Diastereoselective Synthesis of 2,3-anti-5-Benzyloxy-2,4-dimethyl-1,3-pentanediols via Cyclic Hydroboration

NOTES

Yasushi Yokoyama,* Yuji Terada, and Hideyuki Kawashima Department of Materials Science, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240 (Received February 7, 1991)

Synopsis. The treatment of (2E,4S)- and (2Z,4S)-1-benzyloxy-5-ethenyloxy-2,4-dimethyl-2-pentene with borane both with and without a catalytic amount of Rh(Ph₃P)₃Cl gave 2,3-anti-3,4-anti-(2R,3R,4S)- and 2,3-anti-3,4-syn-(2R,3R,4R)-5-benzyloxy-2,4-dimethyl-1,3-pentanediols, respectively, with fair to good diastereoselectivity.

The enantioselective preparation of polypropionate antibiotics, particularly macrolides, has attracted the strong attention of a large number of synthetic organic chemists.¹⁾ As the synthon of polypropionates, 2,4-dimethyl-1,3,5-pentanetriol derivatives 1a—d and the related compounds are very useful, and have been used in the synthesis of biologically important natural compounds.²⁻⁴⁾ An excellent review concerning these compounds has already appeared.⁵⁾

We have recently reported an allylic 1,3-strain-controlled cyclic hydroboration, used to produce acyclic compounds possessing a 1,2-anti-2-methyl-1,4-diol unit.⁶⁾ In this article we would like to report on the diastereoselective construction of 2,3-anti-2,4-dimethyl-1,3,5-pentanetriol derivatives via the cyclic hydroboration method.

Our target molecules to prepare were 1a and 1c. Since species 2 was known not to afford intramolecular hydroboration products (because of its low reactivity toward olefins⁷⁾), we had to find a new reaction system. We chose ethenyl ethers as the intramolecular borane carrier. The advantage of using ethenyl ethers is that this C₂ unit is known to fall off as an ethene molecule during the intramolecular hydroboration reaction;⁸⁾ therefore, no ether cleavage reaction, (which is sometimes difficult⁹⁾) was necessary for a further chemical transformation (Scheme 1).

Ethenyl ethers **3E** and **3Z** were prepared from the corresponding optically active alcohols, **4E** and **4Z**, respectively, with almost complete control of the double-bond geometry (>98:<2)^{6b)} without any loss of chirality.²⁾

The reaction of E isomer 3E with borane in THF at

Scheme 1.

-70 °C to room temperature, followed by an alkaline hydrogen peroxide treatment, gave an inseparable mixture of two triol monobenzyl ethers (1a and 1b, 56%), together with 2-hydroxyethyl ether 5 (15%). The diastereomeric ratio, 1a/1b, was determined to be 80/20 by comparing the ¹H NMR data with that described in the literature. ^{2,3)} In a low-Lewis-basic solvent, CH₂Cl₂, which might accelerate ethene extrusion by avoiding solvent coordination to the boron atom of cyclic intermediate B in Scheme 1, no hydroxyethyl ether 5 was detected, though a smaller amount of a mixture of diols (75/25, 36%) was obtained with homoallylic ether 6E (10%).

It was found that (1,1,2-trimethylpropyl)borane (thexylborane) is not effective in this reaction. The steric bulkiness interfered not only a stereoselective reaction, but even cyclic hydroboration, itself.

Similar results were obtained for ethenyl ether 3Z (Table 1).

The diastereoselectivity of this reaction was lower than that of 1,4-dienes.⁶⁾ Although Harada et al. observed that boranes reacted with the electron-rich, sterically-uncongested ethenyloxy moiety faster than with the trisubstituted double bond,⁸⁾ the low reactivity of A in Scheme 1 might have allowed a reversely diaster-

Table 1	Cyalia	Undrobore	tion of	Ethonyl	Ethore	3E and 3Z
Table 1.	Cvclic	Hydrobora	ation of	Ethenvi	Ethers	3E and 3Z

Substrate	Borane	Solvent	Time/ha)	Yield/%	1 (anti/syn)	5 Yield/%	6 Yield/%
3E	BH ₃	THF	16.5	56	(80/20)	15	0
3E	BH_3	Ether	12.5	60	(75/25)	9	0
3E	BH_3	CH_2Cl_2	20	36	(75/25)	0	10
3E	$ThexBH_2^{b)}$	THF	14(5)	33	(50/50)	7	25
3Z	BH_3	THF	15	77	(70/30)	17	4
3Z	BH_3	Ether	18	71	(70/30)	8	0
3Z	BH_3	CH_2Cl_2	20.5	53	(70/30)	0	0
3Z	$ThexBH_2^{b)}$	THF	15(3.5)	44	(75/25)	42	6

a) Reaction time at room temperature. Additional refluxing time before quenching, if done, is in the parenthesis. b) ThexBH₂ stands for (1,1,2-trimethylpropyl)borane.

Table 2. Cyclic Hydroboration of Ethenyl Ethers 3E and 3Z with Borane in THF in the Presence of Rh(PPh₃)₃Cl

Substrate	Rh(I)/mol%	Time/h	Yield/%	1 (anti/syn)	5 Yield/%	6 Yield/%
3E	2.1	18	53	(60/40)	22	0
3Z	4.6	17.5	53	(90/10)	0	10

eoselective *intermolecular* hydroboration of a borane species toward the trisubstituted double bond of A to give isomers 1b or 1d.

In 1985 Männig and Nöth reported that hydroboration reactions using 1,3,2-benzodioxaborole (catecholborane) were greatly accelerated by a catalytic amount of Rh(PPh₃)₃Cl.¹⁰ Recently, further developments and applications of this reaction have been reported.^{11–14} Pt-catalyzed hydrosilylation, closely related to Rh-catalyzed hydroboration, was also reported by Tamao et al.¹⁵ Since the intramolecular hydroboration of intermediate A in Scheme 1 was not very fast at –78 °C, it would be accelerated by the Rh(I) catalyst. While hoping to improve the *anti/syn* selectivity of the diols, we next carried out a reaction (borane, THF, –78 °C to room temperature) with 2–5 mol% of Rh(PPh₃)₃Cl. The results are given in Table 2.

Although ethenyl ether 3E gave a 60/40 mixture of diols 1a and 1b in 53%, 3Z gave a mixture of 1c/1d with a 90/10 ratio in 53% yield. A similar observation, that the selectivity of the Pt-catalyzed hydrosilylation reaction of (Z)-olefin was better than that of (E)-olefin, has been reported by Tamao et al. According to them, the hydrosilylation-oxidation reaction of 3E gives 1a in a 3.5/1 ratio, while 3Z gives 1c in >10/1. 15

Experimental

The IR spectra were measured using a JASCO A-202 IR spectrometer. The ¹H NMR spectra were recorded with a JEOL JNM-FX-90Q or JEOL JNM-PMX-60 spectrometer in CDCl₃, unless otherwise noted. The low- and high-resolution mass spectra were taken with a JEOL JMS D-300 mass spectrometer. All reactions were carried out in dry solvents under a nitrogen atmosphere.

(2E,4R)-1-Benzyloxy-2,4-dimethyl-5-ethenyloxy-2-pentene (3E). To a mixture of mercury(II) acetate (287 mg, 0.90 mmol, 1.53 equiv) and ethenyl ethyl ether (2 ml) at room temperature was added a solution of (2R,3E)-5-benzyloxy-2,4-dimethyl-3-penten-1-ol (4E) (130 mg, 0.59 mmol) in 3.5 ml

ethenyl ethyl ether; the resulting mixture was refluxed for 17.5 h. During that period, another 5 ml of ethenyl ethyl ether was added. At the end of the reaction, 5 ml of ether and 6 ml of 5% aqueous potassium hydroxide solution were successively added. Extraction with ether followed by the usual work up and purification with silica gel flash column chromatography (hexane-ethyl acetate, 95:5) gave 131 mg (90%) of ethenyl ether (3E). 1 H NMR (CCl₄, 60 MHz) δ =1.03 (3H, d, J=7.0 Hz), 1.69 (3H, s), 2.8 (1H, m), 3.47 (2H, d, J=6.3 Hz), 3.80 (2H, s), 3.88 (1H, dd, J=6.7, 2.0 Hz), 4.31 (1H, dd, J=14.2, 2.0 Hz), 4.39 (2H, s), 5.21 (1H, d, J=9.2 Hz), 6.39 (1H, dd, J=14.2, 6.7 Hz), 7.23 (5H, s); IR (neat) 1630 (sh), 1610, 1200, 700 cm⁻¹; MS m/z (rel intensity) 246 (M⁺; 0.1), 138 (M⁺-PhCH₂OH; 100). Found: m/z 138.1052. Calcd for $C_9H_{14}O$ (M-PhCH₂OH): 138.1045.

(2Z,4R)-1-Benzyloxy-2,4-dimethyl-5-ethenyloxy-2-pentene (3Z). Essentially the same procedure described above using mercury(II) acetate (450 mg, 1.41 mmol, 1.19 equiv), ethenyl ethyl ether (9 ml), and (2R,3Z)-5-benzyloxy-2,4-dimethyl-3-penten-1-ol (4Z) (262 mg, 1.19 mmol) gave 283 mg (97%) of ethenyl ether (3Z). ¹H NMR (CCl₄, 60 MHz) δ =0.94 (3H, d, J=7.0 Hz), 1.80 (3H, s), 2.8 (1H, m), 3.46 (2H, d, J=6.3 Hz), 3.93 (1H, dd, J=7.0, 2.0 Hz), 4.01 (2H, s), 4.34 (1H, dd, J=14.1, 2.0 Hz), 4.44 (2H, s), 5.18 (1H, d, J=9.2 Hz), 6.37 (1H, dd, J=14.1, 7.0 Hz), 7.29 (5H, s); IR (neat) 1630 (sh), 1607, 1200, 700 cm⁻¹; MS m/z (rel intensity) 246 (M⁺; 0.1), 138 (M⁺-PhCH₂OH; 100). Found: m/z 138.1046. Calcd for C₉H₁₄O (M-PhCH₂OH): 138.1045.

Typical Procedure of Cyclic Hydroboration. Ethenyl ether 3Z (112 mg, 0.454 mmol) was dissolved in ether (5 ml); the solution was then cooled to -74°C, to which was added (dropwise over a period of 2 h) a mixture of a 2.0 mol dm⁻³ ethereal solution of borane-dimethyl sulfide complex (1/1) (0.25 ml, 0.5 mmol, 1.1 equiv) and ether (5 ml). After the addition was completed, the cooling bath was removed, and the reaction mixture was stirred for 18 h at room temperature. To it was added 1 ml water, 1 ml 1 mol dm⁻³ aq sodium hydroxide, and 0.3 ml 35% aq hydrogen peroxide successively; the mixture was then stirred at 60°C for 2 h. Extraction with ethyl acetate followed by the usual work up and silica-gel flash column chromatography (hexane-ethyl acetate, 70:30 to 50:50) gave a mixture of 1c and 1d (61 mg, 0.258 mmol, 57%), 1d (15 mg, 0.063 mmol, 14%), and 2-hydroxyethyl ether 5 (11

Table 3	Selected	1H NM	R Data	of Diol 1d	a)
Taine .	. Geletten	- I I N IVI	is izata	OL DIOL IU	

In C ₆ D ₆			
Data from Ref. 2	0.55 (3H, d, <i>J</i> =6.9 Hz)	0.93 (3H, d, <i>J</i> =6.9 Hz)	4.22 (2H, s)
Our data	1.03 (3H, d, <i>J</i> =7.4 Hz)	1.11 (3H, d, <i>J</i> =7.1 Hz)	4.26 (2H, s)
In CDCl ₃			
Data from Ref. 3	1.01 (3H, d, <i>J</i> =7.0 Hz)	1.05 (3H, d, <i>J</i> =7.0 Hz)	4.50 (2H, s)
Our data	1.00 (3H, d, <i>J</i> =6.8 Hz)	1.05 (3H, d, <i>J</i> =6.8 Hz)	4.49 (2H, s)

a) Given in δ (ppm) downfield from tetramethylsilane as an internal standard.

mg, 0.037 mmol, 8%). The 1c/1d ratio of the diol mixture was analyzed by ${}^{1}H$ NMR to be 90/10.

Typical Procedure of Cyclic Hydroboration with Rh-(PPh₃)₃Cl. Ethenyl ether 3E (133 mg, 0.538 mmol) was dissolved in THF (6 ml), and the solution was cooled to -74°C. To it was added (dropwise over a period of 2 h) a mixture of a 2.0 mol dm⁻³ ethereal solution of borane-dimethyl sulfide complex (1/1) (0.30 ml, 0.6 mmol, 1.1 equiv) and THF (6 ml). To this was added (at that temperature) a solution of Rh(PPh₃)₃Cl (11 mg, 0.011 mmol, 2.1 mol%) in THF (4 ml). After the addition was completed, the cooling bath was removed, and the reaction mixture was stirred for 18 h at room temperature. To it was added 1 ml water, 1 ml 1 mol dm⁻³ aq sodium hydroxide, and 0.6 ml 35% aq hydrogen peroxide, successively; the mixture was then stirred at 60 °C for 2 h. Extraction with ethyl acetate followed by the usual work up and silica-gel flash column chromatography (hexaneethyl acetate, 70:30 to 50:50) gave a mixture of la and lb (68 mg, 0.285 mmol, 53%) and 2-hydroxyethyl ether 5 (33 mg, 0.116 mmol, 22%). The 1a/1b ratio was analyzed by ${}^{1}HNMR$ to be 60/40.

Assignment of the Product Stereochemistry. The product ratio was determined by 1H NMR. Namely, the chemical shift values of two doublet methyls were compared with the values reported in the Refs. 2 and 3; the ratio was calculated from the integration values. It should be noted that the chemical shift values of the diol 1d in C_6D_6 reported by Nagaoka and Kishi in Ref. 2 are not in good accordance with those of ours. However, ours were identical with the data of 1d in CDCl $_3$ reported by Oikawa et al. in Ref. 3. The chemical shift data of 1d are listed in Table 3.

Methyl (R)-3-hydroxy-2-methylpropanoate was kindly provided by Kanegafuchi Chemical Industries, Co., and is greatly acknowledged.

References

- 1) a) I. Paterson and M. M. Mansuri, *Tetrahedron*, 41, 3569 (1985); b) R. K. Boeckmann, Jr. and S. W. Goldstein, "The Total Synthesis of Macrocyclic Lactones," in "The Total Synthesis of Natural Products," ed by J. ApSimon, John Wiley & Sons, New York (1988), Vol. 7, pp. 1—139.
 - 2) H. Nagaoka and Y. Kishi, Tetrahedron, 37, 3873 (1981).
- 3) Y. Oikawa, T. Nishi, H. Itaka, and O. Yonemitsu, Tetrahedron Lett., 24, 1987 (1983).
- 4) D. V. Patel, F. Van Middlesworth, J. Donaubauer, P. Gannett, and C. J. Sih, J. Am. Chem. Soc., 108, 4603 (1986).
- 5) R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 26, 489 (1987).
- 6) a) Y. Yokoyama, H. Kawashima, and H. Masaki, Chem. Lett., 1989, 453; b) Y. Yokoyama, H. Kawashima, M. Kohno, Y. Ogawa, and S. Uchida, Tetrahedron Lett., 32, 1479 (1991)
- 7) C. H. Heathcock, E. T. Jarvi, and T. Rosen, *Tetrahedron Lett.*, 25, 243 (1984).
- 8) T. Harada, Y. Matsuda, J. Uchimura, and A. Oku, J. Chem. Soc., Chem. Commun., 1989, 1429.
- 9) M. V. Bhatt and S. U. Kulkarni, Synthesis, 1983, 249.
- 10) D. Männig and H. Nöth, Angew. Chem., Int. Ed. Engl., 24, 878 (1985).
- 11) a) D. A. Evans, G. C. Fu, and A. H. Hoveyda, *J. Am. Chem. Soc.*, **110**, 6917 (1988); b) D. A. Evans and G. C. Fu, *J. Org. Chem.*, **55**, 2280 (1990).
- 12) K. Burgess and M. J. Ohlmeyer, *Tetrahedron Lett.*, 30, 395 (1989).
- 13) T. Hayashi, Y. Matsumoto, and Y. Ito, J. Am. Chem. Soc., 111, 3426 (1989).
- 14) M. Sato, N. Miyaura, and A. Suzuki, *Tetrahedron Lett.*, 31, 231 (1990).
- 15) K. Tamao, T. Nakajima, R. Sumiya, H. Arai, N. Higuchi, and Y. Ito, *J. Am. Chem. Soc.*, **108**, 6090 (1986).