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ABSTRACT
An alternative synthetic route to (�)-Neocosmosin A has been syn-
thesized from commercially available (R)-propylene oxide and 4-
Methoxysalicylic acid as starting materials. The key steps involved in
the synthesis are alkylation of 1,3-dithiane and Yamaguchi macrolac-
tonization.
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Introduction

Resorcylic acid lactones (RALs) have been known for decades, with the first isolation of
radicicol (monorden) in 1953,[1] followed by zearalenone,[2] LL-Z1640-2,[3] and hypoth-
emycin.[4] Todate, more than 130 RALs have been described, which were mainly
obtained from fungal species of genera Caryospora, Hamigera, Hypomyces,
Paecilomyces etc.[5] Many of them exhibit a diverse array of biological activities,
such as inhibition of heat shock protein 90 and kinases,[6,7] cytotoxic,[8] antiviral,[9]

anti-inflammatory,[10,11] estrogenic,[12] and nematocidal activities.[13] Several RAL com-
pounds are, in fact, currently under development for clinical applications.
Neocosmosin A is a 14 membered Resorcylic acid lactone, isolated with neocosmosins

B and C from the fungus Neocosmospora sp. (UM-031509) in 2012.[14,15] It exhibits a
strong binding affinity for human opioid and cannabinoid receptors.[16] The Structure
of neocosmosin A (1) was elucidated on the basis of extensive 1D and 2D NMR spec-
troscopic analysis, mass spectrometric (ESI-MS) data, and X-ray crystallography
(Figure 1).
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The first total synthesis of neocosmosin A was reported by Saibal Das and Coworkers
in 2014[17a]. Due to the promising biological activity and the impressive structural fea-
tures, neocosmosin A (1) appeared to be an attractive target for total synthesis[17b,c]. In
this communication, we herein, report an alternative synthetic strategy to achieve the
total synthesis of neocosmosin A (1) utilizing the alkylation of 1,3-dithiane and
Yamaguchi macrolactonization as the key steps.

Results and discussion

According to the retrosynthetic analysis of neocosmosin A (1) as shown in Scheme 1,
the target molecule 1 could be synthesized from seco-acid 2 via Yamaguchi macrolacto-
nization followed by removal of protecting groups. Hydroxy acid 2 could be accessible
by the coupling reaction of dithiane 3 and bromide 4. wherein, 3 could be envisaged
from the 4-Methoxysalicylic acid 5, while, bromide 4 could be achieved from the com-
mercially available chiral epoxide 6.
As discussed in retrosynthetic analysis, the synthesis of the dithiane 3 commenced

from known 4-Methoxysalicylic acid 7 (Scheme 2), which was subjected to esterification
using diazomethane to generate 4-Methoxy methyl salicylate 8 in quantitative yield
(Scheme 2). The hydroxyl group in compound 8 was protected with benzyl ether by
treating with benzyl bromide and K2CO3 to give 9 in 86% yield. Later, the ester group

Neocosmosin A (1)
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Figure 1. Structure of Neocosmosin A.
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Scheme 1. Retro synthesis.
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in compound 9 was subjected to base (LiOH) hydrolysis in THF:MeOH:H2O (3:1:1) to
afford the corresponding acid 10, which was allylated[13] via the dianion followed by
esterification to afford compound 11 in 62% yield. Ozonolysis of 11 in CH2Cl2 at
�78 �C for 30min gave the corresponding aldehyde, which was transformed into 1,3-
dithiane 3 in 76% with 1,3-propanedithiol and ceric ammonium nitrate as a catalyst
in chloroform.
After successful synthesis of one key intermediate 3, we next turned our attention to

the synthesis of another key fragment 4 (Scheme 3). Accordingly, the synthesis was ini-
tiated with (R)-propylene oxide 6 as a chiral synthon, which was readily prepared from
racemic-propylene oxide through Jacobsen hydrolytic kinetic resolution.[18] Thus treat-
ment of (R)-propylene oxide 6 with lithium acetylideethylenediamine complex

Scheme 2. Synthesis of fragment 3.
Synthesis of fragment 3; Reagents and conditions: (a) CH2N2, ether, 0 �C, 15min; (b) BnBr, K2CO3, DMF,
0 �C to rt, 6h; (C) LiOH, THF:MeOH:H2O (3:1:1), rt, 4 h; (d) (i) sBuLi, TMEDA, allyl bromide, THF, –90 �C,
4h; (ii) MeI, DBU, THF, 0 �C to rt, 24h; (e) (i) O3, CH2Cl2, –78 �C, 30min; (ii) 1,3-propanedithiol, CAN,
CHCl3, 0 �C to rt, 4 h.

Scheme 3. Synthesis of fragment 4.
Synthesis of fragment 4; Reagents and conditions: (a) lithium acetylide-ethylene diamine complex,
DMSO, rt, 24 h; (b) TBSCl, Imidazole, CH2Cl2, rt, 4 h; (c) n-BuLi, dry THF, –78 �C, 13a, 3 h; (d) Red-Al,
dry ether, rt, 4 h; (e) i) p-TsCl, Et3N, CH2Cl2, rt, 4 h; ii) LAH, THF, rt to 25 �C, 3h; (f) DDQ, aq. CH2Cl2,
0 �C to rt, 1 h; (g) CBr4, Ph3P, CH2Cl2, 0 �C to rt, 3 h.
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proceeded cleanly to afford the corresponding homopropargylic alcohol, in which the
secondary hydroxyl group was protected as its TBS ether 13 using TBSCl, imidazole in
CH2Cl2 in 84% yield.
Next, alkyne 13 was treated with n-BuLi in THF at �78 �C and the resulting acety-

lenic anion was treated with known aldehyde 13a furnished alcohol 14 as a 1:1 mixture
of diastereomers in 72% yield. Reduction of 14 with Red-Al in dry ether at room tem-
perature for 4 h afforded 15 as a 1:1 mixture of diastereomers in 74% yield. The
hydroxyl group in 15 was transformed as tosylate 15a by treatment with p-TsCl in
CH2Cl2 at room temperature for 4 h, which on subsequent treatment with LAH in dry
THF to furnish compound 16 in 77% yield. The PMB protecting group in compound
16 was oxidatively removed upon treatment with DDQ in aq. CH2Cl2 afforded alcohol
17 in 84% yield. Finally, treatment of alcohol 17 with CBr4 in the presence of Ph3P in
CH2Cl2 gave the required bromo intermediate 4 in 80% yield.
Having synthesized both the desired fragments in a simple and efficient manner, we

turned our attention to couple the dithiane 3 and the bromide 4 toward the synthesis
of neocosmosin A. Accordingly, dithiane 3 was lithiated by n-BuLi at �20 �C and then
coupled with bromide 4 to provide the desired product 19 in 84% yield (Scheme 4).
The ester functionality of 19 was hydrolyzed under basic conditions with LiOH in

THF:MeOH:H2O (3:1:1) to afford the corresponding acid 20, which on desilylation with
TBAF in THF at 0 �C to room temperature for 3 h afforded hydroxy acid 2 in 91%

Scheme 4. Synthesis of target compound 1.
Synthesis of target compound 1 Reagents and conditions: (a) n-BuLi, dry THF, –20 �C, 3 h; (b) LiOH,
THF:MeOH:H2O (3:1:1), rt, 4 h; (c) TBAF, THF, 0 �C to rt, 3 h; (d) i) 2,4,6-trichlorobenzoyl chloride, Et3N,
dry THF, rt, 2 h; ii) DMAP, toluene, 90 �C, 10 h; (e) CaCO3, MeI, CH3CN:H2O (9:1), 45 �C, 3 h; (f) TiCl4,
CH2Cl2, 0 �C to rt, 2 h.
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yield. After successful synthesis of hydroxy acid fragment 2, which was subjected to
macrolactonisation under Yamaguchi high dilution conditions[19] to provide the lactone
21 in 66% yield. Next, the 1,3 dithaine group in compound 21 was successfully removed
with CaCO3 and MeI, in CH3CN:H2O for 3 h to afford the lactone 22 in 75% yield. In
the final step, deprotection of benzyl ether in lactone 22 was removed successfully using
TiCl4 at 0 �C to rt to afford neocosmosin A (1) in 78% yield. The spectral data of 1 (1H
NMR, 13C NMR and HRMS) and optical rotation are in good agreement with the
reported values of natural neocosmosin A (1).

Experimental section

General
Solvents were dried over standard drying agents on freshly distilled prior to use.
Chemicals were purchased and used without further purification. All column chromato-
graphic separations were performed using silica gel (60–120 mesh). Organic solutions
were dried over anhydrous Na2SO4 and concentrated below 40 �C in vacuo. 1H NMR
spectra were acquired at 300MHz, 500MHz and 600MHz, while, 13C NMR at 75MHz
and 125MHz with TMS as internal standard for solutions in CDCl3. J values were given
in Hz. IR-spectra were recorded on FT IR spectrophotometer with NaCl optics. Optical
rotations were measured on digital polarimeter at 25 �C. Mass spectra were recorded on
direct inlet system or LC by MSD trap SL, the HRMS data were obtained using Q-TOF
mass spectrometry.

Neocosmosin A (1)
To a stirred solution of 22 (0.10 g, 0.23mmol) in dichloromethane (3mL), TiCl4 (90mg,
0.47mmol) in dichloromethane was added at 0 �C and stirred for 2 h. After completion
of reaction sat. aq. NaHCO3 solution (10mL) was added and extracted with dichloro-
methane (3� 10mL). The combined organic layers were washed with water (15mL),
brine (10mL), dried (Na2SO4) and concentrated. The crude residue purified by column
chromatography (60–120 Silica gel, 20% EtOAc in pet. ether) to afford 1 (61mg, 78%)
as a Pale yellow liquid. [a]D

25 �43.1 (c 0.9, CHCl3);
1H NMR (400MHz, CDCl3) d 12.1

(s. 1H), 6.42 (d, 1H, J¼ 2.6Hz), 6.22 (d, 1H, J¼ 2.6Hz), 5.49–5.40 (m, 2H), 5.37–5.29
(m, 1H), 4.37 (d, J¼ 16.4Hz, 1H), 3.81 (s, 3H) 3.49 (d, J¼ 16.4Hz, 1H), 2.63–2.50 (m,
2H), 2.41–2.34 (m, 1H), 2.29–2.21 (m, 1H), 2.17–2.07 (m, 2H), 1.67–1.51 (m, 3H),
1.44–1.39 (m, 1H), 1.36 (d, J¼ 6.3Hz, 3H); 13C NMR (100MHz, CDCl3) d 208.2, 170.5,
166.1, 163.8, 139.1, 135.3, 124.6, 112.1, 105.7, 99.9, 73.0, 55.5, 50.3, 40.9, 37.7, 32.7, 25.3,
22.2, 18.8; HRMS (ESI): m/z calculated for C19H25O5 [MþH]þ 333.1702,
found 333.1708.

Conclusions

Thus, In summary, we have demonstrated an efficient synthetic route for the total syn-
thesis of neocosmosin A in a stereoselective manner. The overall yield of longest linear
sequence in this synthesis i.e., From compound 6 to compound 1 (total number of steps
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are 13) is 4.45%. The key steps involved in this synthesis are alkylation of 1,3-dithiane
and Yamaguchi macrolactonization.
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