Participation of Anions of Dialkyl Phosphites and Thiophosphites in Aliphatic S_{RN}1 Reactions¹

Glen A. Russell,* Francisco Ros, J. Hershberger, and Hasan Tashtoush

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received November 10, 1981

Dialkyl phosphite or thiophosphite anions react with 2-chloro- or 2-(p-tolylsulfonyl)-2-nitropropane, p-nitrobenzyl chloride, and α, α -dimethyl-p-nitrobenzyl chloride to form in a free radical chain process the α -nitroalkyl or p-nitrobenzyl phosphonates or thiophosphonates which may be reduced to the amino derivatives. 2,2-Dinitropropane reacts with dialkyl phosphite or dimethyl thiophosphite ions to form the dialkyl phosphate or thiophosphate esters of acetone oxime. The relative reactivities of a series of anions toward Me_2CNO_2 , p-O₂NPhCH₂, and $p-O_2NPhC(Me)_2$ are reported.

Dialkyl phosphites are known to participate as nucleophiles in aromatic $S_{RN}1$ processes.² In a communication we have described the reaction of dimethyl and diethyl phosphite anions with the α -chloro and α -(p-tolylsulfonyl) derivatives of 2-nitropropane and nitrocyclopentane to yield the (α -nitroalkyl)phosphonates.³ With X = p-

$$R_{2}C(X)(NO_{2}) + (R'O)_{2}PO^{-}K^{+} \xrightarrow[-45-25 \circ C]{} R_{2}C(NO_{2})P(O)(OR')_{2}$$
(1)
1a, R = Me; R' = Me (62%)
1b, R = Me; R' = Et (75%)
1c, R_{2} = -(CH_{2})_{4}^{-}; R' = Et (80\%)

MePhSO₂ the reaction was inhibited by $(t-Bu)_2NO$ or by oxygen.³ The chain reaction leading to substitution was thus formulated as an $S_{RN}\mathbf{1}$ process.^{4,5} We have now extended these reactions to the dialkyl thiophosphite anion $((RO)_2PS^-)$ and to 2,2-dinitropropane, p-nitrobenzyl chloride, and α, α -dimethyl-*p*-nitrobenzyl chloride as the substrate.

$$R_{2}C(X)NO_{2}^{-} \rightarrow R_{2}\dot{C}NO_{2} + X^{-}$$

$$R_{2}\dot{C}NO_{2} + (R'O)_{2}PO^{-} \rightarrow (R'O)_{2}P(O)CR_{2}NO_{2}^{-} \cdot$$

$$(R'O)_{2}P(O)CR_{2}NO_{2}^{-} + R_{2}C(X)NO_{2} \rightarrow$$

$$R_{2}C(X)NO_{2}^{-} \cdot + (R'O)_{2}P(O)CR_{2}NO_{2}$$

Reaction of Me₂C(Cl)NO₂ with (EtO)₂PSLi yielded mainly (EtO)₂P(S)Cl, even with sunlamp irradiation in THF. Apparently the thiophosphite ion attacks the halogen atom of $Me_2C(Cl)NO_2$ in an S_N2 process. With 2-(p-tolylsulfonyl)-2-nitropropane, this $S_N 2$ process was not observed and a 30% yield of the $(\alpha$ -nitroalkyl)thiophosphonate (2b) was obtained with $(EtO)_2$ PSK in Me₂SO. Essentially the same yield of 2b was observed in Me₂SO in the dark (3.5 h at 25 °C). The photostimulated reaction

$$Me_{2}C(X)NO_{2} + (RO)_{2}PS^{-}K^{+} \xrightarrow{Me_{2}SO} \xrightarrow{h\nu_{r}, 3.5 h} Me_{2}C(NO_{2})P(S)(OR)_{2} + X^{-}$$
(2)

$$2a, R = Me; 30\% X = NO_{2}$$
(2)

$$2b, R = Et; 30\% X = p-MePhSO_{2}$$

was strongly inhibited by 5 mol % (t-Bu)₂NO (18% yield of product in 3.5 h) or by 40 mol % of $p-O_2NPhNO_2$ (9%

yield in 3.5 h) and a more severe retardation by these inhibitors was observed in the dark reaction. The results are consistent with a thermally initiated electron-transfer process which can be further stimulated by irradiation.

Reaction of (EtO)₂PO⁻K⁺ or (MeO)₂PO⁻K⁺ with Me₂C- $(NO_2)_2$ did not follow reaction 1. Instead, the dialkyl phosphate esters of acetone oxime were the major products (reaction 3). The phosphate ester **3b** had been previously

$$Me_{2}C(NO_{2})_{2} + (RO)_{2}PX^{-}K^{+} \xrightarrow{THF, h_{\nu, 2}h} Me_{2}C \xrightarrow{=} NOP(X)(OR)_{2} \quad (3)$$

$$3a, R = Me; X = O \quad (35\%)$$

$$3b, R = Et; X = O \quad (55\%)$$

$$3c, R = Me; X = S \quad (tr)$$

$$3d, R = Et; X = S \quad (20\%)$$

prepared by the reaction of $(EtO)_2P(O)Cl$ with acetone oxime.⁶ Reaction 3 is postulated to proceed by a nucleophilic attack of (RO)₂PO⁻ on the nitro group to yield $(RO)_2P(O)NO_2$ and $Me_2C=NO_2$. A second displacement by the nitronate would yield $(RO)_2P(O)ON(O)=CMe_2$ which could transfer the nitrite oxygen to a second equivalent of the dialkyl phosphite anion. Reaction of $Me_2C(NO_2)_2$ with $(EtO)_2PS^-K^+$ for 2 h at -78-25 °C in THF yielded the thiophosphate ester 3d. There was no effect of $(t-Bu)_2NO$ upon the yield of 3d. Surprisingly, $Me_2C(NO_2)_2$ and $(MeO)_2PS^-K^+$ at -78 °C gave mainly 2a $(2a/3c \simeq 20:1)$. The presence of $(t-Bu)_2$ NO- completely suppressed the formation of 2a at -78 °C. The α -nitroalkyl phosphonates or thiophosphonates were easily reduced by tin and hydrochloric acid to the α -aminoalkyl phosphonates or thiophosphonates which showed no tendency to form condensation polymers upon heating neat or in basic media.

$$O_{2}NCMe_{2}P(X)(OR)_{2} \xrightarrow{Sn/H_{2}O-HCl} NH_{2}CMe_{2}P(X)(OR)_{2} \quad (4)$$
4a, X = O; R = Me (72%)
4b, X = O; R = Et (74%)
4c, X = S; R = Me (80%)

Reactions of *p*-nitrobenzyl or α . α -dimethyl-*p*-nitrobenzyl chlorides with $(RO)_2PO^-M^+$ or $(RO)_2PS^-M^+$ (M = Li, Na,K) in MeOH, EtOH, THF, Me₂SO, or HMPA yielded 5.

> p-O₂NPhCR₂P(X)(OR')₂ 5a, R = H;R' = Et; X = O 5b, R = H; R' = Me; X = S5c, R = H; R' = Et; X = S5d, R = Me; R' = Et; X = O5e, R = Me; R' = Et; X = S

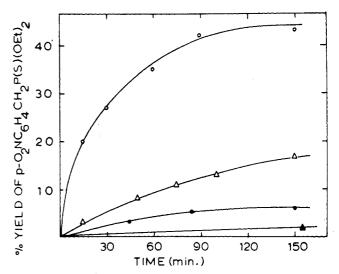
⁽¹⁾ Electron Transfer Processes. 30. This work was supported by Grant CHE-7823866 from the National Science Foundation.

Bunnett, J. F. Acc. Chem. Res. 1978, 11, 413.
 Russell, G. A.; Hershberger, J. Chem. Commun. 1980, 216.
 Russell, G. A.; Danen, W. C. J. Am. Chem. Soc. 1966, 88, 5603; 1968. 90. 347.

⁽⁵⁾ Korblum, N.; Boyd, S. D.; Pinnick, H. W.; Smith, R. G. J. Am. Chem. Soc. 1971, 93, 4316.

⁽⁶⁾ Allen, J. F., U.S. Patent 2816128, Dec 10, 1957; Chem. Abstr. 1958, 52. 5449e.

Table I. Competition in the S_{RN1} Reaction of Pairs of Anions with $Me_2C(O_2SPh-p-Me)NO_2$, $p-O_2NPhCH_2Cl$, and $p-O_2NPhC(CH_3)_2Cl^a$


radical	A-	B⁻	counterion/ solvent		% yield of adducts	
				temp, °C	from A	from B
Me ₂ ĊNO ₂	(EtO) ₂ PS ⁻	Me ₂ C=NO ₂ ⁻	K ⁺ /Me ₂ SO	25	36	25
Me ₂ ĊNO ₂	$(EtO)_2 PO^-$	Me ₂ C=NO ₂	K ⁺ /Me ₂ SO	25	11	74
Me ₂ ĊNO ₂	$(EtO)_2 PS^-$	(EtO ₂ C) ₂ CMe ⁻	K ⁺ /Me ₂ SO	25	24	33
Me, ĊNO,	(EtO) ₂ PO ⁻	(EtO ₂ C) ₂ CMe ⁻	K ⁺ /Me ₂ SO	25	27	50
Me ₂ CNO ₂	(EtO), PS ⁻	(EtO),PO ⁻	K ⁺ /THF	0	26	28
Me ₂ ĊNO ₂	(EtO) ₂ PS ⁻	Me ₂ C=NO ₂	Li ⁺ /Me ₂ SO	25	34	30
Me ₂ CNO ₂	(EtO) ₂ PO ⁻	Me ₂ C=NO ₂	Li ⁺ /Me ₂ SO	25	0	100
Me ₂ CNO ₂	(EtO), PO ⁻	(EtO ₂ C) ₂ CMe ⁻	Li ⁺ /Me ₂ SO	25	0	94
Me ₂ CNO ₂	Me ₂ C=NO ₂	(EtO,C),CMe ⁻	Li ⁺ /Me,SO	25	87	13
Me ₂ CNO ₂	PhS ⁻	Me ₂ C=NO ₂	Li ⁺ /Me ₂ SO	25	57	9 ⁶
Me ₂ CNO ₂	PhS ⁻	(EtO ₂ C) ₂ CMe ⁻	Li ⁺ /Me,SO	25	44	5 <i>°</i>
p-O ₂ NPhCH ₂ ·	$(EtO)_2 PS^-$	Me ₂ C=NO ₂	Li ⁺ /DMF	0	55	14
$p - O_2 NPhCH_2$	(EtO) ₂ PO ⁻	Me ₂ C=NO ₂ ⁻	Li ⁺ /DMF	0	~ 5	25
$p - O_2 NPhCH_2$	$(EtO)_2^{-}PS^{-}$	(EtO) ₂ PO ⁻⁷	Li ⁺ /DMF	0	49	0
$p - O_2 NPh CH_2$	$(EtO)_2 PS^-$	$Me_2C=NO_2^{-1}$	Li ⁺ /EtOH	-23	65	15
p-O_NPhCH_	(EtO),PO ⁻	Me ₂ C=NO ₂	Na⁺/EtOH	25	0	69
p-O,NPhCH,	$(EtO)_2 PS^-$	(EtO),PO ⁻	Na ⁺ /EtOH	25	59	0
p-O,NPhCH,	(EtO) ₂ PO ⁻	Me,C=NO,	Li+/THF	25	15	18
$p \cdot O_2 NPh CMe_2$	(EtO), PS ⁻	Me,C=NO,	Li */Me ,SO	25	98	0
p-O, NPhCMe,	$(EtO)_2 PS^-$	(EtO ₂ C) ₂ CMe ⁻	Li ⁺ /Me,SO	25	58	0
p-O, NPhCMe,	(EtO), PS ⁻	(EtO)₂ÝÔ⁻	K†/HMPA	25	42	~ 5

^a Solutions were 0.1 M in substrate and each anion. All experiments performed with sunlamp irradiation. ^b Source of $O_2NCMe_2CMe_2NO_2$ is uncertain (see footnote c). ^c 11% of $O_2NCMe_2CMe_2NO_2$ isolated.

The reactions of p-O₂NPhCH₂Cl proceed at least partially by the $S_{RN}1$ scheme. Thus, under standard conditions (Li⁺, 20 h of sunlamp irradiation at -78-25 °C in THF), the yield of 5a was reduced from 34% to 9% by the presence of 5 mol % of $(t-Bu)_2NO$. The yield of 5c from a 15-min reaction at 0 °C in EtOH using (EtO)₂PS⁻Li⁺ was 58% with sunlamp irradiation, 50% with ordinary laboratory lighting, 29% in the dark, 12% in the dark in the presence of 15 mol % $(t-Bu)_2NO_2$, and 16% in the presence of O_2 with ordinary lighting. Figure 1 illustrates the effect of irradiation and inhibitors on the yield of 5c at -23 °C in EtOH, using $(EtO)_2PS^-Na^+$. In a similar fashion the yield of 5e from $(EtO)_2Ps^-Li^+$ in Me₂SO (2 h, 25 °C) was 64% with sunlamp irradiation but only 22% in the dark with 20 mol % $(t-Bu)_2NO_2$, while in DMF (30 min, 0 °C), the yield was 86% with sunlamp irradiation, 72% in the dark, and only 10% in the dark in the presence of 15 mol % of $(t-Bu)_2$ NO. The yield of 5d (K⁺, 9 h of sunlamp irradiation at 25 °C in HMPA) was reduced from 51% to ~5% by the presence of 10 mol % of $(t-Bu)_2NO$.

The reaction of $(EtO)_2PO^-Na^+$ in EtOH at 25 °C for 18 h with p-NO₂PhCH₂Cl yielded mainly (38%) trans-p,p'dinitrostilbene and only 14% of **5a** with 25% recovery of p-O₂NPhCH₂Cl. In the presence of 15 mol % of (t-Bu)₂NO, none of the stilbene was formed⁷ and the yield of **5a** was decreased to 8%.

The relative reactivities of Me_2CNO_2 (from $Me_2C-(O_2SPhMe-p)NO_2^{-})$, $p-O_2NPhCH_2$. (from $p-O_2NPhCH_2Cl^{-}$), and $p-O_2NPhC(Me)_2$. (from $p-O_2NPhC-(Me)_2Cl^{-}$) were determined toward $(EtO)_2PS^{-}$, $(EtO)_2PO^{-}$, $Me_2C^{-}=NO_2^{-}$, and $(EtO_2C)_2CMe^{-}$ by competitive reactions (Table I). It has been previously established⁸ that with $Me_2C(X)NO_2$ as the substrate, the ratio of the two products formed was determined by the values of k_A and k_B

Figure 1. Yield of alkylation product from the reaction of p-O₂NPhCH₂Cl (0.07 M) with (EtO)₂PS⁻Na⁺ (0.07 M) in EtOH at -23 °C: (O) sunlamp irradiation, (Δ) in ordinary laboratory lighting, (\bullet) dark, (Δ) sunlamp irradiation with 5 mol % (*t*-Bu)₂NO· added.

and it is assumed that a similar situation exists for p-O₂NPhCH₂Cl and p-O₂NPhC(Me)₂Cl although for p-O₂NPhCH₂Cl, S_N2 substitution may be a competing process.

$$Me_{2}\dot{C}NO_{2} + A^{-} \xrightarrow{k_{A}} Me_{2}C(A)NO_{2}^{-} \xrightarrow{-e} Me_{2}C(A)NO_{2}$$
$$Me_{2}\dot{C}NO_{2} + B^{-} \xrightarrow{k_{B}} Me_{2}C(B)NO_{2}^{-} \xrightarrow{-e} Me_{2}C(B)NO_{2}$$

The data of Table I for Me_2CNO_2 complement the relative reactivities previously reported in Me_2SO with $K^+[2.2.2]$ cryptand and Li⁺ at various concentrations as the counterions.⁸ With K⁺ as the counterion in Me_2SO , a reactivity series of $Me_2C=NO_2^-$, $(EtO_2C)_2CMe^- >$ $(EtO)_2PS^- > (EtO)_2PO^-$ is observed.⁹ With Li⁺ in Me_2SO

⁽⁷⁾ For a discussion of the formation of p,p'-dinitrostilbene by the $S_{\rm RN}$ 1 mechanism, see Russell, G. A.; Pecoraro, J. M. J. Am. Chem. Soc. 1979, 101, 3331.

⁽⁸⁾ Russell, G. A.; Ros, F.; Mudryk, B. J. Am. Chem. Soc. 1980, 102, 7601.

(0.1 M in Li⁺A⁻ and Li⁺B⁻), the reactivities are Me₂C= $NO_2^- \sim (EtO)_2 PS^- > (EtO_2C)_2 CMe^- \gg (EtO)_2 PO^-$. Preferential ion pairing of (EtO)₂PO⁻ with Li⁺ has decreased the reactivity of the phosphite and affected the relative reactivities of the other anions.

With p-NO₂PhCH₂ in Na⁺/EtOH or Li⁺/DMF, a reactivity series of $(EtO)_2PS^- > Me_2C=NO_2^- \gg (EtO)_2PO^$ is observed. In Li⁺/THF one experiment yielded a relative reactivity of $Me_2\dot{C}$ =NO₂Li \simeq (EtO)₂POLi. Here, both anions are essentially completely ion paired, and preferentially ion pairing does not contribute to the apparent relative reactivities. Toward p-O₂NPhC(Me₂), (EtO)₂PS⁻ is much more reactive than $Me_2C = NO_2^-$ or $(EtO_2C)_2CMe^ (Li^+/Me_2SO)$ or $(EtO)_2PO^-(K^+/Me_2SO)$. All of the results are consistent with $(EtO)_2PS^-$ being a better trap than $(EtO)_2PO^-$ for α -nitroalkyl radicals, particularly when ion pairing is important.

Experimental Section

2-Chloro-2-nitropropane,¹⁰ 2-(p-tolylsulfonyl)-2-nitropropane,¹¹ 1-(p-tolylsulfonyl)-1-nitrocyclopentane,¹¹ 2,2-dinitropropane,¹² p-nitro- α,α -dimethylbenzyl chloride,¹³ dimethyl thiophosphite,¹⁴ and diethyl thiophosphite¹⁵ were prepared according to literature procedures. Lithium tert-butoxide (mol wt 80.1) was prepared and found to have a neutralization equivalent of 78.5. Solvents were dried and distilled over CaH₂. Reactants were deoxygenated before mixing by a nitrogen stream of bubbles for 15-30 min. Sunlamp irradiation utilized a 275-W lamp 30-50 cm from the reaction flask, while for dark reactions the reaction flask was wrapped with aluminum foil.

Diethyl 2-Nitro-2-propylphosphonate (1b).¹⁶ 2-Chloro-2nitropropane (9 mmol) or 2-(p-tolylsulfonyl)-2-nitropropane (9 mmol) was added to 10 mmol of (EtO)₂PO⁻K⁺ in 30 mL of THF at -45 °C under nitrogen and the mixture was stirred for 30 min at -45 °C, 30 min at -20 °C and 30 min at 0 °C. The THF was vacuum evaporated and the residue extracted from brine with ether. Evaporation of the ether gave a residue shown by ¹H NMR to contain 75% of 1b from 2-chloro-2-nitropropane and 92% of 1b from 2-(p-tolylsulfonyl)-2-nitropropane. Repetition using 135 mmol of 2-chloro-2-nitropropane gave a distilled yield of 1b of 63%: bp 94-95 °C (0.2 torr); ¹H NMR (CDCl₃) δ 1.38 (t, J = 6 Hz, 6 H), 1.75 (d, J_{PH} = 16 Hz, 6 H), 4.0–4.5 (m, 4 H); ¹³C NMR (proton decoupled, CDCl₃) δ 85.6 (d, J_{PC} = 150 Hz), 63.5 (d, J_{PC} = 7.3 Hz), 22.1 (s), 15.7 (d, J_{PC} = 4.9 Hz); ³¹P NMR (proton decoupled, CDCl₃) δ (H₃PO₄) 17.2 (s); IR (neat) 2950 (m), 1550 (vs), 1470 (w), 1400 (m), 1370 (m), 1340 (w), 1260 (s), 1160 (w), 1045 (vs, br), 1015 (vs, br), 970 (s, br), 855 (s) 770 (w) cm⁻¹; mass spectrum, m/e 179.0837 (M⁺ - NO₂ = C₇H₁₆O₃P requires 179.08295).

Anal. Calcd for C₇H₁₆NO₅P: C, 37.34; H, 7.16. Found: C, 37.62; H, 7.27.

Dimethyl 2-Nitro-2-propylphosphonate (1a). The above procedure utilizing 40 mmol of Me₂C(Cl)NO₂ and (MeO)₂PO⁻K⁺ gave a 60% yield of 1a: bp 80-81 °C (0.1 torr); ¹H NMR (CDCl₃) δ 1.82 (d, $J_{\rm PH}$ = 14 Hz, 6 H), 3.93 (d, $J_{\rm PH}$ = 18 Hz, 6 H); IR (neat) 1270, 1550 (NO₂) cm⁻¹; mass spectrum, m/e (relative intensity) 197 (2, M⁺), 151.0524 (84, M⁺ - NO₂ = $C_5H_{12}O_3P$ requires 151.0520), 109 (100).

Anal. Calcd for C5H12NO5P: C, 30.46; H, 6.14; N, 7.10. Found: C, 30.61; H, 6.30; N, 7.05.

1-Nitro-1-(diethoxyphosphinyl)cyclopentane (1c). Reaction of 9 mmol of 1-(p-tolylsulfonyl)-1-nitrocyclopentane with 18

Krawiecki, C.; Michalski, J. J. Chem. Soc. 1960, 881.
 Petrov, K. A.; Chavzov, V. A.; Pastukhova, L. V.; Bogdanov, W.

mmol of $(EtO)_2PO^-K^+$ according to the above procedure gave 75% of 1e isolated by Kugelrohr distillation at 95 °C (0.4 torr): ¹H NMR (CDCl₃) δ 1.35 (t, J = 7 Hz, 6 H), 1.5–3.0 (m, 8 H), 3.9–4.4 (m, 4 H); IR (neat) 1260, 1545 (NO₂) cm⁻¹; mass spectrum, m/e205.09936 (C₉H₁₀NO₅P requires 205.09943).

Anal. Calcd for C9H18NO5P: C, 43.03; H, 7.22. Found: C, 43.03; H. 7.37.

Diethyl 2-Nitro-2-propylthiophosphonate (2b). Addition of 4.9 mmol of 2-(p-tolylsulfonyl)-2-nitropropane in 11 mL of Me₂SO to 9.8 mmol of (EtO)₂PS⁻K⁺ in 29 mL of Me₂SO at 25 °C gave after 3.5 h a 29% yield of 2b, isolated after hydrolysis of the reaction product by ether extraction and short-path distillation at 70 °C (0.15 torr) and purified by GC on a OV-3 column at 150 °C: ¹H NMR (CCl₄) δ 1.35 (t, J = 8 Hz, 6 H), 1.79 (d, J_{PH} = 16 Hz, 6 H), 4.15 (dq, J_{HH} = 8 Hz, J_{PH} = 11 Hz, 4 H); IR (CCl₄) 1550 (NO₂) cm⁻¹; mass spectrum, m/e 241.05270 (C₇H₁₆NO₄Ps requires 241.05377).

Ânal. Calcd for C₇H₁₆NO₄PS: C, 34.84; H, 6.70; P, 12.84. Found: C, 35.02; H, 6.72; P, 12.65.

Reaction of 3 mmol of Me₂C(Cl)NO₂ and (EtO)₂PS⁻K⁺ in 30 mL of THF at -60 °C with sunlamp irradiation for 4 h gave upon distillation only 5% of 2a and 43% of (EtO)₂P(S)Cl: bp 85-87 °C (10 torr); $n^{25}_{D} = 1.4669$ (lit.¹⁷ bp 71.5–72 °C (7 torr); $n^{25}_{D} =$ 1.4684).

Dimethyl 2-Nitro-2-propylthiophosphonate 2a. Addition of 28 mmol of 2,2-dinitropropane in 10 mL of THF to 40 mmol of $(Me_2O)_2PO^-K^+$ in 50 mL of THF at -45 °C with sunlamp irradiation yielded, after 1 h at -45 °C and 1 h at 25 °C, 30% of 2a isolated by short-path distillation (80-82 °C (0.9 torr)) of the ethereal extract obtained from the reaction product after vacuum removal of the THF and hydrolysis in 30% brine: ¹H NMR $(\text{CDCl}_3) \delta 1.85 \text{ (d, } J_{\text{PH}} = 16 \text{ Hz}, 6 \text{ H}), 3.78 \text{ (d, } J_{\text{PH}} = 14 \text{ Hz}, 6 \text{ H});$ IR (neat) 1550, 1320 (NO₂) cm⁻¹; mass spectrum, m/e (relative intensity) 213 (2.9), 183 (43), 167 (21), 135 (68), 125 (51), 95 (52), 93 (84), 73 (100).

Diethyl Phosphate Ester of Acetone Oxime (3b). To 40 mmol of (EtO)₂PO⁻K⁺ in 30 mL THF at -78 °C was added 18 mmol of $Me_2C(NO_2)_2$ in 10 mL THF over 10 min. After 1 h at -78 °C with sunlamp irradiation, the solution was warmed to 25 °C and irradiated for an additional 1 h. The THF was removed by rotatory evaporation, the residue extracted from 30% brine by Et_2O , and the ether extract washed and dried (MgSO₄). Vacuum distillation gave a 55% yield of 3a: bp 95-97 °C (0.2 torr); ¹H NMR (CDCl₃) δ 1.36 (t, J = 8 Hz, 6 H), 2.01 (s, 6), 4.20 (dq, 4 H); ¹H NMR $(C_6D_6) \delta 1.34 (t, J = 8 Hz, 6 H)$, 1.56 (s, 3 H), 1.62 (s, 3 H), 4.15 (dq, 4 H); ¹³C NMR (proton decoupled, CDCl₃) δ 164.6 (d, J_{PC} = 13 Hz), 64.4 (d, J_{PC} = 5.8 Hz), 21.4 (s), 16.2 (s), 16.1 (s); ³¹P NMR (proton decoupled, CDCl₃) δ 139.2 (H₃PO₄); IR (neat) 1650 (C=N) cm⁻¹; mass spectrum, m/e (relative intensity) 167 (0.13), 153 (1.93), 125 (9.9), 81 (8.5), 56 (100). The material had identified spectroscopic properties to those of the product of the reaction of Me₂C=NOH and (EtO)₂P(O)Cl.

Anal. Calcd for C₇H₁₆NO₄P: H, 7.65; N, 6.70; P, 14.83. Found: H, 7.43; N, 6.54; P, 14.55.

Dimethyl Phosphate Ester of Acetone Oxime (3a). The above procedure utilizing (MeO)₂PO⁻K⁺ gave a 30% yield of O₂NCMe₂CMe₂NO₂ (mp 210 °C) and a 35% yield of 3a: bp 40 °C (0.3 torr); ¹H NMR (CDCl₃) δ 2.01 (s, 6 H), 3.65 (d, $J_{PH} = 14$ Hz, 6 H); ¹H NMR (C₆D₆) δ 1.65 (s, 3 H), 1.68 (s, 3 H), 3.62 (d, $J_{\rm PH} = 12$ Hz, 6 H); ¹³C NMR (proton decoupled, C₆D₆) δ 165.2 $(d, J_{PC} = 12.4 \text{ Hz}), 54.5 (d, J_{PC} = 5 \text{ Hz}), 20.7 (s), 15.6 (s); IR (neat)$ 1640 (C==N) cm⁻¹; mass spectrum, m/e (relative intensity) 181 (0.01), 109 (9.7), 79 (4.1), 56 (100).

Diethyl Thiophosphate Ester of Acetone Oxime (3d). Addition of 10 mmol of 2,2-dinitropropane in 10 mL of THF to 20 mmol of (EtO)₂PS⁻K⁺ in 35 mL of THF at -78 °C under nitrogen gave, after sunlamp irradiation for 1 h at -78 °C and 1 h at 25 °C, a 20% yield of 3d isolated by short-path distillation (95 °C (0.6 torr)) of the ethereal extract obtained from the reaction product after removal of the THF under vacuum and hydrolysis with 30% brine: ¹H NMR (CDCl₃) δ 1.34 (t, J = 8 Hz, 6 H), 2.02 (s, 6 H), 4.12 (dq, 4 H); ¹H NMR (C_6D_6) δ 1.32 (t, J = 8 Hz, 6 H),

⁽⁹⁾ For the free ions (K⁺[2.2.2]cryptand) in Me₂SO, the relative reactivities toward Me₂CNO₂ are (EtO₂C)₂CMe⁻ (10), (EtO₂C)₂CH⁻ (6), Me₂=NO₂⁻ (1), (EtO)₂PS⁻ (0.9), (EtO)₂PO⁻ (0.5).⁸
(10) Seigle, L. W.; Hass, H. B. J. Org. Chem. 1940, 5, 100.
(11) Zeilstra, J. J.; Engberts, J. B. F. N. Recl. Trav. Chim. Pays-Bas

⁽¹²⁾ Kaplan, R. B.; Schechter, H. J. Am. Chem. Soc. 1961, 83, 3535.
(13) Okamoto, Y.; Brown, H. C. J. Am. Chem. Soc. 1976, 96, 2268.
(14) Lewis, E. S.; Nieh, E. C. J. Am. Chem. Soc. 1976, 681

N. Zh. Obshch. Khim. 1976, 46, 1246.

⁽¹⁷⁾ Fletcher, J. H.; Hamilton, J. C.; Hechenbeikner, I.; Hoegberg, E. I.; Sertl, B. J.; Cassaday, J. T. J. Am. Chem. Soc. 1948, 70, 3943.

1.62 (s, 3 H), 1.68 (s, 3 H), 4.05 (dq, 4 H); IR (neat) 1640 (C=N) cm⁻¹; mass spectrum, m/e (relative intensity) 225 (0.3), 169 (8), 141 (7), 97 (55), 56 (100).

Diethyl 2-Amino-2-propylphosphonate (4b). Treatment of 20 mmol of 1b in 5 mL of ethanol (80%)-H₂O (20%) with 5 g of Sn and 9 mL of concentrated hydrochloric acid, followed by 30 min under reflux, gave a product which, after neutralization by 20% aqueous NaOH, filtration, and ether extractions, yielded upon distillation 74% of 4b: bp 70-72 °C (0.2 torr); ¹H NMR (CDCl₃) δ 1.32 (d, J_{PH} = 16 Hz, 6 H), 1.32 (s, 2 H), 1.37 (t, J = 8 Hz, 6 H), 4.23 (dq, 4 H); ¹³C NMR (proton decoupled, CDCl₃) 60.7 (d, J_{PC} = 8.6 Hz), 47.5 (d, J_{PC} = 148 Hz), 23.7 (d, J_{PC} = 5.8 Hz), 15.1 (d, J_{PC} = 4.9 Hz); ³¹P (proton decoupled, CDCl₃) δ 32.64 (H₃PO₄); IR (neat) 3330, 3290, 1230 (primary amine) cm⁻¹; mass spectrum, m/e (relative intensity) 195.10244 (0.13, required for C₇H₁₈NO₃P 195.10247), 111 (6.4), 83 (11), 58 (100).

Dimethyl 2-Amino-2-propylphosphonate (4a). Repetition of the above reduction procedure with 1a yielded 4a in 72% yield: ¹H NMR (CDCl₃) δ 1.25 (d, $J_{PH} = 18$ Hz, 6 H), 1.34 (s, 2 H), 3.80 (d, $J_{PH} = 13$ Hz, 6 H); IR (neat) 3380, 3280, 1240 cm⁻¹; mass spectrum, m/e (relative intensity) 167 (0.03), 152 (0.44), 93 (3.76), 58 (100).

Dimethyl 2-Amino-2-propylthiophosphonate (4c). Reduction of **2a** gave an 80% yield of **4c**: ¹H NMR (CDCl₃) δ 1.32 (d, $J_{PH} = 18$ Hz, 6 H), 1.82 (br s, 2 H), 3.78 (d, $J_{PH} = 14$ Hz, 6 H); IR (neat) 3290, 3380 cm⁻¹; mass spectrum, m/e (relative intensity) 183 (0.07), 128 (0.16, ${}^{34}SC_{2}H_{7}O_{2}P$), 126 (3.62, ${}^{32}SC_{9}H_{7}O_{2}P$), 93 (8.6), 58 (100).

Diethyl (*p***-Nitrobenzyl)phosphonate (5a).** Addition of 18 mmol of p-O₂NPhCH₂Cl in 14 mL of THF to 18.4 mmol of (EtO)₂PO⁻K⁺ in 60 mL of THF with sunlamp irradiation at -78 °C followed by a reaction period of 7 h at -80 °C and 12 h of warming to 25 °C gave a brown solution, which was added to dilute hydrochloric acid and extracted with ether to give upon distillation a 26% recovery of p-O₂NPhCH₂Cl and 26% of 5a: bp 147-150 °C (0.1 torr); $n^{25}_{\rm D} = 1.5209$ (lit.¹⁸ bp 148-153 °C (0.1 torr); $n^{25}_{\rm D} = 1.5220$).

Reaction of p-O₂NPhCH₂Cl with (EtO)₂PO⁻Na⁺ (from (EtO)₂POH and NaOEt) in EtOH for 18 h at 25 °C with sunlamp irradiation gave 14% of **5a**, 25% recovery of p-O₂NPhCH₂Cl, and 38% of p-O₂NPhCH=CHPh-p-NO₂, mp 295–300 °C (lit.¹⁹ mp 293 °C).

Dimethyl (*p*-Nitrobenzyl)thiophosphonate (5b). Reaction of 25 mmol of *p*-O₂NPhCH₂Cl with 20 mmol of (MeO)₂PS⁻Na⁺ in 133 mL of MeOH with sunlamp irradiation for 18 h at 25 °C gave, after pouring of the mixture into water, ether extraction, and distillation, 25% recovery of *p*-O₂NPhCH₂Cl and 39% of 5b: bp 153-156 °C (0.15 torr); mp 59-62 °C; ¹H NMR (CDCl₃) δ 3.48 (d, *J*_{PH} = 20 Hz, 2 H), 3.70 (d, *J*_{PH} = 14 Hz, 6 H), 7.45 (dd, *J*_{HH} = 9 Hz, *J*_{PH} = 3 Hz, 2 H), 8.17 (d, *J* = 9 Hz, 2 H); IR (CCl₄) 1520, 1343 (NO₂) cm⁻¹; mass spectrum, *m/e* 261.02244 (required for C₉H₁₂NO₄PS, 261.02247).

Anal. Calcd for C₉H₁₂NO₄PS: C, 41.37; H, 4.64; P, 11.85. Found: C, 41.48; H, 4.51; P, 11.57.

Repetition of the experiment in EtOH gave a 70% yield (by 1 H NMR) of diethyl (*p*-nitrobenzyl)thiophosphonate.

Diethyl (*p*-Nitrobenzyl)thiophosphonate (5c). Reaction of 21 mmol of p-O₂NPhCH₂Cl with 23 mmol of (EtO)₂PS⁻Na⁺ in 130 mL of EtOH with sunlamp irradiation for 6 h at 0 °C followed by treatment with water and ether gave after distillation 14% of p-O₂NPhCH₂Cl and 67% of 5c: bp 172 °C (0.7 torr); ¹H NMR (CCl₄) δ 1.23 (t, J = 7 Hz, 6 H), 3.38 (d, $J_{PH} = 20$ Hz, 2 H), 4.01 (dq, $J_{HH} = 7$ Hz, $J_{PH} = 10$ Hz, 4 H), 7.41 (dd, $J_{HH} = 9$ Hz, $J_{PH} = 3$ Hz, 2 H), 8.12 (d, J = 9 Hz, 2 H); IR (neat) 1520, 1345 (NO₂) cm⁻¹; mass spectrum, m/e 289.05414 (required for C₁₁H₁₆NO₄PS, 289.05377).

Anal. Calcd for $C_{11}H_{16}NO_4PS$: C, 45.66; H, 5.59; P, 10.70. Found: C, 45.86; H, 5.65; P, 10.57.

Diethyl (α,α -**Dimethyl**-*p*-nitrobenzyl)phosphonate (5d). Reaction of 1.4 mmol of *p*-O₂NPhCMe₂Cl with 1.4 mmol of (EtO)₂PO⁻K⁺ in 6.3 mL of HMPA with sunlamp irradiation for 9 h at 25 °C gave after hydrolysis, ether extraction, and distillation 34% of 5d: bp 113–120 °C (0.07 torr); ¹H NMR (CDCl₃) δ 1.23 (t, J = 7 Hz, 6 H), 1.70 (d, $J_{PH} = 17$ Hz, 6 H), 4.04 (p, $J_{HH} = J_{PH} = 7$ Hz, 4 H), 7.82 (dd, $J_{HH} = 10$ Hz, $J_{PH} = 3$ Hz, 2 H), 8.33 (d, J = 10 Hz, 2 H); IR (neat) 1520, 1350 (NO₂), 1245 (P=O) cm⁻¹; mass spectrum, m/e 301.10708 (required for C₁₃H₂₀NO₅P, 301.10792).

Anal. Calcd for $C_{13}H_{20}NO_5P$: C, 51.82; H, 6.70; N, 4.65; P, 10.28. Found: C, 51.90; H, 6.80; N, 4.43; P, 9.99.

Diethyl (α,α -Dimethyl-*p*-nitrobenzyl)thiophosphonate (5e). Reaction of 1.4 mmol of *p*-O₂NPhCMe₂Cl with 1.4 mmol of (EtO)₂PS⁻Li⁺ in 12 mL of Me₂SO with sunlamp irradiation for 2 h at 25 °C gave after hydrolysis, ether extraction, and distillation 64% of 5e: bp 146–150 °C (0.2 torr); mp 60–63 °C; ¹H NMR (CCl₄) δ 1.21 (t, J = 7 Hz, 6 H), 1.64 (d, $J_{PH} = 18$ Hz, 6 H), 3.95 (dq, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 4 H), 7.59 (dd, $J_{HH} = 10$ Hz, $J_{PH} =$ 3 Hz, 2 H), 8.14 (d, J = 10 Hz, 2 H); IR (neat) 1520, 1345 (NO₂) cm⁻¹.

Anal. Calcd for $C_{13}H_{20}NO_4PS$: C, 49.19; H, 6.36; P, 9.76. Found: C, 49.46; H, 6.47; P, 9.52.

Competitive S_{RN} **1 Alkylations.** Solutions were prepared to be 0.1 M in each of two anions and the substrate by the addition of 1 equiv of the conjugate acid of each anion to 2 equiv of the base (Me₃CO⁻Li⁺, Me₃CO⁻K⁺, or EtO⁻Na⁺) followed after 20–30 min by the fast addition with stirring of 1 equiv of Me₂C-(O₂SPh-*p*-Me)NO₂, *p*-O₂NPhCH₂Cl, or *p*-O₂NPhCMe₂Cl. The reactions were stirred under nitrogen with sunlamp illumination until 80–100% of the substrate had been consumed. The reaction products were extracted from water or brine by ether which was removed by vacuum evaporation to give a crude product mixture which was analyzed by ¹H NMR (CDCl₃), using CH₂Br₂ or Me₂SO as an internal standard, or by GC, using PhCH₂OPh as the standard. GC correcting factors were determined for each pure alkylation product.

Registry No. 1a (R = Me; R' = Me), 53753-43-8; **1b** (R = Me; R'= Et), 60171-51-9; 1c (R = (CH₂)₄; R' = Et), 74895-95-7; 2a (R = Me), 80866-07-5; **2b** (R = Et), 80866-08-6; **3a** (R = Me; X = O), 65289-21-6; **3b** (R = Et; X = O), 25461-75-0; **3c** (R = Me; X = S), 80866-09-7; 3d (R = Et; X = S), 80866-10-0; 4a (R = Me; X = O), 53753-41-6; 4b (R = Et; X = O), 16814-09-8; 4c (R = Me; X = S), 80866-11-1; 5a (R = H; R' = Et; X = O), 2609-49-6; 5b (R = H; R' = Me; X = S), 80879-49-8; **5c** (R = H; R' = Et; X = S), 80866-12-2; 5d (R = Me; R' = Et; X = O), 80866-13-3; 5e (R = Me; R' = Et; X = S), 80866-14-4; (MeO)₂PSK, 80866-15-5; (EtO)₂POK, 54058-00-3; (MeO)₂POK, 54057-98-6; (EtO)₂PSK, 71774-85-1; (EtO)₂P(S)Cl, 2524-04-1; (EtO)₂PONa, 2303-76-6; (MeO)₂PSNa, 80866-16-6; (EtO)₂PSNa, 2303-75-5; (EtO)₂PSLi, 75924-85-5; Me₂CNO₂, 17440-63-0; O₂N-*p*-C₆H₄-CH₂, 19019-93-3; O₂N-*p*-C₆H₄-CMe₂, 80866-17-7; $(EtO_2)POLi$, 72726-66-0; $Me_2C = NO_2Li$, 3958-63-2; PhSLi, 2973-86-6; $Me_2C = NO_2K$, 28273-55-4; $(EtO_2C)_2CMeK$, 30014-62-1; $(EtO_2C)_2CMeLi$, 41597-29-9; $Me_2C = NO_2Na$, 24163-39-1; 2-chloro-2-nitropropane, 594-71-8; 2-(p-tolylsulfonyl)-2-nitropropane, 21272-86-6; 1-(p-tolylsulfonyl)-1-nitrocyclopentane, 74895-94-6; 2,2-dinitropropane, 595-49-3; 2,3-dinitro-2,3-dimethyl butane, 3964-18-9; p-nitrobenzyl chloride, 100-14-1; trans-p,p'-dinitrostilbene, 736-31-2; α, α -dimethyl-p-nitrobenzyl chloride, 14500-58-4.

⁽¹⁸⁾ Kagan, F.; Birkenmeyer, P. D.; Strube, R. E. J. Am. Chem. Soc. 1959, 81, 3026.

⁽¹⁹⁾ Bergmann, E.; Hervey, J. Chem. Ber. 1929, 62, 893.