Nucleophilic Addition of Lewis Acid Complexed α-Amino Carbanions to Arynes: Synthesis of 1-Aryl-*N*-methyl-1,2,3,4-tetrahydroisoquinolines

Kamal Nain Singh,* Paramjit Singh, Esha Sharma, Yadwinder Singh Deol

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India Fax +91(172)2545074; E-mail: kns@pu.ac.in

Received: 13.02.2014; Accepted after revision: 28.03.2014

Abstract: The direct C-1 arylation of *N*-methyl-1,2,3,4-tetrahydroisoquinolines via coupling of α -amino carbanions derived from Lewis acid complexed tetrahydroisoquinolines and in situ generated arynes is described. This process provides an easy access to the title compounds and a new synthetic route to (±)-cryptostyline alkaloids.

Key words: arylation, arynes, tetrahydroisoquinolines, cryptostyline alkaloids, Lewis acid complexation

The 1-aryltetrahydroisoguinoline moiety is an important structural motif present in many alkaloids and compounds of pharmaceutical interest. A variety of these compounds show potent anti-HIV,¹ antibacterial,² and antitumor activities.³ Various 1-aryl-THIQ (THIQ: tetrahydroisoquinoline) antagonists⁴ have been studied as neuroprotective agents, which can be useful in treating ischemia, epilepsy, Huntington, Alzheimer, and Parkinson type diseases. The 1-aryl-N-methyl-1,2,3,4-tetrahydroisoquinolines 1 (Figure 1) are also known to modulate glutamate neurotransmission in the CNS.⁵ Cryptostyline I-III (2f, 2d, 2e) (Figure 2) have been isolated from *Cryptostylis fulva*⁶ and belong to 1-aryl-N-methyl-THIQ alkaloids. These have been studied as pharmacological probes for the D₁ dopamine receptor,^{5b} and other analogues of the cryptostylines act as bladder-selective muscarinic M₃ receptor antagonists.7

Figure 1 The disconnection approaches to the synthesis of 1-aryl-*N*-methyl-THIQs

Many reports on the syntheses of 1-aryl-*N*-methyl-THIQs including cryptostylines I–III are available in the literature.⁸ Most commonly employed procedures are the Bischler–Napieralski cyclization of amides derived by condensation of acid chlorides with 2-arylethylamines and subsequent reduction of 3,4-dihydroisoquinoline

SYNTHESIS 2014, 46, 1739–1750 Advanced online publication: 12.05.2014 DOI: 10.1055/s-0033-1341239; Art ID: ss-2014-t0106-op © Georg Thieme Verlag Stuttgart · New York imines⁹ and the Pictet–Spengler condensation^{2,10} of electron-rich phenethylamines with aldehydes. Methods utilizing addition of carbon nucleophiles to iminium ions generated via Bischler–Napieralski cyclization^{9a,11} and addition of Grignard reagents to 3,4-dihydroisoquinolinium tetrafluoroborate salt¹² have also been reported.

Figure 2 Cryptostyline alkaloids

Furthermore, Saitoh et al. reported the synthesis of 1-aryl-*N*-methyl-THIQs using sulfoxide-mediated electrophilic cyclization via modified Pummerer reaction.¹³ Other methods include double cyclization process using *o*-vinylbenzaldehyde and amino alcohols,¹⁴ reaction of various nucleophiles with α -siloxyamines prepared by Polonovsky reaction of tertiary amine *N*-oxides with trialkylsilyltrifluoromethane sulfonates,¹⁵ and radical cyclization method.¹⁶ Recently, Miyaura and co-workers reported rhodium-catalyzed asymmetric addition of aryl boronic acids to *N*-sulfonylarylaldimines for the synthesis of cryptostyline alkaloids.¹⁷

Lewis acid (BF₃·OEt₂) complexation of tertiary amines followed by treatment with sec-butyllithium in tetrahydrofuran at -78 °C has been established as an effective method for the generation of α -amino carbanions 5 by our research group.¹⁸ The α -amino carbanions can be subsequently reacted with various electrophiles to give α -substituted products¹⁹ (Scheme 1, equation 1). Using this procedure, many N-methyltetrahydroisoquinoline alkaloids were synthesized.¹⁹ Recently, we reported our findings involving reactions of β -amino carbanions 6 and arynes, which led to the synthesis of 4-aryl-N-methyl-1,2,3,4-tetrahydroisoquinolines²⁰ (Scheme 1, equation 2). It was of obvious interest to investigate whether the Lewis acid complexed α -amino carbanions 5 can also participate in a similar manner with the in situ generated aryne. If successful, it can lead to a direct one-pot synthesis of 1aryl-N-methyl-1,2,3,4-tetrahydroisoquinolines (Scheme 2).

As outlined in our earlier publication,²⁰ many methods are available for aryne generation.²¹ Further, intermolecu-

Scheme 1 Lithiation substitution of N-methyl-1,2,3,4-THIQ 3

Scheme 2 Aryne-mediated arylation at C-1 position in 3

lar/intramolecular reactions of these intermediates are known with a variety of nucleophiles including carbanions.²² In the present work also we chose *ortho*-lithiation of aryl chlorides or fluorides with alkyllithium at low temperature followed by elimination of lithium halide for aryne generation²³ as the temperature required for this process is compatible with generation and reactions of α -lithiated species **5**.

In a model reaction, the amine-BF₃ complex 4 was generated by taking THIQ 3 (1.36 mmol) in tetrahydrofuran (10 mL) and adding BF₃·OEt₂ (1.63 mmol) at 0 °C. After an interval of 30 minutes, the reaction mixture was cooled to -78 °C and sec-butyllithium (1.36 mmol) was added. It was then stirred for 30 minutes at the same temperature and sec-butyllithium (1.63 mmol) was added once again followed by chlorobenzene (7a) (1.36 mmol). The reaction mixture was stirred at -78 °C for another 45 minutes and then allowed to warm to room temperature where it was quenched with aqueous 10% HCl. Workup and purification by column chromatography afforded the C-1 arylated product **1a** in a low yield of 28% (Table 1, entry 1).²⁴ For optimization of the yield, the reaction was carried out by changing various parameters like solvent, amount of the base or of the aryl halide, Lewis acid $(BH_3)^{25}$ (Table 1, entries 2-9). Best result was obtained with tetrahydrofuran as solvent, BF_3 ·OEt₂ as the Lewis acid and using 3 equivalents of base (second instalment) and 3 equivalents of aryl halide (Table 1, entry 7). Use of a different base, lithium tetramethylpiperidide, instead of *sec*-butyllithium, in the first addition also resulted in a lower yield of the product (Table 1, entry 10). When a solution of 4- bromoanisole and lithium diisopropylamide was used for benzyne generation and subsequently transferred to **5** via cannula, only the starting amine was recovered (Table 1, entry 11). Thus, the yield of the product **1a** could not be increased beyond 40%.

After establishing the optimized reaction conditions, various substituted aryne precursors were used to check the scope of aryne mediated C-1 arylation of *N*-methyl-1,2,3,4-THIQ (**3**) and the results are summarized in Table 2. All the selected aryne precursors $7\mathbf{a}-\mathbf{f}^{20}$ underwent smooth reaction with **3** to furnish products $1\mathbf{a}-\mathbf{f}$ in moderate yields (Table 2).

To explore the substrate scope with respect to the starting amine, differently substituted tetrahydroisoquinolines 9a-d were synthesized according to the known procedures.²⁶ These were reacted with aryne precursors 7a-f using similar conditions as for the reactions with 3 to give the corresponding C-1 arylated products 2a-x (Table 3, entries 1–24), which were obtained in moderate yields. All three

Entry	Solvent	Base (equiv)		7a (equiv)	1a (yield %) ^a	
		1st addition (<i>n</i> -BuLi or <i>s</i> -BuLi)	2nd addition (s-BuLi)		$LA = BF_3$ conditions a	$LA = BH_3$ conditions b
1	THF	1	1.2	1	28 ^b	22°
2	Et ₂ O	1	1.2	1	_	_
3	toluene-Et ₂ O (1:1)	1	1.2	1	20	_
4	THF-pentane (6:4)	1	1.2	1	19	_
5	THF	2	1.2	1	32	27
6	THF	2	2	2	35	29
7	THF	2.2	3	3	40	31
8	THF	2.2	4	4	36	30
9	THF	2.2	6	6	35	_
10	THF	2.2 ^d	3	3	30	
11	THF	2.2	3 ^e	3 ^e	_	_

Table 1 Optimizaton of Reaction Conditions for C-1 Arylation of 3

^a Isolated yield.

^b Reaction conditions: **3** (1.36 mmol), 0 °C, BF₃·OEt₂ (1.63 mmol), 30 min, 0 °C to -78 °C, *s*-BuLi (1.36 mmol), 30 min, *s*-BuLi (1.63 mmol), **7a** (1.36 mmol), -78 °C (45 min), -78 °C to r.t.

[°] Reaction conditions: **3** (1.36 mmol), 0 °C, BH₃·SMe₂ (1.63 mmol), -78 °C, *n*-BuLi (1.36 mmol), -78 °C to r.t., 1 h, r.t. to -78 °C, *s*-BuLi (1.63 mmol), **7a** (1.36 mmol), -78 °C (45 min), -78 °C to r.t.

^d LTMP was used as base instead of *s*-BuLi.

° Reaction conditions: {3 (1.36 mmol), 0 °C, BF₃·OEt₂ (1.63 mmol), 30 min, 0 °C to -78 °C, *s*-BuLi (2.99 mmol), 30 min} + {4-bromoanisole (4.08 mmol), -78 °C, LDA (4.08 mmol), 30 min}, transferred via cannula, -78 °C to r.t.

alkaloids of *Cryptostylis fulva*, namely cryptostyline I (**2f**), cryptostyline II (**2d**), and cryptostyline III (**2e**) were synthesized in yields of 41, 39 and 45%, respectively (Table 3, entries 6, 4, and 5).

In all the above reactions, some unreacted starting amine 3 or 9 was always recovered. This could be due to (i) incomplete formation of the lithiated intermediate 5 or 11, or (ii) because the lithiated intermediate gets partially quenched by another proton source (e.g., C-1 benzylic proton of arylated products 1 or 2, or from the solvent), or (iii) the generated aryne intermediate is partially consumed by other side reactions. To get some insight on these aspects, two experiments were carried out: (1) To a solution of the amine-BF₃ complex 4 (1.36 mmol) in tetrahydrofuran (10 mL) at -78 °C, containing sec-butyllithium (2.99 mmol), was added acetic acid- d_1 (2.99 mmol) in tetrahydrofuran (2 mL) at the same temperature. The reaction mixture was allowed to come to room temperature and aqueous 10% HCl was added. The ¹H NMR spectrum of the material obtained after workup revealed 100% deuterium incorporation at C-1 (12) (Figure 3). (2) The reaction of 4 and 7a was carried out in the normal manner, but after allowing the reaction mixture to warm from -78 °C to -10 °C, acetic acid- d_1 (in THF) was added. It was further allowed to come to room temperature and aqueous 10% HCl was added. Usual workup and chromatographic separation afforded products 12 (14%) and 13 (41%) (Figure 3) indicating that once the phenylated product 1a is formed in the reaction, it does not transfer a proton to 5. In the above reaction, when acetic acid- d_1 was added at room temperature, instead of -10 °C, the products 12 and 13 were obtained in 15% and 39% yield, respectively. Formation of product 13 can be rationalized as shown in Scheme 3.²⁷ Addition of 5 to the benzyne generates an intermediate carbanion 16 in which the negative charge is located at *ortho*-position of the introduced phenyl substituent. Intramolecular benzylic proton abstraction in 16 gives the rearranged carbanion 17 which upon reaction with acetic acid- d_1 furnishes 13.

Figure 3 Results of deuterium labeling experiments

Downloaded by: Deakin University. Copyrighted material.

^a Reaction conditions: N-methyl-1,2,3,4-tetrahydroisoquinoline (1 equiv), BF₃·OEt₂ (1.2 equiv), s-BuLi (2.2 equiv, 1st addition), s-BuLi (3 equiv, 2nd addition), aryl halide (3 equiv), and THF (4 mL/mmol). ^b Isolated yield.

° Yields shown in parentheses are calculated on the basis of recovered starting amine.

Entry	9	7	2	Yield (%) ^{b,c}
1	9a	7a	2a ($R^1 = R^2 = OMe; R^3 = R^4 = R^5 = H$)	35 (49)
2	9a	7b	2b ($R^1 = R^2 = OMe; R^3 = R^5 = H, R^4 = OMe$)	32 (47)
3	9a	7c	$2c (R^1 = R^2 = OMe; R^3 = R^4 = H, R^5 = OMe)$	45 (59)
4	9a	7d	2d ($R^1 = R^2 = OMe; R^3 = H, R^4 = R^5 = OMe$)	39 (58)
5	9a	7e	$2e (R^1 = R^2 = OMe; R^3 = R^4 = R^5 = OMe)$	45 (52)
6	9a	7f	$2f(R^1 = R^2 = OMe; R^3 = H, R^4 = R^5 = OCH_2O)$	41 (50)
7	9b	7a	2g ($R^1 + R^2 = OCH_2O; R^3 = R^4 = R^5 = H$)	39 (56)
8	9b	7b	2h ($R^1 + R^2 = OCH_2O$; $R^3 = R^5 = H$, $R^4 = OMe$)	33 (49)
9	9b	7c	2i ($R^1 + R^2 = OCH_2O$; $R^3 = R^4 = H$, $R^5 = OMe$)	41 (55)
10	9b	7d	2j ($R^1 + R^2 = OCH_2O$; $R^3 = H$, $R^4 = R^5 = OMe$)	35 (50)
11	9b	7e	$2\mathbf{k} (\mathbf{R}^1 + \mathbf{R}^2 = \text{OCH}_2\text{O}; \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{R}^5 = \text{OMe})$	44 (59)
12	9b	7f	21 ($R^1 + R^2 = OCH_2O$; $R^3 = H$, $R^4 = R^5 = OCH_2O$)	32 (46)
13	9c	7a	2m (R^1 = OMe, R^2 = H; R^3 = R^4 = R^5 = H)	32 (48)
14	9c	7b	2n ($R^1 = OMe, R^2 = H; R^3 = R^5 = H, R^4 = OMe$)	33 (50)
15	9c	7c	20 ($R^1 = OMe, R^2 = H; R^3 = R^4 = H, R^5 = OMe$)	45 (59)
16	9c	7d	2p ($R^1 = OMe, R^2 = H; R^3 = H, R^4 = R^5 = OMe$)	36 (48)
17	9c	7e	$2q (R^1 = OMe, R^2 = H; R^3 = R^4 = R^5 = OMe)$	41 (57)
18	9c	7f	$2\mathbf{r}$ (R ¹ = OMe, R ² = H; R ³ = H, R ⁴ = R ⁵ = OCH ₂ O)	40 (52)
19	9d	7a	2s ($R^1 = OMe$, $R^2 = OEt$; $R^3 = R^4 = R^5 = H$)	36 (48)
20	9d	7b	2t ($R^1 = OMe$, $R^2 = OEt$; $R^3 = R^5 = H$, $R^4 = OMe$)	32 (49)
21	9d	7c	2u ($R^1 = OMe, R^2 = OEt; R^3 = R^4 = H, R^5 = OMe$)	47 (61)
22	9d	7d	$2v (R^1 = OMe, R^2 = OEt; R^3 = H, R^4 = R^5 = OMe)$	39 (52)
23	9d	7e	2w (R ¹ = OMe, R ² = OEt; R ³ = R ⁴ = R ⁵ = OMe)	43 (58)
24	9d	7f	$2x (R^1 = OMe, R^2 = OEt; R^3 = H, R^4 = R^5 = OCH_2O)$	39 (54)

^a Reaction conditions: **9** (1 equiv), BF₃·OEt₂ (1.2 equiv), *s*-BuLi (2.2 equiv, 1st addition), *s*-BuLi (3 equiv, 2nd addition), aryl halide (3 equiv), and THF (4 mL/mmol).

^b Isolated yield.

^c Yields shown in parentheses are calculated on the basis of recovered starting amine.

Scheme 3 Proposed mechanism

In this reaction, the nonbasic material, obtained after workup, was also investigated and found to contain 14 (7%), which results from the dimerization of the benzyne intermediate,²⁸ and 15 (9%) which is a result of reaction of the *ortho*-anion of chlorobenzene with benzyne (Figure 3).²⁹ Thus, it may be possible that side reactions of aryne intermediates occur at about the same temperature range where the lithiated intermediates 5 or 11 react with arynes.

As far as the difference in regioselectivity in lithiation/ substitution reactions of *N*-methyl-1,2,3,4-tetrahydroisoquinoline – at C-4 position (using strong basic conditions) and at C-1 position (under Lewis acid complexation) – is concerned it has been shown earlier that the heteroatom plays a pivotal role. In the case of the uncomplexed amine, the nitrogen atom coordinates with lithium in the transition state **20** or in a prelithiation complex **19** and promotes 'distal lithiation' through space (Scheme 1, 6, and Scheme **4**).³⁰

Scheme 4 Nitrogen-assisted deprotonation, E^+ = electrophile

On the other hand, the nitrogen lone pair, unlike P, O, or S, is also known to generate a relatively strong repulsive interaction with an adjoining negative charge thus preventing α -deprotonation.³¹ Prior complexation of the nitrogen atom with a strong Lewis acid (Scheme 1, 4)

prevents its coordination with lithium atom of the base. Furthermore, the positive charge on the nitrogen atom now inductively facilitates α -deprotonation (Scheme 1, 5).^{18,19}

In conclusion, direct C-1 arylation of *N*-methyl-1,2,3,4tetrahydroisoquinolines involving nucleophilic addition of α -amino carbanions derived from Lewis acid complexed THIQ to arynes has been demonstrated with applications in synthesis of cryptostyline alkaloids. The modest yields of the products are counter-balanced by the fact that this one-pot arylation procedure does not involve the use of any transition metal³² and has good substrate generality. Further applications of this procedure for the synthesis of 1-aryl-2-methylisoindolines³³ and 1-aryl-2-methyl-2,3,4,5-tetrahydro-2-benz[*c*]azepines³⁴ are being explored.

¹H NMR spectra were recorded on a 400 MHz NMR spectrometer. Chemical shifts δ are reported in ppm using TMS as an internal standard. Data are reported as follows: chemical shift, multiplicity (standard abbreviations), coupling constant (*J*), and integration. ¹³C NMR spectra were recorded on 75 MHz NMR spectrometer. The chemical shifts are reported on the δ -scale relative to CDCl₃ (δ = 77.0 ppm). IR spectra were carried out on neat samples using a Nicolet iS50 FT-IR. The wavenumbers of maximum absorption peaks of IR spectroscopy are presented in cm⁻¹. MS data (APCI) was obtained on Q-Tof MicroTM mass spectrometer. Elemental analyses were performed with a Flash 2000 (organic elemental analyzer). Melting points were obtained on a Thomas-Hoover apparatus in open capillary tubes and are uncorrected. Flash column chromatography was performed using 230–400 mesh silica gel and hexane–EtOAc or MeOH–CHCl₃ mixture as an eluent.

All lithiation reactions were carried out under N2 atmosphere. Anhydrous solvents were transferred via syringe to flame-dried glassware. THF, Et₂O, and toluene were dried and distilled from sodium benzophenone ketyl. BF3:OEt2 was freshly distilled from CaH2 under reduced pressure. Pentane was purified and dried according to a known procedure.³⁵ Alkyllithiums were estimated by using 1,10phenanthroline as an indicator according to a reported procedure.³⁶ n-BuLi was used as a 1.9 M solution in hexane. s-BuLi was used as a 2.6 M solution in pentane. Amine 3 was prepared from isoquinoline according to the reported procedure.³⁷ Amine 9a was prepared from homoveratrylamine by a known procedure.^{26a} Tetrahydroisoquinoline 9b was synthesized starting from homopiperonylamine.^{26b} Amine 9c was prepared from 3-methoxybenzaldehyde via a known route.^{26b,c} Tetrahydroisoquinoline 9d was synthesized from vanillin according to a reported procedure.^{26c} Chlorobenzene (7a) was commercially available. Substrate 7d, 38a 7e, 38b and 7f 38c were prepared according to known procedures. Substrate 7b and 7c were prepared from *p*-fluorophenol and *m*-chlorophenol, respectively.³⁹ All aryne precursors and starting THIQs were dried and distilled from CaH₂, under reduced pressure, before use.

1-Aryl-*N*-methyl-1,2,3,4-tetrahydroisoquinolines; General Procedure

Into a flame-dried two-necked round-bottomed flask, equipped with a magnetic stirrer bar, septum cap and a bubbler, was taken a solution of *N*-methyl-1,2,3,4-tetrahydroisoquinoline (**3**; 200 mg, 1.36 mmol, 1 equiv) or the substituted analogue **9** (1.36 mmol, 1 equiv) in anhydrous THF (10 mL) under an inert N₂ atmosphere. It was cooled to 0 °C and BF₃·OEt₂ (0.25 mL, 1.63 mmol, 1.2 equiv) was added dropwise. The turbid white solution was stirred at 0 °C for 30 min. It was then cooled to -78 °C and *s*-BuLi [1.43 mL (2.6 M in pentane), 2.99 mmol, 2.2 equiv] was added dropwise. A deep red color (indicative of benzylic carbanion formation) appeared imme-

diately. The solution was stirred at the same temperature for 30 min. The second instalment of s-BuLi [1.96 mL (2.6 M in pentane), 4.08 mmol, 3 equiv] was added followed by the addition of a solution of aryl halide 7 (4.08 mmol, 3 equiv) in THF (1-2 mL). The reaction mixture was stirred at -78 °C for 45 min and was allowed to warm to r.t. slowly over a period of 4-5 h. The reaction was quenched with aq 10% HCl (15 mL) and the contents were poured into Et₂O (25 mL). The aqueous layer was separated and the organic layer was further extracted with aq 10% HCl (2 \times 15 mL). The combined aqueous layers were washed with $Et_2O(2 \times 20 \text{ mL})$ to remove nonbasic impurities, made alkaline with solid Na₂CO₃, and extracted with $CHCl_3$ (4 × 15 mL). The combined organic layers were washed with brine (20 mL) and dried (Na₂SO₄). The solvent was evaporated in vacuo to afford the crude product, which was purified by flash column chromatography using 230-400 mesh silica gel. Elution with EtOAc-hexane (3:7) or MeOH-CHCl₃ (2:98) afforded the 1aryl substituted product. Further elution of the column with same solvent afforded the unreacted starting material (Tables 2 and 3).

2-Methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (1a)⁴⁰

Yield: 121 mg (40%); yellow oil.

¹H NMR (400 MHz, CDCl₃): $\delta = 7.19-7.10$ (m, 5 H, ArH), 6.97-6.91 (m, 2 H, ArH), 6.81 (t, J = 8.1 Hz, 1 H, ArH), 6.48 (d, J = 7.8 Hz, 1 H, ArH), 4.09 (s, 1 H, C₁-H), 3.18–3.12 (m, 1 H, C₃-H), 3.02– 2.97 (m, 1 H, C_3 -H), 2.66 (dt, J = 16.1, 3.1 Hz, 1 H, C_4 -H), 2.48 (td, J = 11.3, 3.7 Hz, 1 H, C₄-H), 2.11 (s, 3 H, NCH₃).

1-(4-Methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (1b)

Yield: 119 mg (35%); yellow solid; mp 78-80 °C.

IR (neat): 2935, 2840, 1497, 1263, 1028 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 7.04$ (d, J = 8.6 Hz, 2 H, ArH), 6.97–6.92 (m, 2 H, ArH), 6.82 (t, J=8.1 Hz, 1 H, ArH), 6.69 (d, J= 8.6 Hz, 2 H, ArH), 6.49 (d, J = 7.8 Hz, 1 H, ArH), 4.04 (s, 1 H, C₁-H), 3.69 (s, 3 H, OCH₃), 3.15–3.11 (m, 1 H, C₃-H), 3.02–2.97 (m, 1 H, C₃-H), 2.66 (dt, *J* = 16.0, 3.0 Hz, 1 H, C₄-H), 2.47 (td, *J* = 11.2, 3.7 Hz, 1 H, C₄-H), 2.11 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 158.8, 138.9, 136.1, 134.1, 130.5, 128.6, 128.2, 125.8, 125.6, 113.6, 70.9, 54.9, 52.4, 44.4, 29.6.

MS (APCI): $m/z = 254.08 [M + H]^+$.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₂₀NO: 254.1539; found: 254.1543.

1-(3-Methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline $(\mathbf{1c})^{41}$

Yield: 172 mg (50%); light yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.08 (t, *J* = 7.8 Hz, 1 H, ArH), 6.99–6.93 (m, 2 H, ArH), 6.84 (t, J=8.1 Hz, 1 H, ArH), 6.76 (d, J= 7.5 Hz, 1 H, ArH), 6.71–6.66 (m, 2 H, ArH), 6.53 (d, J = 7.8 Hz, 1 H, ArH), 4.07 (s, 1 H, C₁-H), 3.67 (s, 3 H, OCH₃), 3.20–3.13 (m, 1 H, C₃-H), 3.04–2.99 (m, 1 H, C₃-H), 2.67 (dt, *J* = 16.1, 2.9 Hz, 1 H, C_4 -H), 2.49 (td, J = 11.3, 3.7 Hz, 1 H, C_4 -H), 2.14 (s, 3 H, NCH₃).

1-(3,4-Dimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoguinoline (1d)

Yield: 123 mg (32%); white solid; mp 86-87 °C.

IR (neat): 2940, 2843, 1505, 1253, 1028 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 6.99–6.94 (m, 2 H, ArH), 6.83 (t, J = 8.1 Hz, 1 H, ArH), 6.72 (dd, J = 8.1, 1.8 Hz, 1 H, ArH), 6.67 (d, J = 8.1 Hz, 1 H, ArH), 6.63 (d, J = 1.8 Hz, 1 H, ArH), 6.52 (d, J = 7.8 Hz, 1 H, ArH), 4.01 (s, 1 H, C₁-H), 3.78 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 3.21–3.13 (m, 1 H, C₃-H), 3.05–3.00 (m, 1 H, C₃-H), 2.67 (br d, J = 16.0 Hz, 1 H, C₄-H), 2.48 (td, J = 11.4, 3.68 Hz, 1 H, C₄-H), 2.12 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 149.4, 148.5, 138.6, 136.5, 133.9, 128.4, 128.2, 125.8, 125.6, 122.1, 112.0, 110.5, 71.5, 55.7, 52.7, 44.5, 29.5.

MS (APCI): $m/z = 284.17 [M + H]^+$.

Anal. Calcd for C₁₈H₂₁NO₂: C, 76.29; H, 7.47; N, 4.94. Found: C, 76.34; H, 7.38; N, 4.93.

1-(3,4,5-Trimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (1e)

Yield: 191 mg (45%); pale yellow solid; mp 135–138 °C.

IR (neat): 2939, 2836, 1478, 1254, 1008 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.98-6.97$ (m, 2 H, ArH), 6.90-6.86 (m, 1 H, Ar-H), 6.56 (d, J = 7.8 Hz, 1 H, ArH), 6.39 (s, 2 H, ArH), 3.98 (s, 1 H, C₁-H), 3.75 (s, 3 H, OCH₃), 3.74 (s, 6 H, 2 \times OCH₃), 3.17-3.13 (m, 1 H, C₃-H), 3.06-3.01 (m, 1 H, C₃-H), 2.67 (br d, J = 16.0 Hz, 1 H, C₄-H), 2.48 (td, J = 11.4, 3.6 Hz, 1 H, C₄-H), 2.14 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 153.2, 139.4, 138.3, 133.8, 131.3, 128.2, 128.2, 126.0, 125.7, 106.5, 72.2, 60.5, 56.0, 52.8, 44.6, 29.5.

MS (APCI): $m/z = 314.13 [M + H]^+$.

Anal. Calcd for C₁₉H₂₃NO₃: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.54; H, 7.34; N, 4.53.

2-Methyl-1-(3,4-methylenedioxyphenyl)-1,2,3,4-tetrahydroisoquinoline (1f)

Yield: 145 mg (40%); colorless oil.

IR (neat): 2904, 2843, 1550, 1235, 1082 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.98-6.93$ (m, 2 H, ArH), 6.88-6.84 (m, 1 H, ArH), 6.66 (dd, J = 7.8, 1.4 Hz, 1 H, ArH), 6.63–6.61 (m, 2 H, ArH), 6.55 (d, J = 7.8 Hz, 1 H, ArH), 5.83 (d, J = 1.4 Hz, 1 H, OCH₂O), 5.81 (d, J = 1.4 Hz, 1 H, OCH₂O), 4.01 (s, 1 H, C₁-H), 3.18-3.10 (m, 1 H, C₃-H), 3.02-2.97 (m, 1 H, C₃-H), 2.65 (dt, J = 15.8, 2.8 Hz, 1 H, C₄-H), 2.47 (td, J = 11.3, 3.7 Hz, 1 H, C₄-H), 2.13 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 147.9, 146.9, 138.1, 138.1, 134.0, 128.0, 127.9, 126.0, 125.9, 122.9, 109.8, 107.4, 100.7, 71.3, 52.5, 44.4, 29.8.

MS (APCI): $m/z = 268.44 [M + H]^+$.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{17}H_{18}NO_2$: 268.1332; found: 268.1331.

6,7-Dimethoxy-2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2a)42

Yield: 96 mg (35%); light yellow solid; mp 76–78 °C (Lit.42 mp 77– 79 °C).

¹H NMR (400 MHz, CDCl₃): δ = 7.23–7.13 (m, 5 H, ArH), 6.48 (s, 1 H, ArH), 5.97 (s, 1 H, ArH), 4.06 (s, 1 H, C₁-H), 3.75 (s, 3 H, OCH₃), 3.47 (s, 3 H, OCH₃), 3.12–3.05 (m, 1 H, C₃-H), 3.02–2.97 (m, 1 H, C₃-H), 2.60 (dt, J = 15.7, 3.3 Hz, 1 H, C₄-H), 2.48 (td, J =10.9, 3.7 Hz, 1 H, C₄-H), 2.14 (s, 3 H, NCH₃).

6,7-Dimethoxy-1-(4-methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2b)43

Yield: 97 mg (32%); light brown solid; mp 93–95 °C (Lit.43 mp 96– 97 °C).

¹H NMR (400 MHz, CDCl₃): δ = 7.05 (d, J = 8.7 Hz, 2 H, ArH), 6.71 (d, J = 8.6 Hz, 2 H, ArH), 6.46 (s, 1 H, ArH), 5.98 (s, 1 H, ArH), 4.02 (s, 1 H, C₁-H), 3.74 (s, 3 H, OCH₃), 3.70 (s, 3 H, OCH₃), 3.49 (s, 3 H, OCH₃), 3.09–3.02 (m, 1 H, C₃-H), 3.00–2.96 (m, 1 H, C₃-H), 2.59 (dt, *J* = 15.7, 3.4 Hz, 1 H, C₄-H), 2.46 (td, *J* = 10.7, 3.7 Hz, 1 H, C₄-H), 2.12 (s, 3 H, NCH₃).

6,7-Dimethoxy-1-(3-methoxyphenyl)-2-methyl-1,2,3,4-tetrahy**droisoquinoline (2c)** Yield: 136 mg (45%); yellow pasty mass.

IR (neat): 2946, 2849, 1504, 1260, 1037 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.09 (t, J = 7.6 Hz, 1 H, ArH), 6.75 (d, J = 7.6 Hz, 1 H, ArH), 6.70–6.67 (m, 2 H, ArH), 6.47 (s, 1 H,

© Georg Thieme Verlag Stuttgart · New York

ArH), 6.01 (s, 1 H, ArH), 4.02 (s, 1 H, C₁-H), 3.76 (s, 3 H, OCH₃), 3.69 (s, 3 H, OCH₃), 3.50 (s, 3 H, OCH₃), 3.08–3.01 (m, 1 H, C₃-H), 3.00-2.97 (m, 1 H, C₃-H), 2.59 (dd, J = 15.8, 3.1 Hz, 1 H, C₄-H), 2.46 (td, J = 10.9, 3.6 Hz, 1 H, C₄-H), 2.14 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 159.6, 147.5, 147.2, 145.5, 130.3, 128.9, 126.2, 122.0, 114.6, 112.9, 111.5, 110.8, 71.1, 55.7, 55.6, 54.9, 52.4, 44.4, 29.0.

MS (APCI): $m/z = 314.10 [M + H]^+$.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₉H₂₄NO₃: 314.1750; found: 314.1754.

6,7-Dimethoxy-1-(3,4-dimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline [(±)-Cryptostyline II, 2d]¹

Yield: 129 mg (39%); pale yellow solid; mp 95–96 °C (Lit.¹⁴ mp 94 °C).

¹H NMR (400 MHz, CDCl₃): $\delta = 6.73$ (dd, J = 8.1, 1.8 Hz, 1 H, ArH), 6.69 (d, J = 8.1 Hz, 1 H, ArH), 6.65 (d, J = 1.6 Hz, 1 H, ArH), 6.48 (s, 1 H, ArH), 6.02 (s, 1 H, ArH), 3.97 (s, 1 H, C₁-H), 3.81 (s, 3 H, OCH₃), 3.77 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.50 (s, 3 H, OCH₃), 3.09–3.03 (m, 1 H, C₃-H), 3.02–2.99 (m, 1 H, C₃-H), 2.60 (br d, J = 15.6 Hz, 1 H, C₄-H), 2.47 (td, J = 10.8, 3.5 Hz, 1 H, C₄-H), 2.13 (s, 3 H, NCH₃).

6,7-Dimethoxy-1-(3,4,5-trimethoxyphenyl)-2-methyl-1,2,3,4tetrahydroisoquinoline [(±)-Cryptostyline III, 2e]⁴

Yield: 162 mg (45%); light brown solid; mp 138-140 °C (Lit.44 mp 140-141 °C).

¹H NMR (400 MHz, CDCl₃): δ = 6.47 (s, 1 H, ArH), 6.40 (s, 2 H, ArH), 6.05 (s, 1 H, ArH), 3.93 (s, 1 H, C₁-H), 3.78 (s, 6 H, 2 \times OCH₃), 3.76 (s, 6 H, 2 × OCH₃), 3.52 (s, 3 H, OCH₃), 3.07–3.03 (m, 1 H, C_3 -H), 3.01–2.98 (m, 1 H, C_3 -H), 2.59 (br d, J = 15.6 Hz, 1 H, C₄-H), 2.45 (td, *J* = 10.5, 3.2 Hz, 1 H, C₄-H), 2.15 (s, 3 H, NCH₃).

6,7-Dimethoxy-2-methyl-1-(3,4-methylenedioxyphenyl)-1,2,3,4tetrahydroisoquinoline [(±)-Cryptostyline I, 2f]

Yield: 129 mg (41%); yellow solid; mp 116-117 °C (Lit.11 mp 117-118 °C).

¹H NMR (400 MHz, CDCl₃): $\delta = 6.65$ (dd, J = 7.9, 1.4 Hz, 1 H, ArH), 6.62 (d, J = 7.8 Hz, 1 H, ArH), 6.61 (d, J = 1.2 Hz, 1 H, ArH), 6.46 (s, 1 H, ArH), 6.04 (s, 1 H, ArH), 5.84 (d, J = 1.1 Hz, 1 H, OCH₂O), 5.83 (d, J = 1.2 Hz, 1 H, OCH₂O), 3.98 (s, 1 H, C₁-H), 3.75 (s, 3 H, OCH₃), 3.53 (s, 3 H, OCH₃), 3.09–3.02 (m, 1 H, C₃-H), 3.00-2.95 (m, 1 H, C₃-H), 2.58 (dd, J = 15.7, 3.0 Hz, 1 H, C₄-H), 2.45 (td, J = 10.8, 3.5 Hz, 1 H, C₄-H), 2.14 (s, 3 H, NCH₃).

2-Methyl-6,7-methylenedioxy-1-phenyl-1,2,3,4-tetrahydroiso**quinoline (2g)**⁴⁵ Yield: 109 mg (39%); light yellow oil.

¹H NMR (400 MHz, CDCl₃): $\delta = 7.28-7.24$ (m, 2 H, ArH), 7.22-7.19 (m, 3 H, ArH), 6.51 (s, 1 H, ArH), 6.03 (s, 1 H, ArH), 5.78 (d, J = 1.4 Hz, 1 H, OCH₂O), 5.75 (d, J = 1.4 Hz, 1 H, OCH₂O), 4.07 (s, 1 H, C₁-H), 3.13–3.09 (m, 1 H, C₃-H), 3.05–3.01 (m, 1 H, C₃-H), 2.63 (dt, J = 15.7, 3.2 Hz, 1 H, C₄-H), 2.51 (td, J = 11.0, 3.7 Hz, 1 H, C₄-H), 2.17 (s, 3 H, NCH₃).

1-(4-Methoxyphenyl)-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline (2h)

Yield: 102 mg (33%); light brown solid; mp 86–88 °C.

IR (neat): 2943, 2833, 1497, 1247, 1040 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.11 (d, *J* = 8.6 Hz, 2 H, ArH), 6.79 (d, J = 8.7 Hz, 2 H, ArH), 6.51 (s, 1 H, ArH), 6.04 (s, 1 H, ArH), 5.80 (d, J = 1.48 Hz, 1 H, OCH₂O), 5.78 (d, J = 1.4 Hz, 1 H, OCH2O), 4.04 (s, 1 H, C1-H), 3.78 (s, 3 H, OCH3), 3.17-3.09 (m, 1 H, C₃-H), 3.06–3.01 (m, 1 H, C₃-H), 2.64 (dt, *J* = 15.8, 2.8 Hz, 1 H, C_4 -H), 2.51 (td, J = 10.9, 3.6 Hz, 1 H, C_4 -H), 2.18 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 158.9, 145.8, 145.7, 135.8, 131.7, 130.4, 127.3, 113.6, 108.4, 107.7, 100.4, 70.8, 55.0, 52.3, 44.2, 29.5.

MS (APCI): $m/z = 298.11 [M + H]^+$.

Anal. Calcd for C₁₈H₁₉NO₃: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.59; H, 6.34; N, 4.70.

1-(3-Methoxyphenyl)-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline (2i)

Yield: 127 mg (41%); light brown oil.

IR (neat): 2949, 2841, 1493, 1245, 1040 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.17 (t, J = 7.4 Hz, 1 H, ArH), 6.82 (d, J = 7.6 Hz, 1 H, ArH), 6.77–6.75 (m, 2 H, ArH), 6.52 (s, 1 H, ArH), 6.08 (s, 1 H, ArH), 5.82 (d, J = 1.4 Hz, 1 H, OCH₂O), 5.79 (d, *J* = 1.4 Hz, 1 H, OCH₂O), 4.06 (s, 1 H, C₁-H), 3.77 (s, 3 H, OCH₃), $3.15-3.07 (m, 1 H, C_3-H), 3.05-3.03 (m, 1 H, C_3-H), 2.65 (br d, J =$ 15.8 Hz, 1 H, C₄-H), 2.54 (td, J = 11.0, 3.6 Hz, 1 H, C₄-H), 2.20 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 159.8, 145.8, 145.6, 132.9, 131.4, 129.0, 127.1, 122.0, 114.5, 113.1, 108.3, 107.7, 100.3, 71.6, 54.8, 52.5, 44.5, 29.7.

MS (APCI): $m/z = 298.13 [M + H]^+$.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₂₀NO₃: 298.1437; found: 298.1437.

1-(3,4-Dimethoxyphenyl)-2-methyl-6,7-methylenedioxy-1,2,3,4tetrahydroisoquinoline (2j) Yield: 119 mg (35%); pale yellow solid; mp 126-128 °C.

IR (neat): 2945, 2826, 1472, 1253, 1028 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.78$ (dd, J = 8.1, 1.7 Hz, 1 H, ArH), 6.75 (d, J = 8.1 Hz, 1 H, ArH), 6.71 (d, J = 1.6 Hz, 1 H, ArH), 6.52 (s, 1 H, ArH), 6.06 (s, 1 H, ArH), 5.81 (d, J = 1.4 Hz, 1 H, OCH₂O), 5.79 (d, J = 1.4 Hz, 1 H, OCH₂O), 4.00 (s, 1 H, C₁-H), 3.86 (s, 3 H, OCH₃), 3.81 (s, 3 H, OCH₃), 3.15–3.07 (m, 1 H, C₃-H), 3.06-3.04 (m, 1 H, C₃-H), 2.64 (br d, J = 15.8 Hz, 1 H, C₄-H), 2.51 $(td, J = 11.1, 3.6 Hz, 1 H, C_4-H), 2.18 (s, 3 H, NCH_3).$

¹³C NMR (75 MHz, CDCl₃): δ = 149.2, 148.4, 145.8, 145.6, 135.9, 131.3, 127.0, 121.9, 111.6, 110.3, 108.1, 107.6, 100.3, 71.3, 55.6, 55.6, 52.4, 44.1, 29.2.

MS (APCI): $m/z = 328.27 [M + H]^+$.

Anal. Calcd for C₁₉H₂₁NO₄: C, 69.71; H, 6.47; N, 4.28. Found: C, 69.69; H, 6.34; N, 4.10.

1-(3,4,5-Trimethoxyphenyl)-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline (2k)9

Yield: 164 mg (44%); white solid; mp 130–133 °C (Lit.9d mp 133– 134 °C)

¹H NMR (400 MHz, CDCl₃): $\delta = 6.53$ (s, 1 H, ArH), 6.47 (s, 2 H, ArH), 6.11 (s, 1 H, ArH), 5.84 (d, J = 1.4 Hz, 1 H, OCH₂O), 5.82 (d, J = 1.4 Hz, 1 H, OCH₂O), 3.98 (s, 1 H, C₁-H), 3.83 (s, 6 H, 2 × OCH₃), 3.82 (s, 3 H, OCH₃), 3.17–3.10 (m, 1 H, C₃-H), 3.08–3.07 (m, 1 H, C₃-H), 2.65 (br d, J = 15.8 Hz, 1 H, C₄-H), 2.50 (br t, J =11.1 Hz, 1 H, C₄-H), 2.21 (s, 3 H, NCH₃).

2-Methyl-6,7-methylenedioxy-1-(3,4-methylenedioxyphenyl)-1,2,3,4- tetrahydroisoquinoline (21)

Yield: 102 mg (32%); yellow solid; mp 164-165 °C.

IR (neat): 2981, 2896, 1478, 1236, 1039 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 6.72 (dd, *J* = 7.9, 1.4 Hz, 1 H, ArH), 6.69 (d, J = 7.7 Hz, 1 H, ArH), 6.67 (d, J = 1.1 Hz, 1 H, ArH), 6.51 (s, 1 H, ArH), 6.09 (s, 1 H, ArH), 5.92 (d, J = 1.5 Hz, 1 H, OCH₂O), 5.90 (d, J = 1.5 Hz, 1 H, OCH₂O), 5.81 (d, J = 1.4 Hz, 1 H, OCH₂O), 5.79 (d, J = 1.4 Hz, 1 H, OCH₂O), 4.00 (s, 1 H, C₁-H), 3.16-3.08 (m, 1 H, C₃-H), 3.05-3.01 (m, 1 H, C₃-H), 2.62 (dt, J =

15.8, 3.1 Hz, 1 H, C₄-H), 2.50 (td, *J* = 11.0, 3.6 Hz, 1 H, C₄-H), 2.19 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 147.9, 146.9, 145.9, 145.8, 138.0, 131.6, 127.3, 122.8, 109.3, 108.3, 107.8, 107.5, 100.8, 100.5, 71.3, 52.4, 44.3, 29.6.

MS (APCI): $m/z = 312.41 [M + H]^+$.

Anal. Calcd for $C_{18}H_{17}NO_4$: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.12; H, 5.62; N, 4.59.

6-Methoxy-2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2m)^{5b}

Yield: 91 mg (32%); yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.21–7.13 (m, 5 H, ArH), 6.50 (d, J = 2.0 Hz, 1 H, ArH), 6.41 (d, J = 2.4 Hz, 1 H, ArH), 6.38 (d, J = 8.6 Hz, 1 H, ArH), 4.04 (s, 1 H, C₁-H), 3.65 (s, 3 H, OCH₃), 3.15–2.97 (m, 2 H, C₃-H), 2.65 (br d, J = 16.0 Hz, 1 H, C₄-H), 2.48 (td, J = 11.3, 3.8 Hz, 1 H, C₄-H), 2.12 (s, 3 H, NCH₃).

6-Methoxy-1-(4-methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2n)

Yield: 105 mg (33%); light yellow solid; mp 94–96 °C.

IR (neat): 2941, 2834, 1505, 1253, 1029 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.04 (d, *J* = 8.6 Hz, 2 H, ArH), 6.70 (d, *J* = 8.7 Hz, 2 H, ArH), 6.49 (s, 1 H, ArH), 6.44–6.39 (m, 2 H, ArH), 4.00 (s, 1 H, C₁-H), 3.70 (s, 3 H, OCH₃), 3.64 (s, 3 H, OCH₃), 3.18–3.09 (m, 1 H, C₃-H), 3.01–2.96 (m, 1 H, C₃-H), 2.63 (dt, *J* = 16.1, 3.0 Hz, 1 H, C₄-H), 2.47 (td, *J* = 11.2, 3.8 Hz, 1 H, C₄-H), 2.11 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 158.8, 157.6, 136.2, 135.2, 131.3, 130.4, 129.6, 113.5, 112.4, 112.1, 70.5, 55.0, 54.9, 52.5, 44.3, 29.8.

MS (APCI): $m/z = 284.09 [M + H]^+$.

Anal. Calcd for C₁₈H₂₁NO₂: C, 76.29; H, 7.47; N, 4.94. Found: C, 76.44; H, 7.29; N, 4.88.

6-Methoxy-1-(3-methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (20)

Yield: 143 mg (45%); yellow viscous oil.

IR (neat): 2914, 2843, 1550, 1235, 1092 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.08 (t, *J* = 7.7 Hz, 1 H, ArH), 6.75 (d, *J* = 7.6 Hz, 1 H, ArH), 6.70–6.66 (m, 2 H, ArH), 6.49 (s, 1 H, ArH), 6.45–6.43 (m, 2 H, ArH), 4.01 (s, 1 H, C₁-H), 3.67 (s, 3 H, OCH₃), 3.65 (s, 3 H, OCH₃), 3.18–3.11 (m, 1 H, C₃-H), 3.02–2.97 (m, 1 H, C₃-H), 2.63 (dt, *J* = 16.0, 3.1 Hz, 1 H, C₄-H), 2.47 (td, *J* = 11.3, 3.7 Hz, 1 H, C₄-H), 2.13 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 159.7, 157.6, 145.8, 135.1, 130.8, 129.5, 129.0, 122.0, 114.6, 112.9, 112.5, 112.2, 71.3, 54.9, 54.9, 52.6, 44.5, 29.9.

MS (APCI): $m/z = 284.21 [M + H]^+$.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{18}H_{22}NO_2$: 284.1645; found: 284.1645.

6-Methoxy-1-(3,4-dimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2p)^{46}

Yield: 127 mg (36%); light brown solid; mp 70–72 °C.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.71$ (dd, J = 8.1, 1.8 Hz, 1 H, ArH), 6.67 (d, J = 8.1 Hz, 1 H, ArH), 6.63 (d, J = 1.7 Hz, 1 H, ArH), 6.50 (s, 1 H, ArH), 6.44–6.42 (m, 2 H, ArH), 3.95 (s, 1 H, C₁-H), 3.79 (s, 3 H, OCH₃), 3.72 (s, 3 H, OCH₃), 3.66 (s, 3 H, OCH₃), 3.19–3.11 (m, 1 H, C₃-H), 3.03–2.98 (m, 1 H, C₃-H), 2.64 (br d, J = 16.1 Hz, 1 H, C₄-H), 2.46 (td, J = 11.4, 3.7 Hz, 1 H, C₄-H), 2.11 (s, 3 H, NCH₃).

6-Methoxy-1-(3,4,5-trimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2q)⁴⁷

Yield: 158 mg (41%); pale brown solid; mp 96–97 °C (Lit.⁴⁷ mp 94–95 °C).

¹H NMR (400 MHz, CDCl₃): δ = 6.50–6.48 (m, 1 H, ArH), 6.46– 6.42 (m, 2 H, ArH), 6.39 (s, 2 H, ArH), 3.92 (s, 1 H, C₁-H), 3.74 (s, 3 H, OCH₃), 3.72 (s, 6 H, 2 × OCH₃), 3.65 (s, 3 H, OCH₃), 3.15– 3.11 (m, 1 H, C₃-H), 3.03–2.99 (m, 1 H, C₃-H), 2.63 (br d, *J* = 16.0 Hz, 1 H, C₄-H), 2.46 (td, *J* = 11.4, 3.7 Hz, 1 H, C₄-H), 2.13 (s, 3 H, NCH₃).

6-Methoxy-2-methyl-1-(3,4-methylenedioxyphenyl)-1,2,3,4-tet-rahydroisoquinoline (2r)

Yield: 134 mg (40%); white solid; mp 110-113 °C.

IR (neat): 2963, 2810, 1490, 1276, 1079 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.65$ (dd, J = 7.8, 1.4 Hz, 1 H, ArH), 6.61 (d, J = 7.8 Hz, 1 H, ArH), 6.60 (d, J = 1.4 Hz, 1 H, ArH), 6.48 (d, J = 1.7 Hz, 1 H, ArH), 6.45–6.42 (m, 2 H, ArH), 5.82 (d, J = 1.4 Hz, 1 H, OCH₂O), 5.81 (d, J = 1.4 Hz, 1 H, OCH₂O), 3.96 (s, 1 H, C₁-H), 3.65 (s, 3 H, OCH₃), 3.15–3.08 (m, 1 H, C₃-H), 3.00–2.95 (m, 1 H, C₃-H), 2.66–2.62 (m, 1 H, C₄-H), 2.45 (td, J = 11.3, 3.7 Hz, 1 H, C₄-H), 2.12 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 157.7, 147.9, 146.8, 138.3, 135.2, 130.9, 129.5, 122.8, 112.5, 112.2, 109.3, 107.4, 100.7, 70.9, 54.8, 52.5, 44.3, 29.9.

MS (APCI): $m/z = 298.53 [M + H]^+$.

Anal. Calcd for $C_{18}H_{19}NO_3:$ C, 72.71; H, 6.44; N, 4.71. Found: C, 72.59; H, 6.35; N, 4.65.

7-Ethoxy-6-methoxy-2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2s)

 \hat{Y} ield: 96 mg (36%); yellow oil.

IR (neat): 2927, 2773, 1476, 1227, 1138 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.19–7.10 (m, 5 H, ArH), 6.44 (s, 1 H, ArH), 5.93 (s, 1 H, ArH), 4.02 (s, 1 H, C₁-H), 3.70 (s, 3 H, OCH₃), 3.69–3.55 (m, 2 H, OCH₂CH₃), 3.10–3.02 (m, 1 H, C₃-H), 2.99–2.94 (m, 1 H, C₃-H), 2.62–2.57 (m, 1 H, C₄-H), 2.45 (td, *J* = 11.0, 3.8 Hz, 1 H, C₄-H), 2.10 (s, 3 H, NCH₃), 1.13 (t, *J* = 7.0 Hz, 3 H, OCH₂CH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 147.7, 146.3, 143.9, 130.3, 129.3, 127.9, 127.1, 126.1, 113.2, 111.0, 70.9, 63.9, 55.5, 52.2, 44.2, 28.9, 14.5.

MS (APCI): $m/z = 298.93 [M + H]^+$.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{19}H_{24}NO_2$: 298.1801; found: 298.1804.

7-Ethoxy-6-methoxy-1-(4-methoxyphenyl)-2-methyl-1,2,3,4tetrahydroisoquinoline (2t)

Yield: 94 mg (32%); yellow solid; mp 87–89 °C.

IR (neat): 2945, 2838, 1494, 1247, 1038 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.02 (d, *J* = 8.6 Hz, 2 H, ArH), 6.68 (d, *J* = 8.6 Hz, 2 H, ArH), 6.43 (s, 1 H, ArH), 5.96 (s, 1 H, ArH), 3.98 (s, 1 H, C₁-H), 3.71 (s, 3 H, OCH₃), 3.67 (s, 3 H, OCH₃), 3.66–3.59 (m, 2 H, OCH₂CH₃), 3.07–2.99 (m, 1 H, C₃-H), 2.98– 2.93 (m, 1 H, C₃-H), 2.56 (br d, *J* = 15.6 Hz, 1 H, C₄-H), 2.44 (td, *J* = 10.8, 3.7 Hz, 1 H, C₄-H), 2.09 (s, 3 H, NCH₃), 1.16 (t, *J* = 7.0 Hz, 3 H, OCH₂CH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 158.6, 147.7, 146.2, 135.7, 130.6, 130.2, 126.2, 113.3, 111.0, 70.2, 63.9, 55.5, 54.7, 52.1, 44.0, 28.8, 14.6.

MS (APCI): $m/z = 328.24 [M + H]^+$.

Anal. Calcd for $C_{20}H_{25}NO_3:$ C, 73.37; H, 7.70; N, 4.28. Found: C, 73.61; H, 7.52; N, 4.19.

7-Ethoxy-6-methoxy-1-(3-methoxyphenyl)-2-methyl-1,2,3,4tetrahydroisoquinoline (2u)

Yield: 139 mg (47%); colorless oil.

IR (neat): 2944, 2836, 1497, 1247, 1040 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.15 (t, *J* = 7.7 Hz, 1 H, ArH), 6.81 (d, *J* = 7.6 Hz, 1 H, ArH), 6.77–6.74 (m, 2 H, ArH), 6.53 (s, 1 H, ArH), 6.07 (s, 1 H, ArH), 4.08 (s, 1 H, C₁-H), 3.81 (s, 3 H, OCH₃), 3.75 (s, 3 H, OCH₃), 3.74–3.68 (m, 2 H, OCH₂CH₃), 3.15–3.09 (m, 1 H, C₃-H), 3.08–3.05 (m, 1 H, C₃-H), 2.66 (br d, *J* = 15.6 Hz, 1 H, C₄-H), 2.54 (td, *J* = 10.9, 3.6 Hz, 1 H, C₄-H), 2.21 (s, 3 H, NCH₃), 1.25 (t, *J* = 7.0 Hz, 3 H, OCH₂CH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 159.6, 146.4, 145.5, 130.2, 128.9, 126.2, 122.0, 114.5, 113.2, 113.0, 111.2, 109.4, 71.1, 64.1, 55.6, 54.9, 52.4, 44.4, 29.0, 14.7.

MS (APCI): $m/z = 328.29 [M + H]^+$.

HRMS (ESI): $m/z [M + H]^+$ calcd for C₂₀H₂₆NO₃: 328.1907; found: 328.1906.

7-Ethoxy-6-methoxy-1-(3,4-dimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2v)

Yield: 126 mg (39%); pale yellow solid; mp 93-95 °C.

IR (neat): 2944, 2835, 1464, 1253, 1028 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 6.69 (dd, *J* = 8.1, 1.7 Hz, 1 H, ArH), 6.65 (d, *J* = 8.1 Hz, 1 H, ArH), 6.64 (d, *J* = 1.5 Hz, 1 H, ArH), 6.44 (s, 1 H, ArH), 5.98 (s, 1 H, ArH), 3.96 (s, 1 H, C₁-H), 3.76 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 3.70 (s, 3 H, OCH₃), 3.68–3.56 (m, 2 H, OCH₂CH₃), 3.10–3.04 (m, 1 H, C₃-H), 3.01–2.96 (m, 1 H, C₃-H), 2.56 (br d, *J* = 15.8 Hz, 1 H, C₄-H), 2.46 (td, *J* = 10.9, 3.6 Hz, 1 H, C₄-H), 2.11 (s, 3 H, NCH₃), 1.17 (t, *J* = 7.0 Hz, 3 H, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃): δ = 149.1, 148.2, 147.7, 146.2, 136.1, 130.2, 125.9, 121.7, 113.1, 111.6, 110.9, 110.1, 70.8, 63.8, 55.3, 52.4, 44.1, 28.6, 14.5.

MS (APCI): $m/z = 358.41 [M + H]^+$.

Anal. Calcd for C₂₁H₂₇NO₄: C, 70.56; H, 7.61; N, 3.92. Found: C, 70.24; H, 7.52; N, 3.88.

7-Ethoxy-6-methoxy-1-(3,4,5-trimethoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2w)

Yield: 150 mg (43%); white solid; mp 123–125 °C.

IR (neat): 2939, 2841, 1483, 1236, 1030 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.53$ (s, 1 H, ArH), 6.45 (s, 2 H, ArH), 6.09 (s, 1 H, ArH), 3.98 (s, 1 H, C₁-H), 3.81 (s, 3 H, OCH₃), 3.80 (s, 9 H, 3 × OCH₃), 3.79–3.71 (m, 2 H, OCH₂CH₃), 3.14–3.09 (m, 1 H, C₃-H), 3.07–3.04 (m, 1 H, C₃-H), 2.64 (br d, *J* = 15.6 Hz, 1 H, C₄-H), 2.53 (td, *J* = 10.7, 3.3 Hz, 1 H, C₄-H), 2.20 (s, 3 H, NCH₃), 1.26 (t, *J* = 7.0 Hz, 3 H, OCH₂CH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 152.9, 147.9, 146.2, 139.2, 137.2, 130.0, 126.1, 113.2, 111.1, 106.3, 71.5, 64.1, 60.4, 55.9, 55.5, 52.5, 44.4, 28.7, 14.6.

MS (APCI): $m/z = 388.74 [M + H]^+$.

Anal. Calcd for $C_{22}H_{29}NO_5{:}$ C, 68.20; H, 7.54; N, 3.61. Found: C, 68.55; H, 7.42; N, 3.69.

7-Ethoxy-6-methoxy-2-methyl-1-(3,4-methylenedioxyphenyl)-1,2,3,4-tetrahydroisoquinoline (2x)

Yield: 120 mg (39%); white solid; mp 88–90 °C.

IR (neat): 2974, 2899, 1477, 1236, 1039 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.64$ (dd, J = 7.9, 1.4 Hz, 1 H, ArH), 6.61 (d, J = 7.7 Hz, 1 H, ArH), 6.60 (d, J = 1.0 Hz, 1 H, ArH), 6.44 (s, 1 H, ArH), 6.02 (s, 1 H, ArH), 5.84 (d, J = 1.3 Hz, 1 H, OCH₂O), 5.83 (d, J = 1.4 Hz, 1 H, OCH₂O), 3.95 (s, 1 H, C₁-H), 3.73 (s, 3 H, OCH₃), 3.72–3.65 (m, 2 H, OCH₂CH₃), 3.07–3.01 (m, 1 H, C₃-H), 2.99–2.94 (m, 1 H, C₃-H), 2.56 (dd, J = 15.7, 3.1 Hz, 1

H, C₄-H), 2.44 (td, *J* = 10.8, 3.5 Hz, 1 H, C₄-H), 2.13 (s, 3 H, NCH₃), 1.21 (t, *J* = 7 Hz, 3 H, OCH₂CH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 147.9, 147.8, 146.8, 146.5, 138.0, 130.4, 126.4, 122.7, 113.3, 111.1, 109.3, 107.3, 100.7, 70.8, 64.2, 55.6, 52.3, 44.3, 29.0, 14.7.

MS (APCI): $m/z = 342.39 [M + H]^+$.

Anal. Calcd for $C_{20}H_{23}NO_4$: C, 70.36; H, 6.79; N, 4.10. Found: C, 70.59; H, 6.52; N, 4.29.

Deuterium Labeling Experiments

(1) Into a flame-dried two-necked round-bottomed flask, equipped with a magnetic stirrer bar, septum cap and a bubbler, was taken a solution of N-methyl-1,2,3,4-tetrahydroisoquinoline (3, 200 mg, 1.36 mmol, 1 equiv) in anhydrous THF (10 mL) under an inert N₂ atmosphere. It was cooled to 0 °C and BF₃·OEt₂ (0.25 mL, 1.63 mmol, 1.2 equiv) was added dropwise. The turbid white solution was stirred at 0 °C for 30 min. It was then cooled to -78 °C and s-BuLi [1.43 mL (2.6 M in pentane), 2.99 mmol, 2.2 equiv] was added dropwise. A deep red color (indicative of benzylic carbanion formation) appeared immediately. The solution was stirred at the same temperature for 30 min and then a solution of MeCO₂D (182 mg, 0.2 mL, 2.99 mmol, 2.2 equiv) in THF (2 mL) was added. After the addition, the reaction mixture was stirred and warmed to r.t. over a period of 4-5 h, whence aq 10% HCl (15 mL) was added. The contents were poured into Et_2O (25 mL). The aqueous layer was separated and the organic layer was further extracted with aq 10% HCl (2 \times 15 mL). The combined aqueous layers were washed with Et₂O (2 \times 20 mL) to remove nonbasic impurities, made alkaline with solid Na_2CO_3 , and extracted with CHCl₃ (4 × 15 mL). The combined organic layers were washed with brine (20 mL) and dried (Na₂SO₄). The solvent was evaporated in vacuo to afford the crude product, which was purified by flash column chromatography using 230-400 mesh silica gel. Elution with EtOAc-hexane (1:1) afforded 2methyl-1,2,3,4-tetrahydro $(1^{-2}H_1)$ isoquinoline (12) as a yellow oil; yield: 184 mg (92%).

(2) Into a flame-dried two-necked round-bottomed flask, equipped with a magnetic stirrer bar, septum cap and a bubbler, was taken a solution of N-methyl-1,2,3,4-tetrahydroisoquinoline (3; 200 mg, 1.36 mmol, 1 equiv) in anhydrous THF (10 mL) under an inert N₂ atmosphere. It was cooled to 0 °C and BF3 OEt2 (0.25 mL, 1.63 mmol, 1.2 equiv) was added dropwise. The turbid white solution was stirred at 0 °C for 30 min. It was then cooled to -78 °C and s-BuLi [1.43 mL (2.6 M in pentane), 2.99 mmol, 2.2 equiv] was added dropwise. A deep red color (indicative of benzylic carbanion formation) appeared immediately. The solution was stirred at the same temperature for 30 min. The second instalment of s-BuLi [1.96 mL (2.6 M in pentane), 4.08 mmol, 3 equiv] was added followed by the addition of a solution of chlorobenzene (450 mg, 0.41 mL, 4.08 mmol, 3 equiv) in THF (1–2 mL). The reaction mixture was stirred at -78 °C for 45 min and was allowed to warm to -10 °C over a period of 3-4 h. It was then quenched with a solution of MeCO₂D (430 mg, 0.4 mL, 7.07 mmol, 5.2 equiv) in THF (2 mL). After the addition, the mixture was stirred and warmed to r.t. and aq 10% HCl (15 mL) was added. The contents were poured into Et₂O (25 mL). The aqueous layer was separated and the organic layer was further extracted with aq 10% HCl (2×15 mL). The combined aqueous layers were washed with $Et_2O(2 \times 20 \text{ mL})$ to remove nonbasic impurities, made alkaline with solid Na₂CO₃, and extracted with CHCl₃ (4×15 mL). The combined organic layers were washed with brine (20 mL) and dried (Na₂SO₄). The solvent was evaporated in vacuo to afford the crude product, which was purified by flash column chromatography using 230-400 mesh silica gel. Elution with EtOAc-hexane (3.7) afforded 2-methyl-1-phenyl-1,2,3,4-tetrahydro $(1-{}^{2}H_{1})$ isoquinoline (13) as a light yellow oil (123 mg, 41%). Further elution with same solvent gave 12 as a yellow oil (28 mg, 14%).

The same procedure was repeated, with the only difference that $MeCO_2D$ was added at r.t. instead of -10 °C. Workup and purifica-

tion in the similar fashion as described above gave **13** as a light yellow oil (117 mg, 39%) and **12** as a yellow oil (30 mg, 15%).

To investigate the nonbasic material, the Et_2O layer was washed with brine (20 mL) and dried (Na₂SO₄). The solvent was evaporated in vacuo to afford the crude product, which was again purified by flash column chromatography using 230–400 mesh silica gel. Elution with EtOAc–hexane (2:98) afforded biphenylene (14) as a yellow solid; yield: 42 mg (7%). Further elution with the same solvent gave 1-chloro-2-phenylbenzene (15) as a white solid; yield: 67 mg (9%).

2-Methyl-1,2,3,4-tetrahydro(1-²H₁)isoquinoline (12)

Yield: 28 mg (14%); yellow oil.

¹H NMR (400 MHz, CDCl₃): $\delta = 6.72$ (dd, J = 8.08, 1.84 Hz, 1 H, ArH), 6.67 (d, J = 8.08 Hz, 1 H, ArH), 6.63 (d, J = 1.76 Hz, 1 H, ArH), 6.52 (d, J = 7.84 Hz, 1 H, ArH), 3.44 (br s, 1 H, C₁-H), 2.80 (t, J = 8.28 Hz, 2 H, C₃-H), 2.56 (t, J = 7.84 Hz, 2 H, C₄-H), 2.20 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 138.4, 133.9, 129.0, 128.4, 127.2, 125.9, 68.7, 52.6, 44.6, 29.7.

2-Methyl-1-phenyl-1,2,3,4-tetrahydro(1-²H₁)isoquinoline (13) Yield: 123 mg (41%); light yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.18–7.11 (m, 5 H, ArH), 6.96– 6.90 (m, 2 H, ArH), 6.81 (t, *J* = 8.08 Hz, 1 H, ArH), 6.47 (d, *J* = 7.8 Hz, 1 H, ArH), 3.18–3.10 (m, 1 H, C₃-H), 3.02–2.97 (m, 1 H, C₃-H), 2.65 (dt, *J* = 15.84, 2.84 Hz, 1 H, C₄-H), 2.47 (td, *J* = 11.32, 3.68 Hz, 1 H, C₄-H), 2.13 (s, 3 H, NCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 144.4, 138.4, 134.1, 129.5, 128.6, 128.3, 128.2, 127.3, 125.7, 125.5, 72.2, 52.0, 44.2, 29.4.

Biphenylene (14)27

Yield: 42 mg (7%); yellow solid; mp 106–108 °C (Lit.²⁷ mp 109 °C).

¹H NMR (400 MHz, CDCl₃): δ = 6.68–6.61 (m, 3 H, ArH), 6.57–6.50 (m, 1 H, ArH), 6.48–6.31 (m, 3 H, ArH), 6.27–6.20 (m, 1 H, ArH).

1-Chloro-2-phenylbenzene (15)⁴⁸

Yield: 67 mg (9%); white solid; mp 33 °C (Lit.48 mp 35 °C).

¹H NMR (400 MHz, CDCl₃): δ = 7.78–7.75 (m, 2 H, ArH), 7.69–7.68 (m, 1 H, ArH), 7.57–7.28 (m, 4 H, ArH), 7.27–7.12 (m, 2 H, ArH).

Acknowledgment

We acknowledge financial support through Scheme No. 02(0131)/13/EMR-II sponsored by CSIR, New Delhi. Y. S. Deol thanks UGC, New Delhi, for the award of a research fellowship.

Supporting Information for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000084.

References

- (a) Cheng, P.; Huang, N.; Zhang, Q.; Zheng, Y.-T. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2475. (b) Chen, K.-X.; Xie, H.-Y.; Li, Z.-G. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 5381.
- (2) Tiwari, R. K.; Singh, D.; Singh, J.; Chhiller, A. K.; Chandra, R.; Verma, A. K. *Eur. J. Med. Chem.* **2006**, *41*, 40.
- (3) Kuo, C.-Y.; Wu, M. J.; Kuo, Y.-H. *Eur. J. Med. Chem.* **2006**, *41*, 940.
- (4) Ludwig, M.; Hoesl, C. E.; Wanner, K. T. *Eur. J. Med. Chem.* 2006, *41*, 1003.

© Georg Thieme Verlag Stuttgart · New York

- (5) (a) Charifson, P. S.; Wyrick, S. D.; Hoffman, A. J.; Bowen, J. P. J. Med. Chem. 1988, 31, 1941. (b) Minor, D. L.; Wyrick, S. D.; Charifson, P. S. J. Med. Chem. 1994, 37, 4317.
- (6) Leander, K.; Luning, B.; Ruusa, E. Acta Chem. Scand. 1969, 23, 244.
- (7) Naito, R.; Yonetoka, Y.; Okamoto, Y.; Toyoshima, A.; Ikeda, K. J. Med. Chem. 2005, 48, 6597.
- (8) (a) Munchhof, M. J.; Meyers, A. I. J. Org. Chem. 1995, 60, 7086. (b) Yamato, M.; Hashigaki, K.; Qais, N. Tetrahedron 1990, 46, 5909.
- (9) (a) Suzuki, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 1995, 36, 6709. (b) Berenguer, I.; Aouad, N. E.; Andujar, S.; Romero, V.; Suvire, F.; Freret, T. Bioorg. Med. Chem. 2009, 17, 4968. (c) Ishiwata, S.; Itakura, K. Chem. Pharm. Bull. 1968, 16, 778. (d) Reeve, W.; Eareckson, W. M. J. Am. Chem. Soc. 1950, 72, 5195. (e) Gray, N. M.; Cheng, B. K.; Mick, S. J.; Lair, C. M.; Contreras, P. C. J. Med. Chem. 1989, 32, 1242. (f) Landais, Y.; Robin, J.-P. Tetrahedron 1992, 48, 7185. (g) Leander, K.; Luning, B. Tetrahedron Lett. 1968, 9, 1393.
- (10) (a) Gitto, R.; Barreca, M. L.; Luca, L. D.; Sarro, G. D.;
 Ferrerri, G. *J. Med. Chem.* **2003**, *46*, 197. (b) Ruchirawat, S.;
 Bhavakul, V.; Chaisupakitsin, M. Synth. Commun. **2003**, *33*, 621.
- (11) Polniaszek, R. P.; Dillard, L. W. *Tetrahedron Lett.* **1990**, *31*, 797.
- (12) Costa, B. R.; Radesca, L. Synthesis 1992, 887.
- (13) Abe, K.; Saitoh, T.; Horiguchi, Y.; Utsunomiya, I. *Biol. Pharm. Bull.* **2005**, *28*, 1355.
- (14) Umetsu, K.; Asao, N. Tetrahedron Lett. 2008, 49, 2722.
- (15) Tokitoh, N.; Okazaki, R. Bull. Chem. Soc. Jpn. **1988**, 61, 735.
- (16) Takano, S.; Suzuki, M.; Kijima, A.; Ogasawara, K. *Chem. Lett.* **1990**, 315.
- (17) Kurihara, K.; Yamamoto, Y.; Miyaura, N. *Adv. Synth. Catal.* 2009, *351*, 260.
- (18) Kessar, S. V.; Singh, P.; Vohra, R.; Kaur, N. P.; Singh, K. N. J. Chem. Soc., Chem. Commun. 1991, 568.
- (19) Kessar, S. V.; Singh, P. Chem. Rev. 1997, 97, 721.
- (20) Singh, K. N.; Singh, P.; Singh, P.; Deol, Y. S. Org. Lett. 2012, 14, 2202.
- (21) (a) Pellissier, H.; Santelli, M. *Tetrahedron* 2003, *59*, 701.
 (b) Wickham, P. P.; Hazen, K. H.; Guo, H. *J. Org. Chem.* 1991, *56*, 2045. (c) Yoshida, H.; Fukushima, H.; Ohshita, J. *Angew. Chem. Int. Ed.* 2004, *43*, 3935. (d) Matsumoto, T.; Hosoya, T.; Katsuki, M. *Tetrahedron Lett.* 1991, *32*, 6735. (e) Hofmann, R. W. *Dehydrobenzene and Cycloalkynes*; Academic Press: New York, 1967. (f) Reinecke, M. G. *Tetrahedron* 1982, *38*, 427.
- (22) (a) Khanapure, S. P.; Biehl, E. R. J. Org. Chem. 1990, 55, 1471. (b) Hofmann, R. W. Dehydrobenzene and Cycloalkynes; Academic Press: New York, 1967, 134.
- (23) (a) Adejare, A.; Miller, D. D. *Tetrahedron Lett.* 1984, 25, 5597. (b) Kress, T. H.; Leanna, M. R. *Synthesis* 1988, 803.
- (24) All new products were characterized by ¹H NMR, ¹³C NMR, IR spectroscopy, and mass spectrometry (APCI-MS and HRMS).
- (25) Ebden, M. R.; Simpkins, N. S.; Fox, D. N. *Tetrahedron Lett.* 1995, 36, 8697.
- (26) (a) Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 151. (b) Marsden, R.; MacLean, D. B. Can. J. Chem. 1984, 62, 1392. (c) Miller, R. B.; Tsang, T. Tetrahedron Lett. 1988, 29, 6715.
- (27) Jones, E. P.; Jones, P.; Barrett, A. G. Org. Lett. 2011, 13, 1012.

- (28) Logullo, F. M.; Seitz, A. M.; Friedman, L. Org. Synth. **1968**, 48, 12.
- (29) Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1957, 79, 2625.
- (30) (a) Kessar, S. V.; Singh, P.; Singh, K. N.; Venugopalan, P.; Kaur, A.; Mahendru, M.; Kapoor, R. *Tetrahedron Lett.* 2005, 46, 6753. (b) Blagg, J.; Coote, S. J.; Davies, S. G. *J. Chem. Soc., Perkin Trans. 1* 1987, 689. (c) Ito, Y.; Nakatsuka, M.; Saegusa, T. *J. Am. Chem. Soc.* 1982, 104, 7609.
- (31) Bordwell, F. G.; Vanier, N. R.; Zhang, X. J. Am. Chem. Soc. 1991, 113, 9856.
- (32) Many arylation procedures using transition metals, and thus having an obvious drawback are reported. (a) Morrell, D. C.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 7262. (b) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992. (c) Peng, S.; Quing, F. L.; Li, Y.-Q.; Hu, C.-M. J. Org. Chem. 2000, 65, 694. (d) Gray, M.; Andrews, I. P.; Hook, D. F. Kitteringham, J.; Voyle, M. Tetrahedron Lett. 2000, 41, 6237. (e) Yus, M.; Gomis, J. Eur. J. Org. Chem. 2002, 1989. (f) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253. (g) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (h) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (i) Bellina, F.; Rossi, R. Tetrahedron 2009, 65, 10269. (j) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 48, 9792. (k) Daugulis, O. Top. Curr. Chem. 2010, 292, 57. (1) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211. (m) Bouffard, J.; Itami, K. Top. Curr. Chem. 2010, 292, 231.
- (33) (a) Veber, D. F.; Lwowski, W. J. Am. Chem. Soc. 1964, 86, 4152. (b) Fraser, R. R.; Renaud, R. N. Can. J. Chem. 1971, 49, 746.

- (34) Gámez-Montaño, R.; Chávez, M. I.; Roussi, G.; Cruz-Almanza, R. *Tetrahedron Lett.* 2001, 42, 9.
- (35) Furniss, B. S. Vogel's Textbook of Practical Organic Chemistry, 4th ed.; ELBS/Longman: London, 1978, 266.
 (36) Fagan, P. J.; Nugent, W. A. Org. Synth. Coll. Vol. 9; Wiley:
- (b) Fugue, 1.5., Fugen, W. F. O(g, S) million. Cont. 76. 9, Wheye New York, **1998**, 653.
- (37) Blagg, J.; Coote, J. S.; Davies, S. G.; Mobbs, B. E. J. Chem. Soc., Perkin Trans 1 1986, 2257.
- (38) (a) Bearss, D. J.; Grand, C. L. PCT Int. Appl WO2008055233, 2008; *Chem. Abstr.* 2008, *148*, 538306.
 (b) Yu, Q.; Jin, Y.; Zhou, Z.-Y.; Tian, W.; Long, Y.-Q. *Bioorg. Med. Chem. Lett.* 2006, *16*, 5864. (c) Roy, S. C.; Rana, K. K.; Guin, C.; Banerjee, B. *Synlett* 2003, 221.
- (39) Furniss, B. S. Vogel's Textbook of Practical Organic Chemistry, 4th ed.; ELBS/Longman: London, 1978, 755.
- (40) Kajita, M.; Niwa, T.; Fujisaki, M.; Ueki, M.; Niimura, K. J. Chromatogr. B 1995, 669, 345.
- (41) Bender, C.; Liebscher, J. *ARKIVOC* **2009**, (vi), 111.
- (42) Valpuesta, M.; Ariza, M.; Diaz, A.; Suau, R. *Eur. J. Org. Chem.* 2010, 23, 4393.
- (43) Ahluwalia, G. S.; Narang, K. S.; Rây, J. N. J. Chem. Soc. 1931, 2057.
- (44) Samano, V.; Ray, J. A.; Thompson, J. B.; Mook, R. A.; Feldman, P. L. Org. Lett. **1999**, *1*, 1993.
- (45) Joachim, K. Arch. Pharm. (Weinheim, Germany) 1959, 292, 652.
- (46) Hoshino, O.; Tanahashi, R.; Okada, M.; Akita, H.; Oishi, T. Tetrahedron: Asymmetry 1993, 4, 933.
- (47) Gunzinger, J.; Leander, K. PCT Int. Appl WO 2005087743 A1 20050922, 2005; Chem. Abstr. 2005, 143, 326227.
- (48) Beaven, G. H.; Hassan, M.; Johnson, E. A.; Klassen, N. V. J. Chem. Soc. 1961, 2749.