35/-1.37                                                                     |

Scheme 1 Synthesis of the complexes 2-4



The IR spectra of complexes 2-4 each show three absorption bands in the region of 2048–1921  $\text{cm}^{-1}$ , which can be assigned to the stretching vibrations of the terminal carbonyl ligands, close to those of analogous complexes [29]. The  $\nu$ (C=O) values are redshifted compared to those of the parent complex 1 (2079, 2039, 2009, 1996 cm<sup>-1</sup>) [22] as well as other all-carbonyl complexes [30], which is expected since the phosphine ligands are more strongly electron donating than CO [31]. The <sup>1</sup>H NMR spectrum of complex 3 displays two singlets at 2.01 and 1.73 ppm for the methylene protons, whereas the <sup>1</sup>H NMR spectrum of complex **4** shows two doublets at 2.06 and 1.63 ppm for the corresponding protons,

probably due to the different steric effects of the phosphine coligand. The <sup>31</sup>P{<sup>1</sup>H} NMR spectra of complexes 2 and 4 each show single resonances at 71.57 and 30.26 ppm, respectively, similar to those of some phosphine-substituted diiron analogues [32, 33], but significantly larger than those of the corresponding free phosphines. Meanwhile, the  ${}^{31}P{}^{1}H$ NMR spectrum of complex 3 exhibits a single resonance at 168.07 ppm, notably different to those of complexes 2 and 4 because of the P-O bond in complex 3, but consistent with the complex  $[Fe_2(CO)_5 \{P(OEt)_3\}(\mu-SCH_2CH_2CH_2S)]$ (171.09 ppm) [19]. The <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of complex 2 shows a doublet at 216.90 ppm with a coupling constant  $J_{P-C} = 10.5$  Hz for the terminal carbonyls of the PFe(CO)<sub>2</sub> moiety, plus a singlet at 210.71 ppm for the terminal carbonyls of the Fe(CO)<sub>3</sub> unit.

# X-ray crystal structures of complexes 2-4

In order to determine the structures of the complexes, X-ray quality crystals were obtained by slow evaporation of  $CH_2Cl_2$ /hexane solutions at 4 °C and analyzed by X-ray diffraction analysis. The ORTEP views are shown in Figs. 1, 2, and 3, and selected geometric data are listed in Table 2. Complex 2 crystallizes in monoclinic space group P2<sub>1</sub>/n with four molecules in the unit cell and one molecule in the asymmetric unit. As shown in Fig. 1, complex **2** contains a diiron unit, which is coordinated by a bridging ethane-1,2-dithiolate ligand, five terminal carbonyls, and a tricyclohexylphosphine ligand. The phosphorus atom of the latter is located in an apical position of the distorted octahedral Fe2 atom, similar to the related phosphinecontaining diiron complexes [Fe<sub>2</sub>(CO)<sub>5</sub>(Ph<sub>2</sub>PCH<sub>2</sub>Ph) ( $\mu$ -SCH<sub>2</sub>CH<sub>2</sub>S)] [34], [Fe<sub>2</sub>(CO)<sub>5</sub>{P(2-C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>)<sub>3</sub>} { $\mu$ -SCH<sub>2</sub>CH(CH<sub>2</sub>O<sub>2</sub>CFc)}] (Fc = ferrocenyl) [35], and [Fe<sub>2</sub>(CO)<sub>5</sub>(PPh<sub>3</sub>)( $\mu$ -SCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S)] [19]. The Fe1–Fe2 bond distance [2.4909(3) Å] is slightly shorter than that



Fig. 3 ORTEP view of complex 4 with 50% probability level ellipsoids. Hydrogen atoms have been omitted for clarity



Table 2 Selected bond distances (Å) and angles (°) for the complexes 2--4

| Complex    | 2           | 3          | 4          |
|------------|-------------|------------|------------|
| Fe1–Fe2    | 2.4909(3)   | 2.5093(4)  | 2.5188(9)  |
| Fe1-S1     | 2.2597(6)   | 2.2471(6)  | 2.2477(14) |
| Fe1–S2     | 2.2674(5)   | 2.2500(7)  | 2.2578(14) |
| Fe2-S1     | 2.2605(5)   | 2.2473(6)  | 2.2420(14) |
| Fe2–S2     | 2.2579(5)   | 2.2467(6)  | 2.2544(13) |
| Fe2–P1     | 2.2582(5)   | 2.2005(6)  | 2.2074(13) |
| S1-C6      | 1.826(2)    | 1.821(3)   | 1.832(6)   |
| S2-C7      | 1.817(2)    | 1.825(3)   | 1.822(6)   |
| C6–C7      | 1.492(3)    | 1.507(4)   | 1.530(9)   |
| S1-Fe1-Fe2 | 56.575(14)  | 56.063(17) | 55.77(4)   |
| S1-Fe1-S2  | 79.291(19)  | 79.82(2)   | 79.75(5)   |
| S2-Fe1-Fe2 | 56.420(14)  | 56.017(17) | 56.00(4)   |
| S1-Fe2-Fe1 | 56.545(15)  | 56.059(17) | 55.98(4)   |
| S2–Fe2–Fe1 | 56.786(14)  | 56.144(18) | 56.13(4)   |
| S2-Fe2-S1  | 79.47(2)    | 79.89(2)   | 79.94(5)   |
| P1-Fe2-Fe1 | 160.337(17) | 149.14(2)  | 153.65(4)  |
| Fe1-S1-Fe2 | 66.880(16)  | 67.878(18) | 68.25(4)   |
| Fe2-S2-Fe1 | 66.794(16)  | 67.839(19) | 67.87(4)   |
| C7-C6-S1   | 112.58(14)  | 112.34(17) | 112.6(4)   |
| C6-C7-S2   | 112.11(15)  | 112.01(17) | 111.0(4)   |

of complex **1** [2.505(2) Å] [36], showing that the tricyclohexylphosphine ligand does not appreciably affect the Fe–Fe bond. The Fe1–Fe2 bond distance is in fact notably shorter than that in natural [FeFe]-hydrogenases (2.55–2.62 Å) [9, 10]. The average Fe–C bond distance of the phosphine-substituted Fe (1.756 Å) is shorter than that of the unsubstituted Fe (1.784 Å), which can be attributed to the phosphine ligand having stronger electron-donating properties than CO [31]. The cyclohexyl rings of the tricy-clohexylphosphine adopt a chair conformation in the crystal structure.

Complex **3** crystallizes in orthorhombic space group Pbca with eight molecules in the unit cell and one molecule in the asymmetric unit. As shown in Fig. 2, similar to complex **2**, complex **3** contains a diiron cluster with a bridging ethane-1,2-dithiolate ligand, plus five terminal carbonyls and an apically coordinated methyl diphenylphosphinite ligand. The Fe1–Fe2 bond distance [2.5093(4) Å] is slightly longer than that of complex **2**, but shorter than some diiron complexes with monophosphine [37] or diphosphine [38, 39] ligands.

Complex 4 crystallizes in triclinic space group P-1 with two molecules in the unit cell and one molecule in the asymmetric unit. As shown in Fig. 3, complex 4 consists of a diiron cluster with a bridging ethane-1,2-dithiolate ligand, plus five terminal carbonyls and an apically coordinated tris(2-thienyl)phosphine ligand. The Fe1–Fe2 bond distance [2.5188(9) Å] is longer than those of complexes 2 and 3, suggesting that tris(2-thienyl)phosphine is more electron donating than tricyclohexylphosphine and methyl diphenylphosphinite.

#### **Electrochemical studies**

The electrochemical properties of complexes 2-4 were studied by CV in acetonitrile solution. The electrochemical data for the complexes 1-4 are listed in Table 3.

Table 3 Electrochemical data for the complexes 1-4

| Complex | $E_{\rm pc1}$ (V) | $E_{\rm pc2}$ (V) | $E_{\rm pa}\left({ m V} ight)$ |
|---------|-------------------|-------------------|--------------------------------|
| 1       | -1.70             | -2.11             | +0.88                          |
| 2       | - 1.97            | _                 | +0.28                          |
| 3       | -1.94             | -2.20             | +0.42                          |
| 4       | -1.88             | -2.10             | +0.41                          |



Fig. 4 Cyclic voltammogram of complex 2 (1.0 mM) with HOAc (0–10 mM) in 0.1 M n-Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at a scan rate of 100 mV s<sup>-1</sup>

Complex 2 shows a single irreversible reduction peak at -1.97 V, which can be ascribed to the reduction of  $Fe^{I}Fe^{I}$  to  $Fe^{I}Fe^{0}$  [40]. This peak is shifted negatively by 0.27 V compared to the first reduction process of complex 1 (-1.70 V), reflecting the fact that the tricyclohexylphosphine ligand is more strongly electron donating than CO [31]. Meanwhile, complex 3 shows two irreversible reduction peaks at -1.94 and -2.20 V; the second reduction can be ascribed to the reduction of Fe<sup>I</sup>Fe<sup>0</sup> to Fe<sup>0</sup>Fe<sup>0</sup> [40], again shifted to more negative potential compared to complex 1 (-2.11 V). Similarly, complex 4 shows two reduction peaks at -1.88 and -2.10 V. In addition, complexes 2-4 each show an irreversible oxidation at +0.28, +0.42, and +0.41 V, respectively, which can be ascribed to the oxidation of Fe<sup>I</sup>Fe<sup>I</sup> to Fe<sup>I</sup>Fe<sup>II</sup> [40]. These peaks are negatively shifted by 0.46-0.60 V compared to complex 1, as observed previously for other phosphine-containing diiron complexes [30, 34, 36].

We further studied the electrocatalytic properties for proton reduction to H<sub>2</sub> catalyzed by complexes **2–4** in the presence of acetic acid (0–10 mM). As shown in Figs. 4, 5, and 6, upon addition of 2 mM acetic acid, the first reduction peak is slightly increased but does not grow steadily with sequential addition of more acid. However, new reduction peaks at -2.13, -2.32, and -2.39 V appear and



Fig. 5 Cyclic voltammogram of complex 3 (1.0 mM) with HOAc (0–10 mM) in 0.1 M n-Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at a scan rate of 100 mV s<sup>-1</sup>



Fig. 6 Cyclic voltammogram of complex 4 (1.0 mM) with HOAc (0–10 mM) in 0.1 M n-Bu<sub>4</sub>NPF<sub>6</sub>/MeCN at a scan rate of 100 mV s<sup>-1</sup>

increase significantly with sequential addition of acetic acid. The sharp increase in current intensity suggests an electrocatalytic process for the reduction of protons to  $H_2$  [41, 42].

### Conclusions

In conclusion, we have presented the synthesis and characterization of three diiron ethane-1,2-dithiolate complexes with monosubstituted phosphine coligands. The X-ray crystal structures of the complexes revealed that they consist of a diiron core with a bridging ethane-1,2-dithiolate ligand, five terminal carbonyls, and an apically coordinated phosphine ligand.

# **Supplementary material**

CCDC 1890166–1890168 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

Acknowledgements This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant LY19B020002, National Natural Science Foundation of China under Grant 21501124, Science & Technology Department of Sichuan Province under Grant 2018JY0235, Education Department of Sichuan Province under Grant 18ZA0337, and Sichuan University of Science & Engineering under Grant S201910622022.

# References

- 1. Tard C, Pickett CJ (2009) Chem Rev 109:2245
- 2. Gloaguen F, Rauchfuss TB (2009) Chem Soc Rev 38:100
- 3. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081
- 4. Rauchfuss TB (2015) Acc Chem Res 48:2107
- 5. Li Y, Rauchfuss TB (2016) Chem Rev 116:7043
- 6. Cammack R (1999) Nature 397:214
- 7. Lemon BJ, Peter JW (1999) Biochemistry 38:12969
- 8. Frey M (2002) ChemBioChem 3:153
- Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853
- Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13
- De Lacey AL, Stadler C, Cavazza C, Hatchikian EC, Fernandez VM (2000) J Am Chem Soc 122:11232
- 12. Fan H, Hall MB (2001) J Am Chem Soc 123:3828
- Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Nature 499:66
- 14. Lawrence JD, Li H, Rauchfuss TB (2001) Chem Commun 1482
- 15. Li H, Rauchfuss TB (2002) J Am Chem Soc 124:726
- Lawrence JD, Li H, Rauchfuss TB, Bénard M, Rohmer MM (2001) Angew Chem Int Ed 40:1768
- 17. Ott S, Kritikos M, Åkermark B, Sun L, Lomoth R (2004) Angew Chem Int Ed 43:1006
- Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (2001) J Am Chem Soc 123:3268
- 19. Li P, Wang M, He C, Li G, Liu X, Chen C, Åkermark B, Sun L (2005) Eur J Inorg Chem 2005:2506

- 20. Song LC, Yan J, Li YL, Wang DF, Hu QM (2009) Inorg Chem 48:11376
- 21. Capon JF, Hassnaoui SE, Gloaguen F, Schollhammer P, Talarmin J (2005) Organometallics 24:2020
- 22. Winter A, Zsolnai L, Huttner G (1982) Z Naturforsch 37b:1430
- Justice AK, Nilges MJ, Rauchfuss TB, Wilson SR, De Gioia L, Zampella G (2008) J Am Chem Soc 130:5293
- 24. Olsen MT, Bruschi M, De Gioia L, Rauchfuss TB, Wilson SR (2008) J Am Chem Soc 130:12021
- 25. APEX2, version 2009.7-0, Bruker AXS, Inc., Madison, 2007
- Sheldrick GM (2001) SADABS: program for absorption correction of area detector frames. Bruker AXS Inc., Madison
- 27. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339
- 28. Sheldrick GM (2008) Acta Crystallogr A 64:112
- 29. Lian M, He J, Yu XY, Mu C, Liu XF, Li YL, Jiang ZQ (2018) J Organomet Chem 870:90
- Abul-Futouh H, Almazahreh LR, Harb MK, Görls H, El-khateeb M, Weigand W (2017) Inorg Chem 56:10437
- 31. Zhao PH, Li XH, Liu YF, Liu YQ (2014) J Coord Chem 67:766
- 32. Li YL, He J, Wei J, Wei J, Mu C, Wu Y, Xie B, Zou LK, Wang Z, Wu ML, Li HM, Gao F, Zhao PH (2017) Polyhedron 137:325
- Chen FY, He J, Mu C, Liu XF, Li YL, Jiang ZQ, Wu HK (2019) Polyhedron 160:74
- 34. Chen XQ, Liu XF, Jiang ZQ, Zhang YX, Li X, Tian XN, Liu XH (2016) J Coord Chem 69:1439
- 35. Lu DT, He J, Yu XY, Liu XF, Li YL, Jiang ZQ (2018) Polyhedron 149:1
- Ortega-Alfaro MC, Hernández N, Cerna I, López-Cortéz JG, Gómez E, Toscano RA, Alvarez-Toledano C (2004) J Organomet Chem 689:885
- He J, Deng CL, Li Y, Li YL, Wu Y, Zou LK, Mu C, Luo Q, Xie B, Wei J, Hu JW, Zhao PH, Zheng W (2017) Organometallics 36:1322
- Zhao PH, Ma ZY, Hu MY, He J, Wang YZ, Jing XB, Chen HY, Wang Z, Li YL (2018) Organometallics 37:1280
- Zhao PH, Hu MY, Li JR, Ma ZY, Wang YZ, He J, Li YL, Liu XF (2019) Organometallics 38:385
- 40. Song LC, Ge JH, Zhang XG, Liu Y, Hu QM (2006) Eur J Inorg Chem 2006:3204
- 41. Gloaguen F, Lawrence JD, Rauchfuss TB (2001) J Am Chem Soc 123:9476
- 42. Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Dalton Trans 4158

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.