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Abstract—The stereoselective transformation of the cyclopropyl derivative 2, stereoselectively obtained with the Simmons—Smith
reaction of methyl 2,6-di-O-benzyl-a-L-threo-hex-4-enopyranoside (1), into gabosines and deoxy-carbahexoses is described. The
treatment of 2 with mercuric trifluoroacetate in dry methanol gives the organomercuric chloride 3, which by demercuration with
lithium aluminum hydride affords the 4-C-deoxy-4-methyl-1,5-bis-glycoside 4. The acid hydrolysis of 4 produces a mixture of the
two diastereoisomeric 2-methyl-cyclohex-2-enones 6 and 7, catalytically reduced to carba-sugars 10 and 11. Structures and stereo-
chemistry of all isolated compounds were determined by 1D and 2D NMR experiments.

© 2006 Elsevier Ltd. All rights reserved.

McCasland et al.'* and Ogawa and Suami'® introduced
pseudo-sugars and carba-sugars terms, respectively, to
indicate a class of carbocyclic analogues of monosaccha-
rides containing a methylene group in the place of the
pyranose ring oxygen atom and showing very important
biological activities. Particularly, trihydroxylated cyclo-
hexanone and cyclohexenone carba-sugars, named
gabosines, were isolated from Streptomyces strains by
chemical screenings in the search of new secondary
metabolites from natural sources.> Gabosines bearing
a methyl substituent, were detected, isolated and struc-
turally characterized, but initially no biological activity
could be found for them. Later, a variety of biological
activities such as plant growth regulating effects, and
inhibition of glyoxalase-I* and glycosidases® were found.
Recently, Thiericke and co-workers® discovered weak
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DNA-binding properties for A, B, F, N, and O gabo-
sines (Fig. 1) by their so-called biomolecular screening.’

Because of their interesting biological activities, the syn-
thesis of these compounds has stimulated a considerable
interest from organic chemists, who have followed
synthetic strategies involving the transformation of car-
bohydrates to carbocycles®®© and chemical or enzymatic
elaboration of existing carbocycles.®d™" Furthermore,
gabosines reported in Scheme 1 could be devised as
direct chemical precursors of 6-deoxy-carba-pyranose
derivatives, such as carba-fucopyranose, a potential
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Figure 1. Structures of selected gabosines.
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Scheme 1. Reagents and conditions: (a) CH,l,, Et,Zn, Et,O; (b) Hg(OCOCF;),, dry CH3;0H, rt then NaCl/H,O; (¢) NaBH,, THF, rt; (d)

CF;COOH, CH;CN/H,O0, rt and (e) MCPBA, MeOH.

candidate for the inhibition of oligosaccharide process-
ing enzymes.’

Through a project on the elaboration of unsaturated
intermediated derivatives from lactose,!® we have re-
cently studied the cyclopropanation reactions of hex-4-
enopyranosides, such as 1, explaining the stereochemical
aspect of the reaction.!!

In this letter, we describe, for the first time, a sequence of
reactions which allows the stercoselective transformation
of a cyclopropyl derivative into gabosines and 6-deoxy-
carbahexoses. To our best knowledge, until now, there
are no examples which use a cyclopropanation reaction
to transform an hexopyranose into a carba-sugar.

The cyclopropyl derivative 2 was obtained in a near
quantitative yield and with a high stereoselectivity'! in
the Simmons-Smith'? reaction of 4-hexenopyranoside
1 with diethyl zinc and diiodomethane, and was treated
with mercuric trifluoroacetate in dry methanol to give,
after exchange with NaCl, the organomercuric chloride
3 with high yield.!* It is noteworthy that the cyclo-
propane ring-opening takes place with the same high,
if not complete, regio- and stereoselectivity previously
reported for the methanolysis of analogous epoxide of
1 leading to 8'#® (Scheme 1). The crude reaction mixture
was used without purification in the reductive demercu-
ration with lithium aluminium hydride to afford, after
flash-chromatography, the 4-C-deoxy-4-methyl-1,5-bis-
glycoside 4'3 in 71% yield over three steps from 1. The
structure and the stereochemistry of compound 4 were
deduced from its 'H and >*C NMR, COSY and NOE
spectra. Particularly, in the '"H NMR spectrum of 4,
diagnostic signals were doublet (J4 pe = 7.0 Hz) centred
at 0.98 ppm for the methyl protons in 4-position, and a
double quartet for the H-4 proton at 2.44 ppm (J34 =
5.0 Hz).

When the bis-glycoside 4 was submitted to the
same hydrolytic conditions (CF;COOH/H,O/CH;CN
0.1:0.5:1, rt, 12 h) as that reported for the transforma-
tion of the bis-glycoside 8 into the corresponding 1,5-
dicarbonyl-hexose 9,'* a mixture of the two diastereoiso-

meric 2-methyl-cyclohex-2-enones 6'°® and 7,'7 was
obtained, which were isolated, after flash-chromato-
graphy, in 65 and 20% yield, respectively. It could be
reasonably supposed that, in the acid reaction medium,
after the expected formation of the dicarbonyl com-
pound 5, a fast intramolecular aldol condensation takes
place, affording two diastereoisomeric cyclohexanone
intermediates, which subsequently loose water with high
regiochemistry from 2,3-position, to give the o,B-unsat-
urated ketones 6 and 7, the structure and stereochemis-
try of which determined by 1D and 2D (NOE, COSY
and HETCOR) NMR experiments. The "H NMR spec-
trum of 6'® shows a double doublet centred at 6.58 ppm
for the unsaturated H-3 proton which couples with
methyl protons at 1.82 ppm (d, J=1,5Hz) and H-4
proton at 4.24ppm (J=2.5Hz). The H-6 proton
appears as a doublet at 3.85 ppm with a large Jux/ax =
11.0 Hz because of the coupling with the adjacent H-5
proton at 4.04 ppm (dd, Jux/eq = 8.0 Hz), which in its
turn couples with the H-4 proton. NOE experiments
confirmed the assigned stereochemistry, showing, in par-
ticular, an enhancement (6%) of the H-6 signal upon
irradiation of the H-4 proton, and vice versa. The 'H
NMR spectrum of 7,!7 corresponding to the 2,6-di-O-
benzyl derivative of Gabosine A, shows a double dou-
blet (/= 1.5 and 4.0 Hz) centred at 6.66 ppm for the
unsaturated H-3 proton which couples with methyl pro-
tons at 1.74 ppm and H-4 proton at 4.33 ppm. A dou-
blet with a Jyxeq=28.0 Hz centred at 4.06 ppm is
apparent for the H-6 proton owing to the coupling with
the adjacent H-5 proton which in its turn resonates as
double doublet at 4.17 ppm. Also in this case, NOE
experiments are in agreement with the assigned stereo-
chemistry, the irradiation of the H-4 proton giving rise
to enhancements of 4.5 and 3.6% of the H-5 and H-6 sig-
nals, respectively, and vice versa. When the hydrolysis of
bis-glycoside 4 was carried out by using a catalytic
amount of trifluoroacetic acid, it stops at the dicarbonyl
compound 5 as pointed out by the 'H NMR spectrum of
the unprocessed reaction mixture, which does not show
any evidence of condensation products, but signals for
the anomeric protons in the 5.20-5.70 ppm range are
characteristic of a complex mixture of tautomeric forms
in solution, which will be the object of further studies.
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Scheme 2. Reagents and conditions: (a) Pd/C, H,, MeOH; and (b)
Raney/Ni, H,, EtOH.

With the aim of chemically supporting the structure of
6, it was reduced with hydrogen and Pd/C to give, as
unique product, the tri-hydroxy-methylcyclohexanone
10,'® a diastereoisomer of the naturally occurring Gabo-
sines B, F and O (Scheme 2).!° Furthermore, the cata-
lytic hydrogenation of 6 with Ni-Raney determines the
complete reduction of the conjugate system, leading
with high stereoselectivity to a partially debenzylated
carba-sugar isolated with 71% yield and identified
(NMR) as the benzyl 5a-carba-B-L-fucopyranoside
11?° (Scheme 2). The position of the benzyl group was
unequivocally assured with NOE experiments; in partic-
ular, the irradiation of CH, protons determines the
enhancement of the equatorial H-7 proton (2.1%) and
H-2 proton signals (1.5%), and vice versa.

In conclusion this letter describes a new route for the
preparation of 6-deoxy-carbasugars from a cyclopropa-
nated D-galactose derivative. The key steps of this
synthesis are the stereocontrolled cyclopropanation of
4-hexenopyranoside, the stereoselectivity of the mer-
cury-mediated cyclopropane ring opening and the stereo-
selective reduction of the carbonyl group, which allows
to obtain different isomers of the title compound in a
stereocontrolled manner.

Recently, this reaction route is carried out with a cyclo-
propanated lactose analogue to 2;'! preliminary results
are like those reported in this letter for the monosaccha-
ride derivative, and therefore they outline a new route
for the stereoselective transformation of lactose into
new and biologically interesting carba-sugars, expand-
ing, thus, the series of applications directed towards an
economical valorisation of this natural disaccharide, a
by-product of the cheese-industry. The results of these
studies will be the object of a next publication.
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