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Abstract—To investigate the role of the amide hydrogen of (—)-indolactam-V (1) and benzolactam-V8’s on protein kinase C (PKC)
binding and tumor promotion, 8-decylbenzolactone-V8 (6), a new lactone analogue of 8-decylbenzolactam-V8 (4), was synthesized
from 2-nitrophenylpyruvic acid (7) in 11 steps. The PKC binding ability and tumor-promoting activities in vitro of 6 were much
lower than those of 1 and 4, suggesting that the amide hydrogen of 1 and benzolactam-V8’s plays a critical role in tumor promo-
tion. However, it is noteworthy that 6 showed significant selectivity in the PKC isozyme surrogate binding. © 2001 Published by

Elsevier Science Ltd.

Tumor-promoting (—)-indolactam-V (1)!-? is the mini-
mal basic structure exhibiting tumor promotion and
activation of protein kinase C (PKC),? a crucial enzyme
involved in cellular signal transduction (Fig. 1). Inten-
sive structure—activity studies on 1 revealed almost all
structural factors required for tumor promotion and
PKC binding except for the role of the amide subunit.*
Conformation studies led to the finding that 1 exists as
two stable conformers in solution at room temperature;’
the active twist conformer with a cis amide geometry
and the inactive sofa conformer with a trans amide
geometry.®’ The tumor promoter binding site of PKC
was also identified; phorbol ester type tumor promoters
bind to the cysteine-rich C1 domains designated as C1A
and C1B.%? Based on these findings coupled with X-ray
crystal structure analysis of PKC3-C1B in complex with
phorbol 13-acetate as a ligand,'? computational docking
studies indicated that both the amide hydrogen and the
carbonyl oxygen of 1 interact with the binding site of
PKC38-C1B.'!12 However, there are no experimental
results on the role of the amide group in the PKC isozyme
binding and tumor promotion. Although we previously
synthesized indolactone-V (2), a lactone analogue of 1,
we could not determine whether the amide hydrogen of 1
is necessary for tumor promotion or not since 2 existed as
only the inactive sofa conformer.'3

*Corresponding author. Tel.: +81-75-753-6282; fax: +81-75-753-
6284; e-mail: irie@kais.kyoto-u.ac.jp

Endo et al. and Kozikowski et al. independently repor-
ted that benzolactam-V8 (3) with an eight-membered
lactam containing a benzene ring instead of the nine-
membered lactam of 1 reproduced the active conforma-
tion of 1. 8-Decylbenzolactam-V8 (4) showed significant
tumor-promoting activities in vitro comparable to
1.61415 They also independently found that the binding
mode of 3 to PKC4-C1B is quite similar to that of 1 by
computational docking studies.'’’'> These findings
prompted us to synthesize §-decylbenzolactone-V8 (6), a
new lactone analogue of 4, and to examine its con-
formation, PKC binding ability, and tumor-promoting
activities in vitro.

Benzolactone-V8 (5), the core structure of 8-decylbenzo-
lactone-V8 (6), was synthesized from 2-nitrophenyl-
pyruvic acid (7) as shown in Scheme 1. Reduction of
both the ketone and the carboxyl group of 7 with

H
X =NH : (-)-Indolactam-V (1) Y =NH, R = H : Benzolactam-V8 (3)
X =0 : Indolactone-V (2) Y = NH, R = n-C4oH>; : 8-Decylbenzolactam-V8 (4)
Y =0, R = H: Benzolactone-V8 (5)
Y =0, R = n-CygH,, : 8-Decylbenzolactone-V8 (6)

Figure 1. Structures of (—)-indolactam-V, benzolactam-V8’s, and their
lactone derivatives.

0960-894X/01/$ - see front matter © 2001 Published by Elsevier Science Ltd.

PII: S0960-894X(01)00047-6



724 Y. Nakagawa et al. | Bioorg. Med. Chem. Lett. 11 (2001) 723-728

NO,

NO,
COMH _ BHy TBDMS-Cl OH H, / Pd-C
o “THE imidazole MeOH
DMF OTBDMS
7 8 (73. 5% 9 (80.5%)
\/ o)
(o)
~ e
NG : \'/\NH 1) Hy / Pd-C N
OH OH ) Hp / Pd-
TiO COan CH4,CN OTBDMS
2,6-lutidine 2) DCC, HOBt
OTBDMS  CICH,CH,Cl OTBDMS TEA, CH,Cl,
10 (95.3%) 11 (71.2%) 12 (28.7%)
~. 2
(0]
_N ~
\
NaBH3;CN OTBDMS + OTBDMS
37% HCHO
AcOH, CH4CN
13 (39.7%) 14 (43.9%)
A: 1N HCI / dioxane
B: TBAF / THF, rt
C: TBAF / THF, -20°C
P YL o
~ o} > O
o 5\
OH + 5 OH
16 5
75 9% A 715% <1.0%
B  63.8% 6.9%
c 2.0% 76.0%

Scheme 1. Synthesis of benzolactone-V8 (5).

borane gave a diol (8, 73.5%), whose primary hydroxyl
group was protected selectively with a fert-butyl-
dimethylsilyl (TBDMS) group (80.5%). The nitro group
of 9 was reduced by catalytic hydrogenation using 10%
palladium on carbon to give the aniline derivative 10
(95.3%). The valine subunit was introduced by sub-
stitution of 10 with D-valine-derived triflate'® to give
two diastereomeric esters (11, 71.2%). Since separation
of these diastereomers was quite difficult at this point,
we proceeded to the next cyclization step. After depro-
tection of the benzyl group of 11 by hydrogenation in
acetonitrile, intramolecular esterification was accom-
plished with DCC, HOBt, and triethylamine in di-
chloromethane to give 12 (28.7%). This slightly lower
cyclization yield was expected since the synthesis of an
eight- or a nine-membered lactone is generally quite
difficult.!” The presence of bulky substituents like iso-
propyl and TBDMS groups might be another reason for
this low yield. Methylation of the diastereomeric lac-
tones (12) by the method of Kozikowski et al.!> gave
two diastereomers (13, 14), which were easily separated
by silica gel column chromatography.

Deprotection of each TBDMS group of 13 and 14 with
I N HCI in dioxane gave a single product, 15 and 16,
respectively, whose 'H NMR spectra in deuteriochloro-
form showed that each compound existed as a single
conformer at room temperature (Table 1). The 'H-'H
COSY spectrum indicated that 15 was an eight-mem-
bered lactone since the cross peak between the hydroxyl
group and methylene protons at position 11 was
observed. The significant NOE between H-2 and H-5

protons in the NOESY spectrum suggested that 15 was
epi-benzolactone-V8'® with the R configuration at posi-
tion 5. On the other hand, the 'TH-'H COSY spectrum
revealed that 16 was not the expected benzolactone-V§
but the nine-membered lactone'® because of the lack of
the hydroxymethyl proton signals. This nine-membered
lactone (16) was deduced to be formed by the intramo-
lecular transesterification under the acidic condition of
the TBDMS deprotection step (1 N HCl-dioxane). We
attempted to deprotect the TBDMS group of 14 with
TBAF in THF at room temperature to get a major
product identified as 16 (63.8%) along with a minor
product 5 (6.9%), which was thought to be a desired
eight-membered lactone. To suppress the transester-
ification, we conducted this reaction at —20°C and suc-
ceeded in obtaining mainly 5 (76.0%). The 'H NMR
spectrum showed that 5 existed as a single conformer in
deuteriochloroform at room temperature. The cross
peak between the hydroxyl group and the methylene
protons at position 11 was observed in the 'H-'H
COSY spectrum, suggesting that 5 is an eight-mem-
bered lactone. No NOE enhancement between H-2 and
H-5 protons in the NOESY spectrum strongly indicated
that 5 is benzolactone-V82° with the S configuration at
position 5. In addition, significant NOE enhancements
between H-2 and H-6 protons, and between H-5 and H-
15 protons, which are characteristic of benzolactam-V§
(3).° were observed, indicating that the conformation of
5 is very close to that of 3. Benzolactone-V8 (5) did not
convert to 16 even at room temperature in Tris or
phosphate buffer (pH 7.4) which is used in the bioassays
shown below.
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'"H NMR spectra of benzolactam-V8 (3), benzolactone-V8 (5), epi-benzolactam-V8, and epi-benzolactone-V8 (15) in deuteriochloroform

S (Multiplicity, J in Hz)

Benzolactam-V8

Benzolactone-V8

epi-Benzolactam-V8¢

epi-Benzolactone-V8

No 3)? O (15)¢
2 3.46 (1H, d, J=8.6) 3.34 (1H, d, J=10.2) 3.18 (1H, d, J=10.6) 3.28 (1H, d, J=10.8)
5 4.05 (1H, m) 4.82 (1H, m) 3.83 (1H, m) 4.65 (1H, m)
6a 2.81 (1H, dd, J=16.9, 2.2) 2.98 (1H, dd, J=16.3, 5.1) 2.86 (1H. d, J=15.2) 2.82 (1H, dd, J=15.5, 2.4)
6b 3.08 (1H, dd, J=16.9, 8.0) 3.05 (1H, dd, J=16.3, 3.7) 2.92 (1H, dd, J=15.2, 6.5) 2.94 (1H, dd, J=15.5, 5.8)
7 7.02 (1H, d, J=7.6) 7.08 (1H, d, J=17.6) 7.10 (1H, d, J=7.4) 7.1 (1H, d, J=7.3)
8 7.18 (1H, t, J=7.6) 7.22 (1H, t, J=7.6) 7.19 (1H, t, J=7.4) 722 (1H, t, J=17.3)
9 6.88 (1H, t, J=7.6) 7.04 (1H, t, J=17.6) 6.95 (1H, t, J=7.4) 7.06 (1H, t, J=7.3)
10 7.04 (1H, d, J=7.6) 7.09 (1H, d, J=7.6) 7.12 (1H, d, J=7.4) 7.19 (1H, d, J=7.3)
11a 3.52 (1H, m) 3.69 (1H, m) 3.76 (1H, m) 3.77 (IH, dd, J=11.9, 4.2)
11b 3.70 (1H, m) 3.69 (1H, m) 3.76 (1H, m) 3.82 (1H, dd, J=11.9, 7.2)
12 2.43 (1H, m) 2.23 (1H, m) 241 (1H, m) 2.32 (1H, m)
13 1.06 3H, d, J=6.5) 1.02 3H, d, J=6.6) 0.97 3H. d, J=6.6) 1.06 3H, d, J=6.6)
14 0.89 3H, d, J=6.8) 0.99 (3H, d, J=6.5) 0.87 3H, d, J=6.5) 0.88 (3H, d, J=6.5)
15 2.79 (3H, s) 2.80 (3H. s) 2.93 (3H, s) 291 (3H, s)
40,082 M.
20.102 M.
<0.067 M.
40,061 M.
1-Decene
NoTeDMS BTMABI, NoTBOMS  PAOAG),
CaCOg,3 P(o-Tol)s
CHCla, MGOH EtsN, CHaCN
Br 17 (69.4%)
%A %A <2
O
1) Hy / PA-C N\
OTBDMS EtOH OH
2) TBAF
THF
-20°C
8 R2
(CH2)7CH3 2=H

(CH5)CH3 , Ry = CHj

Scheme 2. Synthesis of 8-decylbenzolactone-V8 (6).

A decyl group was introduced at position 8 of 14 as
shown in Scheme 2. Unexpectedly, iodination of 14
using iodine in pyridine did not proceed at all though
11-O-acetylbenzolactam-V8 was iodinated by the same
reaction conditions.!> Since transesterification might
occur in the conventional iodination and bromination
reactions under strong acidic conditions, we used a
strong bromination reagent, benzyltrimethylammonium
tribromide (BTMABr3),?! under neutral conditions.
Bromination of 14 using BTMABr; mildly proceeded at
room temperature to give 11-O-TBDMS-8-bromo-
benzolactone-V8 (17, 69.4%). Coupling reaction of 17
with 1-decene was accomplished by the method of Endo
et al.® to give two coupling products. Hydrogenation of
these alkenes using 5% palladium on carbon followed
by deprotection of the TBDMS group with TBAF at
—20°C gave 8-decylbenzolactone-V8 (6, 34.4%)?*? and

6 (34.4%) 18 (12.8%)

its regio isomers (18, 12.8%). The 'H NMR and
NOESY spectra showed that 6 existed as a single con-
former in deuteriochloroform at room temperature, and

that its ring conformation is quite similar to that of
benzolactam-V8 (3).

The biological activities of 6 along with 1 and 4, which
was synthesized by the method of Endo et al.'# with a
slight modification, were examined by three in vitro
bioassays related to in vivo tumor promotion: binding
to the PKC C1 domains,>>?* Epstein-Barr virus early
antigen (EBV-EA)-inducing ability,?>2 and superoxide
(Oy) generation-inducing ability in differentiated HL-
60 cells.?”?® The binding affinity to the PKC Cl
domains was evaluated by inhibition of the specific
binding of [*H]phorbol-12,13-dibutyrate (PDBu) to
these C1 domains as reported by Sharkey and Blum-
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berg.>* We have recently synthesized individual CIA
and C1B domains of all PKC isozymes consisting of
about 50 amino acids by the solid-phase synthesis and
measured the dissociation constants (Ky) of
FH]PDBu.?*2*3% Using these PKC C1 peptides, the
concentration required to cause 50% inhibition, ICsg, of
the [*HJPDBu binding was measured. The binding affi-
nity of 4 and 6 to each PKC C1 peptide was expressed
as the K; values calculated from the ICsy and the Ky
values of [*’H]PDBu as reported previously.2*2%-30

EBVs are under the strict control of the host human
lymphoblastoid Raji cells. They are activated by tumor
promoters to produce the early antigen (EA).2>2° The
EBV-EA-inducing activity is expressed as the percen-
tage of EA-positive cells. Under our experimental con-
ditions, about 30% of maximum EA-induction was

observed with typical tumor promoters.” Superoxide
(O,7) generation is triggered by 12-O-tetra-
decanoylphorbol-13-acetate (TPA) in epithelial cells and
leukocytes through the xanthine oxidase®*! and NADPH
oxidase systems,’? respectively. The ability is expressed
as the level of O, production. Under our experimental
conditions, TPA produced 1.32 nmol/mL/min of O, at
107 M. Tables 2-4 summarize the results of these
assays.

8-Decylbenzolactam-V8 (4) showed slightly weaker
binding affinities than 1 for almost all PKC C1 peptides.
On the other hand, the binding affinities of 8-decylben-
zolactone-V8 (6) for all PKC C1 peptides were far lower
than those of 1 and 4. These results indicate that the
amide hydrogen of 1 and benzolactam-V8’s is necessary
to amplify the binding affinities for all PKC isozymes.

Table 2. K; Values for inhibition of the specific binding of [’H]PDBu by 8-decylbenzolactam-V8 (4) and 8-decylbenzolactone-V8 (6)

PKC C1 peptide

Ki (nM)

8-Decylbenzolactam-V8

8-Decylbenzolactone-V8 (—)-Indolactam-V

4) (6) »*
o-C1A(72-mer)P 322.5 (36.1)¢ >10,000 126.9
o-C1B 4690 (201) >10,000 4000
B-C1A(72-mer)® 442.4 (34.7) >10,000 173.5
B-C1B 260.8 (16.7) 22,010 (1896) 135.6
y-C1A 1664 (99.7) 6321 (536) 137.9
y-C1B 150.6 (6.8) 17,574 (1648) 212.6
3-C1A 2771 (240) 70,641 (3322) 1900
3-C1B 14.6 (1.6) 1155 (46) 8.3
e-CIA 8361 (385) >10,000 4110
e-CIB 13.1 (0.2) 262.3 (3.5) 7.7
n-ClA 2489 (74) >10,000 3770
n-C1B 6.4 (1.2) 119.9 (6.7) 5.5
0-C1A NT¢ NT NT
0-C1B 13.2 (2.6) 1097 (53) 8.7

2Data taken from ref 30.

®Ten residues from both N- and C-termini of the previous a-C1A and B-C1A?® were elongated since the solubility of the original 52-mer peptides

was extremely low.
°Standard deviation of at least two separate experiments.

dNot tested. The Ky value of [PH]PDBu to 0-C1A could not be measured because of its very weak binding affinity.

Table 3. EBV-EA-inducing activities of 8-decylbenzolactam-V8 (4) and 8-decylbenzolactone-V8 (6)*

Compound % of EA-positive cells

107" M 10°°M 10°M 10-43 MP
(—)-Indolactam-V (1) 16.8 (2.1)¢ 33.5(4.1) 28.9 (0.5)
8-Decylbenzolactam-V8 (4) 6.7 (0.1) 11.3 (0.5) 17.6 (1.3)¢
8-Decylbenzolactone-V8 (6) 0.8 (0.2) 1.9 (0.9) 5.0 (1.6)

aThis assay was done by the method reported previously.?>2¢ The cell viability exceeded 80% in all experiments except for 4 at 10~%5 M.

®Data at 10~* M could not be obtained because the cell viability was 0%.

¢Standard deviation.
dCell viability: 65.7%.

Table 4. Superoxide generation-inducing activities of 8-decylbenzolactam-V8 (4) and 8-decylbenzolactone-V8 (6)*

Compound O, generation (nmol/mL min)
107" M 10 M 10°M 1074 M
(—)-Indolactam-V (1) 0.05 (0.07)° 3.19 (0.10) 3.18 (0.08)
8-Decylbenzolactam-V8 (4) 0.33 (0.29) 0.31 (0.18) 3.04 (0.14)
8-Decylbenzolactone-V8 (6) 0.11 (0.02) 0.20 (0.08) 0.19 (0.03)

aThis assay was done by the method reported previously?® with slight modification.

bStandard deviation.
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However, it is noteworthy that 6 bound to n-C1B more
selectively than 1 and 4; the binding affinity of 6 for n-
CI1B was about 2-fold, 10-fold, and more than 50-fold
higher than those for &-C1B, 8- and 6-C1B, and the
other PKC C1 peptides, respectively. These results sug-
gest that relative contribution of the amide hydrogen of
1 and benzolactam-V8’s to the n-C1B binding is smaller
than that to the other PKC Cl1 peptide binding.

Compound 4 showed about 10-fold lower activities than
1 in both EBV-EA induction test and superoxide gen-
eration test. This indicates that 4 might be 10-fold
weaker as a tumor promoter than 1. However, 6 was
inactive even at 10~%> M in the EBV-EA induction test
and at 1074 M in the superoxide generation test. These
results also support the theory that the amide hydrogen
of 1 and benzolactam-V8’s plays a critical role in tumor
promotion. It is recently reported that PKCa and BII
are expressed in Raji B cells and that PKC is essential
for the superoxide generation in differentiated HL-60
cells.333* These data are consistent with quite weak
binding abilities of 6 to the C1 peptides of PKCa and .

In summary, we have synthesized 8-decylbenzolactone-
V8 (6), a lactone analogue of 8-decylbenzolactam-V8
(4), to investigate the role of the amide hydrogen of
(—)-indolactam-V (1) and benzolactam-V8’s on PKC
binding and tumor promotion. Compound 6 was far
less active than either 1 or 4 in the three in vitro bioas-
says related to in vivo tumor promotion, indicating that
the amide hydrogen of 1 and benzolactam-V&’s plays a
critical role in the PKC binding and tumor promotion.
The PKC surrogate binding assay also revealed that the
role of the amide hydrogen of 1 and benzolactam-V8’s
is significantly different among the PKC isozymes. The
present results provide the basis for the rational design
of new medicinal agents with PKC isozyme selectivity.
Compound 6 might be a lead compound for a PKCn
selective modulator.
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