Received: April 3, 1980

MONOFLUORATION STEREOSELECTIVE PAR LE PHENYLTETRAFLUOROPHOSPHORANE (PhPF₄) PART. II. APPLICATION A LA SYNTHESE DES ISOMERES thréo et érythro DES ALKYL-2 FLUORO-3 PHENYLPROPANOATES DE METHYLE. ANALYSE CONFORMATIONNELLE PAR R.M.N. DE ¹⁹F et ¹H.

A.I. AYI^{*}, M. REMLI, R. GUEDJ

Laboratoire de Chimie Structurale Organique, U.E.R. I.M.S.P., Université de Nice, Parc Valrose, 06034 Nice Cédex (France)

et R. PASTOR

Laboratoire de Chimie Organique du Fluor, U.E.R. I.M.S.P., Université de Nice, Parc Valrose, 06034 Nice Cédex (France)

SUMMARY

The stereoselective fluorination of four couples of diastereoisomeric 2-alkyl 3-hydroxy 3-phenylpropanoic methyl esters ${la-h \atop Tab.I}$ by the reaction of the phenyltetrafluorophosphorane with the corresponding trimethylsilylethers derivatives ${2a-h \atop Tab.IV}$ is described. The structure of the 2-alkyl 3-fluoro 3-phenyl propanoic methyl esters ${4a-h \atop Tab.V}$ obtained quantitativly has been determined unambiguously by NMR analysis. ¹⁹F NMR results permit us to determine the relative populations of the rotamers for each of the isomers three and erythro.

RESUME

La fluoration stéréosélective de quatre couples d'alkyl-2 hydroxy-3 phényl-3 propanoates de méthyle $\begin{cases} 1a-h \\ Tab.I \end{cases}$ diastéréoisomères par la réaction du phényltétrafluorophosphorane sur les dérivés triméthylsilyléthers correspondants $\begin{cases} 2a-h \\ Tab.IV \end{cases}$ est décrite. La structure des alkyl-2 fluoro-3 phényl-3 propanoates de méthyle $\begin{cases} 4a-h \\ Tab.V \end{cases}$ obtenus quantitativement a pu être déterminée sans ambiguité par l'analyse des données de RMN du proton et du fluor. Cette synthèse constitue une préparation stéréosélective de ce type de composés par utilisation de $PhPF_L$ comme agent de fluoration.

Les résultats de la RMN du fluor nous ont permis de doser les pourcentages des populations relatives des rotamères pour chacun des isomères érythro et thréo.

INTRODUCTION

Dans nos précédentes publications [1,2], nous avons étudié la fluoration d'hydroxy-3 phényl-3 propanoates d'alkyle et de quelques aryl-1 trichloro-2,2,2 éthanols au moyen du phényltétrafluorophosphorane (PhPF₄) Nous avons montré que ce réactif permet la substitution du groupement hydroxyle par le fluor avec des rendements pratiquement quantitatifs, selon le chemin réactionnel :

$$\begin{array}{c} \text{R-OH} & \xrightarrow{(CH_3)SiC1} \\ I \end{array} \xrightarrow{\text{R-O-Si}(CH_3)} & \xrightarrow{\text{PhPF4}} \\ \hline \\ I \end{array} \xrightarrow{\text{Ether/Py}} & II \end{array} \xrightarrow{\text{R-O-PF}_3\text{Pt}} \\ \hline \\ \\ C_{6H_6} \text{ ou } CH_2\text{C1}_2 \end{array} \xrightarrow{\text{R-O-PF}_3\text{Pt}} \\ \hline \\ \\ R-F \\ IV \end{array}$$

Nous avons trouvé aussi que parmi les facteurs qui déterminent la nature et les rendements des produits isolés, la température de décomposition de l'intermédiaire alcoxytrifluorophénylphosphorane *III* joue un rôle très important.

Pour la série de β -hydroxyesters, que nous avons étudiés, la température dépend du caractère électro-attracteur ou électro-donneur des substituants présents sur le groupement phényle et des effets stériques apportés par les radicaux en α .

L'étude de la température de réaction nous a permis de trouver pour chacun des hydroxyesters analysés une température θ_{\circ} pour laquelle le fluorure est isolé seul.

Ces résultats, différents de ceux d'autres auteurs [3], qui ont observé la formation notable d'alcènes, nous ont amenés à envisager une étude de la stéréochimie de la réaction de PhPF₄ sur les silyléthers correspondant aux hydroxyesters $\begin{cases} la-h \\ Tab. I \end{cases}$ obtenus par réaction de Réformatsky.

 $C_{6}H_{5}-CH-CH-CO_{2}CH_{3} \text{ (thréo, érythro)}$ OH R 1 a-b R = CH₃ 1 c-d R = CH₂CH₃ 1 e-f R = CH(CH₃)₂ 1 g-h R = C(CH₃)₃ Dans ce travail, nous décrivons :

I - la préparation, la séparation et l'identification des β -hydroxyesters ainsi que leur conversion en dérivés triméthylsilyléthers.

II - la deuxième partie est consacrée à la synthèse des fluorures et à l'étude détaillée de leurs propriétés RMN du proton et du fluor. Cette analyse constitue une méthode commode et originale de détermination et d'attribution de la configuration des fluorures préparés.

RESULTATS ET DISCUSSION

Partie I

a Synthèse des Hydroxy-3-phény1-3 alky1-2 propanoate de méthyle - Identification

Les hydroxyesters étudiés dans ce travail ont été synthétisés par la réaction de Réformatsky, en partant du benzaldéhyde et des α-bromoesters appropriés. Le mélange brut constitué par les deux diastéréoisomères est distillé sous pression réduite. Les rendements sont pratiquement quantitatifs (cf. Tableau I). Les deux isomères ont été ensuite séparés par chromatographie sur colonne de silice (Woelm Act. I) et caractérisés par leurs spectres IR et RMN du proton.

TABLEAU I

Les Hydroxy-3 Alky1-2 Phény1-2 propanoates de méthyle

с ₆ н ₅ -снон-сн(к)со ₂ сн ₃	N°	Rdt %	% thréo	% érythro	T/E
с ₆ н ₅ -снон-сн(сн ₃)со ₂ сн ₃	1 a-b	91	35 (la)	65 (la)	0,54:1
с ₆ н ₅ -снон-сн(сн ₂ сн ₃)со ₂ сн ₃	1 c-d	85	46 (1c)	54 (1d)	0,85:1
C ₆ H ₅ -CHOH-CH(i-C ₄ H ₇)CO ₂ CH ₃	1 e-f	86	55 (1e)	45 (1f)	1,23:1
C_6H_5 -CHOH-CH(t-C ₄ H ₉)CO ₂ CH ₃	1 g-h	85	75 (1g)	25 (lh)	3 : 1

★ Les pourcentages ont été déterminés par la RMN du proton. BRUKER SPEC-TROSPIN (90 MHZ).

En IR, l'étalement de la région des hydroxyles $v \sim 3600 \text{ cm}^{-1}$ permet de déceler deux bandes d'absorption attribuées aux vibrations du groupement OH libre et associé [4,5,6]. L'amplitude de l'écart $\Delta v_{\text{OH}} = v_{\text{OH1ibre}} - v_{\text{OHassocié}}$ (cf. Tableau II) est plus grand pour les isomères thréo que pour les érythro. Cette différence est dûe comme l'ont démontré J. Jacques et al. à l'existence dans les deux familles de formes chélatées très favorisées pour le composé thréo et beaucoup moins stables pour l'isomère érythro [7].

TABLEAU II

Les Hydroxy-3 Alky1-2 Phény1-2 propanoates de méthyle. Propriétés IR et RMM du proton.

	IR a		RMN ¹ H ^b				
β-hydroxyesters	v _{CU} (cm-1)	HΟ VQ	^{бн} в	$^{\delta}_{H\alpha}$	^б осн ₃	$J_{H_{\alpha}H_{\beta}}$	$^{\delta}_{ m R}$
threv c ₆ H ₅ CHOHCHCO ₂ CH ₃ (1a)	1705	100	4.74 (a)	2.81 (oc)	3.72 (s)	8.65	^б сн ₃ сн=0,99 (d) ^J н _α ссн ₃ =7,18
<i>õrythr</i> o с ₆ н ₅ снонснсо ₂ сн ₃ (1ь)	1710	73	5.08	2.78 (oc)	3.36 (s)	4.25	^δ CH ₃ CH=1,12 (d) J _{H_αCcJ₃=7,18}
thréo C ₆ H ₅ CHOHCHCO ₂ CH ₃ (1c)	1750	105	4,80 (d)	2.54 (m)	4.05 (s)	8.21	$ \hat{c} \underline{H}_{2} CH_{3} = 1,72 (o) $ $ J_{CH_{3} CH_{2} = 7,5} $ $ J_{CH_{\alpha} CH_{2} = 6,25} $ $ \hat{c} \underline{H}_{3} CH_{2} = 0,80 (t) $ $ J_{CH_{3} CH_{2} = 7,5} $
$\ell r t h o c_{6} H_{5} c H_{5} c H_{2} c_{2} H_{5}$ (1d)	1735	80	(P)	2.66 (m)	3.60 (s)	5.72	$\frac{CH_2 - CH_3 \delta = 1, 71 (m)}{CH_2 - CH_3 \delta = 0, 87 (q)}$ $\frac{J_{H_2} CCH_3 = 7, 1}{J_{H_2} CCH_3 = 7, 48}$

$\begin{cases} \delta c_{H_3} = 1, 95 (m) \\ CH_3 = 1, 95 (m) \\ \delta c_{H_3} - CH = 1, 025 (d) \\ J = 6; 75 \\ \delta c_{H_3} - CH = 0, 92 (d)^{\alpha} \\ J CH_3 - CH = 0, 92 (d)^{\alpha} \end{cases}$	$ \int_{0}^{\delta} C_{H} \left(\frac{1}{2}, 28 \text{ (m)} \right) $ $ \int_{0}^{\delta} C_{H} \left(\frac{C_{H}}{2} \right) = 1,03 \text{ (t)} $ $ J = 6, 45 $	⁸ (C <u>H_3</u>)C ₃ =1,05 (s)	⁶ (c _{H3}) ₃ c=1,00 (s)
5.86	8.21	3.81	10.21
3.57 (s)	3.47 (s)	3.55 (s)	3.50 (s)
2.57 (q)	2.73 (q)	2,61 (d)	2.68 (a)
4.95 (d)	4.96 (d)	5,08 (d)	4.97 (a)
104	80	110	une bande fine à 3610 cm ⁻¹
1724	1726	1725	1725
(1e)	(1£)	(1g)	(11)
<i>th</i> rēo с ₆ н ₅ сноңснсо ₂ сн і-с ₃ н ₇	<i>бъус</i> ило с ₆ н ₅ снонснсосн ₃ i-c ₃ н ₇	<i>thr εο</i> c ₆ H ₅ cHoHcHCO ₂ CH ₃ t-c ₄ H ₉	<i>ĕлиthro</i> С ₆ н ₅ снонснсо ₃ сн ₃ t-с ₄ н ₉

 lpha Enregistrement sur Leitz G-3 en solution dans CCl $_4$ - épaisseur de cellule 0,2 mm - concentration 0,5 m/l

h Les spectres RMN du proton ont été enrecistrés sur un BRUKFR SPECTROSPIN (90 MHz).

Le solvant est dans tous les cas CDCl₃. Les ô sont donnés en ppm par rapport au TMS puis comme référence interne ; les J sont en Hz.

s (singulet) ; d (doublet) ; t (triplet) ; q (quadruplet) ; o (octuplet) ; m (multiplet).

L'analyse des données RMN et en particulier l'étude de la constante de couplage ${}^{3}J_{H_{\alpha}H_{\beta}}$ confirme les résultats obtenus en IR ; cette analyse est basée sur les deux principes généralement admis [8,9,10,11].

- La valeur mesurée de ces constantes est une moyenne à laquelle participent les différentes conformations proportionnellement à leurs populations relatives.

Si on se limite aux trois formes privilégiées pour chaque isomère, elles peuvent être représentées en projection de Newman par la Fig. 1.

thréo

Fig. l. Les isomères I - III représentées en projection Newman.

On peut admettre :

- pour l'isomère thrée que $J_{II} >> J_I$ et J_{III} . Lorsque R est petit (CH₃, C₂H₅) la conformation II (celle qui est soumise aux moindres contraintes) est largement prédominante. Pour ces groupements on a une valeur de ${}^{3}J_{H_{\alpha}H_{\beta}}^{T}$ importante et supérieure à celle de ${}^{3}J_{H_{\alpha}H_{\beta}}^{E}$. Au fur et à mesure que la taille de R augmente, cette population diminue (effet stérique phényle-alkyle très important) alors que I augmente. La valeur de ${}^{3}J_{H_{\alpha}H_{\beta}}^{T}$ doit donc diminuer.

- pour le composé érythro au contraire $J_I >> J_{II}$ et J_{III} . Si le groupement R devient encombrant, la population de la forme I devient prépondérante, apportant une contribution de plus en plus importante à la valeur de ${}^{3}J_{H_{\alpha}H_{\beta}}^{E}$ qui croît.

132

C'est effectivement ce que montre le Tableau III où nous avons rapporté les valeurs de $^3{\rm J}_{\rm H_-H_0}$ mesurées à 25°C.

TABLEAU III

Les Hydroxy-3 Alkyl-2-phényl-3 propanoates de méthyle - Variation des $^3J_{H_{\rm Q}H_{\rm B}}$ en fonction de R_{α}

R _a	${}^{J}_{H_{lpha}H_{eta}}$ thréo	J _{Hα} H _β ếrythro
CH ₃	8,65	4,25
сн ₂ сн ₃	8,21	5,72
сн(сн ₃) ₂	5,86	8,21
C(CH ₃) ₃	3,80	10,21

Ainsi, c'est le <u>sens</u> de la variation de J en fonction de la taille de R qui apporte une preuve à l'identification et l'attribution des conformations.

Pour ce qui concerne les déplacements chimiques, les spectres RMN des deux hydroxyesters diastéréoisomères ne sont jamais superposables. Cette remarque constitue une méthode simple et commode d'identification et de dosage des alcools des mélanges obtenus par la réaction de Reformatsky.

Par ailleurs, on constate que les variations de δ de groupe de protons homologues sont toujours dans le même sens : $\delta_{OCH_2}^{T} > \delta_{OCH_2}^{E}$, (cf. Tableau II).

b Préparation des Alkoxytriméthylsilyléthers - Propriétés spectroscopiques

Les dérivés triméthylsilylés 2a-hTab.IV ont été obtenus par action sur les 3-hydroxy-3-phényl-3-alkyl-2 propanoates de méthyle, du chlorure de triméthylsilane. La réaction est effectuée à 0° dans l'éther anhydre et en présence de pyridine [12].

Les huit silyléthers préparés ont été purifiés par chromatographie sur colonne de silice. Leur pureté a été vérifiée par spectrométrie IR : disparition de la bande v_{OII} et apparition des vibrations caractéristiques de ces composés (voir Tableau IV).

Notons ici que les signaux attribués aux groupements méthyles liés au silicium résonent sous forme de singulets fins à champs forts. L'importance de ce pic (9 protons) permet de vérifier que la pureté des alcools séparés par chromatographie est, dans tous les cas, supérieure à 95 %.

La substitution du proton hydroxylique par le groupement $Si(CH_3)_3$ ne change pas la configuration de l'hydroxy ester de départ. Les seules perturbations apportées dans la molécule par l'introduction de ce groupe, notamment sur les déplacements chimiques et les constantes de couplage 3J sont dues à l'encombrement stérique important de ce radical.

TABLEAU IV

	Dite	IR vcm	-1		RMN [≜] ¹ H	٥ (ppm)	J (H	z)
	κατ	^v si0	^v со	^v siC	^δ Hβ	$\delta_{H_{\alpha}}$	$J_{H_{\alpha}H_{\beta}}$	^ô HCSi
2a	90	1075	1750	1250	4.80 (d)	2.70 (oc)	8.0	0.15 (s)
2ъ	93	1075	1750	1250	5,10 (d)	2.61 (oc)	6.2	0.22 (s)
2c	90	1070	1750	1250	4.85 (d)	2.68 (sex)	8.6	0.08 (s)
2d	90	1075	1735	1250	5.10 (d)	2.62 (sex)	8.4	0.13 (s)
2e	. 83	1080	1720	1250	5.00 (d)	2.80 (q)	9.80	0.09 (s)
2f	80	1080	1720	1250	4.95 (d)	2.75 (q)	10	0.09 (s)
2g	80	1080	1720	1250	5.08 (d)	2.98 (d)	10.1	0.09 (s)
2h	79	1080	1720	1250	5.00 (d)	2.95 (d)	10	0.10 (s)

Les Alkoxytriméthylsilyléthers 2a-h - C6H5CHCH(R)CO2CH3 Rendements et Propriétés spectroscopiques

* Enregistrement sur Varian A.60

Le Tableau IV montre que par rapport aux hydroxyesters, le groupement Si(CH₃)₃ provoque un léger déblindage de l'ensemble des signaux du spectre (déplacements vers les champs faibles) sans en modifier l'allure générale. Ce déplacement est maximal pour le proton H_g . Par contre, les constantes ³J sont très modifiées. Ces variations peuvent être expliquées en tenant compte des forces d'interaction stérique entre les groupements volumineux.

Pour l'isomère thrée (Fig. I), l'introduction du groupement Si(CH₃)₃ déstabilise la forme II au profit de I lorsque R est suffisamment petit, ce qui diminue la valeur de ³J_{HaHB}. Si la taille de R augmente, la forme II devient prépondérante et ³J_{HaHB} croît à nouveau.

Pour le composé érythro au contraire, seule la forme I est favorisée. Lorsque la taille de R augmente, la population de ce rotamère augmente et $^3J_{\mbox{H}_{\mbox{Q}}}$ croît.

Ces conclusions de l'analyse conformationnelle sont bien vérifiées par les valeurs trouvées rassemblées dans le Tableau IV.

Partie II. SYNTHESE ET IDENTIFICATION DES FLUORO-3-PHENYL-3 ALKYL-2 PROPANOATES DE METHYLE

a Préparation des Fluorures

Les alkoxytriméthylsilyléthers $2a-h \\ Tab.IV$ sont traités par PhPF₄ dans le benzène ou le dichlorométhane anhydres sous atmosphère d'azote sec. Les réactions sont suivies par CPV. Après neutralisation et extraction avec du chlorure de méthylène ainsi que nous l'avons déjà décrit [2], les fluorures sont obtenus purs par filtration rapide sur une colonne de silice (éluant CH_2Cl_2). Les résultats obtenus sont rassemblés dans le Tableau V d'où l'on peut faire plusieurs remarques :

1. Pour un couple de diastéréoisomères, le composé érythro le moins soumis aux interactions stériques (voir analyse conformationnelle sur les silyléthers) réagit à une température nettement inférieure à l'isomère thréo. $\Delta\theta_{\bullet} > 10.$

2. Lorsque la taille du groupement R augmente, il faut porter le mélange à une température de plus en plus élevée pour décomposer l'intermédiaire alkoxytrifluorophosphorane. Pour R = $tBu_{Tab,IV}^{2-h}$ nous avons isolé cet intermédiaire $\{3-h\}$ pur à température ambiante. Ce produit porté à 70° dans le benzène pendant une heure fournit le fluorure correspondant $\{\frac{4-h}{Tab,V}\}$ (partie expérimentale).

Dans tous les cas que nous avons examinés, partant d'un isomère pur, nous avons obtenu un produit dont l'analyse par RMN du proton et du fluor montre qu'il est constitué d'un seul isomère fluoré qu'accompagne 0 à 15 % de l'autre isomère (voir Tableau V).

Nous n'avons jamais décelé la formation d'alcènes (cinnamates).

b <u>Caractérisation et identification des alkyl-2 fluoro-3 phényl-3 propanoates</u> de méthyle - Attribution des configurations

Elles reposent essentiellement sur l'étude des spectres RMN du proton et du fluor et l'analyse des variations des constantes de couplage ${}^{3}J_{HH}$, ${}^{3}J_{FH}$, ${}^{2}J_{FH}$ en fonction de la taille de R.

En nous limitant aux seules conformations privilégiées comme dans le cas des hydroxyesters, nous pouvons, pour chaque isomère, représenter les trois formes limites en projection de Newman par la Figure 2 ci-après.

Désignons par ${}^{3}J_{FH}^{t}$ la valeur de la constante de couplage vicinal entre le fluor et le proton dans les formes I (thréo) et III' (érythro) et par ${}^{3}J_{FH}^{g}$ la valeur de la même constante dans les conformères II et III (thréo) et I' et II' (érythro).

Silyl- éther de dé- part	Tempéra- ture de réaction 0°C	Rdt * en F1uo- rures	Rapport des Fluo- rures	% *** 7. thréo	% ** * érythro	Solvant
2a	40	96	19:1	95	5	CH_2C1_2 ou C_6H_6
2ъ	19	98	1:9	10	90	CH_2C1_2 ou C_6H_6
2c	40	92	5.6: 1	85	15	CH_2C1_2 ou C_6H_6
2đ	35	93	1:9	10	9 0	^{CH} 2 ^{C1} 2 ^{ou C} 6 ^H 6
2e	55	95	5.6: 1	85	15	с ₆ н ₅
2f,	50	87	32.3: 1	3	97	^с 6 ^н 5
2g	70	100	1:0	100	0	^с 6 ^н 5
2h	65	100	1 :19	5	95	^С 6 ^Н 5

Les Fluorures - C_{6H_5} -CHF-CH(R)- CO_2 CH₃ 4a-h

* Rendement en produits purs isolés.

🗱 Les rapports ont été déterminés par RMN du proton et du fluor

*** La détermination des configurations est basée sur l'analyse des données RMN (¹⁹F et ¹H), (cf. paragraphe IIb).

thréo

ér ythr o

Fig. 2. Les formes limites des isomères I - III représentées en projection de Newman.

136

TABLEAU V

Si P_I, P_{II}, P_{III}, P_{II}, P_{II}, P_{III}, sont les populations relatives de chaque conformère envisagé, nous pouvons écrire les relations suivantes qui traduisent les principes précédemment admis :

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}_{FH}^{m} = P_{I} & 3 J_{FH}^{t} + P_{II} & 3 J_{FH}^{g} + P_{III} & 3 J_{FH}^{*g} \\ P_{I} + P_{II} + P_{III} = 1 & \underline{pour} & 1 \\ 2 \end{bmatrix} \begin{cases} 3 J_{FH}^{m} = P_{I}^{*}, 3 J_{FH}^{g} + P_{II}^{*}, 3 J_{FH}^{*g} + P_{III}^{*}, 3 J_{FH}^{t} \\ P_{I}^{*} + P_{II}^{*}, + P_{III}^{*}, = 1 & \underline{pour} & 1 \\ 1 & \underline{pour} & 1$$

On obtient des relations analogues pour la constante ${}^{3}J^{m}_{HH}$. La détermination des constantes ${}^{3}J^{t}$ et ${}^{3}J^{g}$ ne peut se faire directement que pour certaines molécules possédant une structure bloquée (dérivés cyclohexaniques) ou à très basses températures qui favorisent des conformations particulières. Cette constante, comme l'ont montrée plusieurs auteurs [13, 14, 15], dépend de l'électronégativité et des effets stériques des substituants voisins des noyaux couplés. La valeur de J g pour laquelle l'angle dièdre $\Phi \sim 60^{\circ}$ varie beaucoup plus que celle de ${}^{3}J^{t}$ ($\Phi \sim 180^{\circ}$) par l'introduction d'un groupement encombrant puisque l'effet des variations d'angle autour de 60° selon Karplus [13] est plus important qu'autour de 180°. Par ailleurs, pour une conformation donnée, l'effet d'électronégativité est maximal lorsque le noyau considéré est en position anti par rapport au groupement électronégatif [16].

Compte tenu de ces remarques et du fait que les fluoroesters que nous étudions ne diffèrent que par la taille de R, les variations observées ne peuvent être interprétées que par les effets stériques apportés par ces groupements.

Composés thréo

Il est aisé de voir (Fig. 2), que seuls les formes I et II sont favorisées. Pour R suffisamment petit (CH3, CH2CH3), la forme II prédomine car l'interaction phényle-carboxyester est plus forte que phényle-alkyle. Si la taille de R augmente la population relative de II diminue et le rotamère I devient prépondérant. Nous devrions donc attendre une valeur de ${}^{3}J^{m}_{FH}$ proche de ${}^{3}J^{cis}_{FH}$ pour R petit, valeur qui devrait augmenter avec la taille de R.

Composés érythro

La même analyse peut être entreprise pour les isomères érythro. En négligeant la forme II' très encombrée, on a une prédominance de III' pour R (CH2, CH₂CH₃), mais au fur et à mesure que R augmente le rotamère l'augmente, ce qui provoque une diminution de la valeur de ${}^3J_{_{\rm PU}}$.

Ces conclusions, tirées de l'analyse conformationnelle de β -fluoroesters, analyse basée sur des principes généralement admis, sont effectivement vérifiées par les valeurs trouvées rassemblées dans le tableau VIb.

					2	5	
	δ (ppm) Hβ	(ppm) H a	(ppm) ⁶ 0CH3	$J_{H_{\alpha}I_{\beta}}^{(Hz)}$	2 (Hz) JFH ≢	${}^{3}_{J}(Hz)$ ${}^{F_{H}}$	δ _R
4a	5.55(dd)	3.02(o)	3.73(s)	9.25	46.08	9.60	$\delta_{CH_3} = 0.95(d) J = 7.1$
4b	5,75(dd)	2.85(m)	3.59(s)	6.30	46.87	21.48	$\delta_{CH_3} = 1.25(d) J = 4$
4c	5,51(dd)	2.93(0)	3.76(s)	9.20	45.60	11.85	${}^{\delta}_{C\underline{H}_{3}CH_{2}=0.83 (m)}$
4d	5,55(dd)	1.85 (m)	3.50(s)	8,95	46.25	13.9	${}^{\delta}_{CHCH_{3}=1.45(m)}_{CH_{3}CH_{2}=0.85(m)}$
4e	5.69(dd)	3.0(đd)	3.65(s)	9.02	46.50	14.65	${}^{6}_{\text{HC}} < =1.40(\text{m})$ ${}^{6}_{\text{HC}} < {}^{C\text{H}_{3}}_{\text{CH}_{3}} =0.9(\text{d}) \text{ J} =6.1$
4f.	5.66(dd)	2.85(m)	3.38(s)	10.0	47.50	9.39	$\delta_{\rm HC} < =2.25 (m)$ $\delta_{\rm HC} < C_{\rm H}^{\rm CH} = 1.15 (t) J=7.6$
4g	5,73(dd)	2.83(dd)	3.56(s)	9,95	45.70	16.40	^б (С <u>H</u> 3) ₃ C=0.75(s)
4h	5.70(dd)	2.79(dd)	3.06(s)	10.5	46.92	9.05	^δ (C <u>H</u> ₃) ₃ C=1.10(s)

TABLEAU VI a Les Fluorures - RMN ¹H - C_6H_5 -CHF-CH(R)- CO_2CH_3

* Valeurs obtenues à partir des spectres RMN du fluor.

TABLEAU VI b

Les Fluorures - Variations de la constante ${}^3J_{FH}^{}(Hz)$ en fonction de la taille de R_{α}

Rα	3_Jthréo FH	3 _J érythro FH
сн _з	9.60	21.48
CH2CH3	11.85	13.90
CH(CH ₃) ₂	14.65	9.39
C(CH ₃) ₃	16.40	9.05

C'est donc en définitive le sens de la variation de ${}^{3}J_{FH}$ en fonction de la taille de R qui permet d'identifier et de classer les isomères érythro et thréo pour les fluoroesters étudiés. Cette analyse constitue une méthode simple et commode d'identification et d'attribution des configurations.

La même étude conduite avec les couplages homonucléaires ³J_{HH} permet de retrouver la même classification des fluorures indépendamment des résultats de la RMN du fluor. Cette cohérence a pour origine les données conformationnelles propres aux diastéréoisomères (Fig. 2). Pour les variations de ${}^{2}J_{FH}$, elles sont trop faibles pour qu'un essai d'interprétation valable soit entrepris en fonction des mêmes données considérées plus haut. Il est à remarquer que dans tous les cas ${}^{2}J_{FH}^{T} < {}^{2}J_{FH}^{E}$.

En ce qui concerne les déplacements ϕ des fluors. J. Jullien et coll. [17,18] ont observé que pour les fluoroalcools à fluor benzilique, l'isomère érythro résonne à champ plus élevé que le composé thréo. Nous **a**vons, nousmêmes, récemment préparé sélectivement des fluoro-3-phényl-3 lactates d'alkyle et vérifié cette remarque [19].

Dans les huit cas étudiés, nous retrouvons la même classification (Tableau VII) $\phi_F^T < \phi_F^E$. Il ne semble pas possible actuellement de discuter théoriquement les variations des déplacements chimiques observées pour les diastéréoisomères car Saika et Slicter ont montré que ce déplacement chimique dépend essentiellement du caractère s de la liaison C-F.

Fluorures	Φ r ppm/CC1 ₃ F	² J _{FH} (Hz)	³ J _{FH} (Hz)
4a	- 168,56	46,8	9,60
4b	- 188,63	46,87	21,48
4c	- 167,93	45 , 60	11,85
4d	- 181,73	46 , 25	13,90
4e	- 171,49	46 , 50	14,65
4f	- 178,56	47 , 50	9,39
4g	- 167,80	45,70	16,40
4h	- 174,27	46,92	9,05

Les Fluorures - Données RMN^{*} de ¹⁹F

TABLEAU VII

Enregistrement sur Bruker Spectrospin (84.67 MHz). Solvt CDC1₃ (C \sim 0,2 M/1).

c Détermination des populations P_I , P_{II} , P_{III} , P_{II} , P_{II} , P_{II} , et P_{III} , Nous avons d'après les relations 1 et 2 : $\begin{bmatrix} 1 \\ P_{I}^{3} J_{FH}^{t} + P_{II}^{3} J_{FH}^{g} + P_{III}^{3} J_{FH}^{g} = {}^{3} J_{FH}^{m} (T) \\ P_{I}^{} + P_{II}^{} + P_{III}^{} = 1 \qquad \underline{Pour} \underline{les}$ pour les isomères thréo $\begin{bmatrix} 2 \end{bmatrix} \begin{cases} P_{I}, {}^{3}J_{FH}^{g} + P_{II}, {}^{3}J_{FH}^{ig} + P_{III}, {}^{3}J_{FH}^{t} = {}^{3}J_{FH}^{m} \quad (E) \\ P_{I}, {}^{4}P_{II}, {}^{2}P_{III}, {}^{2}II = 1 \\ \end{bmatrix} \underbrace{P_{I}, {}^{4}P_{III}, {}^{2}P_{III}, {}^{2}II = 1 \\ \underbrace{P_{I}, {}^{4}P_{III}, {}^{2}P_{III}, {}^{2}P_{II}, {}^{2}P_{II}, {}^{2}P_{II}, {}^$ pour les composés érythro

139

Nous pouvons alors, moyennant deux hypothèses, déterminer avec une précision acceptable les populations de chaque rotamère des isomères thrée et érythro.

1. Nous pouvons admettre que la constante ${}^{3}J_{FH}^{g}$ est la même dans les deux formes gauches (${}^{3}J^{g}$: constante de couplage vicinal pour laquelle $\Phi \simeq 60^{\circ}$) et égale à 9,Hz [20].

2. Nous avons trouvé, en accord avec la plupart des auteurs que la valeur de ${}^{3}J_{FH}^{t}$ (pour laquelle F et H sont décalés anti) est voisine de 30 Hz [20]. Compte tenu de ces deux hypothèses et connaissant ${}^{3}J_{FH}^{m}$ (valeur obtenue à partir des spectres RMN du fluor à 25°C), nous pouvons calculer P_I et la somme P_{II} + P_{III} d'une part et P_{III}, et P_I, + P_{II}, d'autre part.

Les résultats sont résumés dans le Tableau VII. bis. Plusieurs remarques peuvent être dégagées de ces résultats.

Pour les composés thréo, la forme II prédomine sur les deux autres. Lorsque $R = CH_3$, cette forme est pratiquement la seule stable. Au fur et à mesure que la taille de R augmente, celle-ci diminue alors que I croît.

TABLEAU VII bis.

Rés	sur	néo	les	pc	pulations	calculées	d'après	les	valeurs
de	φ	et	de	J	(Tableau V	VII)			

Fluorures	R	PI	^P II ^{+P} III <u>→</u> II	P _{III} ,	PI'+PII'~PI'
4a	^{СН} 3	0.028	0.971		
4Ъ	CH3			0.405	0.595
4c	с ₂ н ₅	0.138	0.865		
4d	C2 ^H 5			0.234	0.766
4e	CH(CH ₃) ₂	0.270	0.730		
4f	CH(CH ₃) ₂			0.018	0.981
4g	C(CH ₃) ₂	0,352	0.647		
4h	C(CH ₃) ₂			0,002	0.998

Pour la famille érythro au contraire, l'augmentation de la taille de R provoque un accroissement du rotamère I' qui est la seule conformation stable lorsque R = $(CH_3)_3C$, (-2, 100 %).

Ces résultats peuvent être utilisés pour calculer la constante ${}^{3}J^{m}_{HH}$ pour chacun des isomères. En effet, nous pouvons écrire :

 ${}^{3}J^{m}_{HH} \text{ (thréo)} \simeq {}^{P}{}^{3}J^{c}{}^{is}_{HH} + {}^{P}{}^{II} {}^{3}J^{t}_{HH}$ et ${}^{3}J^{m}_{HH} \text{ (érythro)} \simeq {}^{P}{}^{I}, {}^{3}J^{t}_{HH} + {}^{P}{}^{III}, {}^{3}J^{c}{}^{is}_{II}$ avec

$${}^{3}J_{HH}^{cis} = 3,65 \text{ Hz}$$

 ${}^{3}J_{LH}^{t} = 9.9 \text{ Hz}$

La différence $\Delta J = |J_{cal} - J_{obs}|$ est inférieure à 1 Hz (Tableau VIII).

[20]

Fluorures	$3_{Jexp}^{(Hz)}$	3 _{J (Hz)}
4a	9,25	9,66
4 <u>b</u>	6,30	6,18
4c	9,20	9,06
4d	8,95	8,43
4e	9,02	8,23
4£	10,0	9,77
4g	8,95	7,7
4h	10,05	9,89

TABLEAU VIII Comparaison des valeurs J - trouvées et calculées.

PARTIE EXPERIMENTALE

a Les β -hydroxyesters $\begin{cases} la-h \\ Tab, I \end{cases}$

Ils ont été préparés ainsi que nous l'avions déjà décrit [2]. Après distillation sous pression réduite, ils ont été séparés par chromatographie sur colonne suivie de recristallisation pour les solides $\{ la, lc, ld, le, lg \}$. <u>b Les Alkoxytriméthylsilyléthers</u> $\{ 2a-h \}$ Tab.IV $\}$

Les dérivés triméthylsilyléthers ont été obtenus par action à 0°C, sur les hydroxyesters (1 équivalent) en solution dans l'éther anhydre et présence de pyridine de triméthylchlorosilane $(CH_3)_3SiC1$ (1 équivalent). Après chromatographie rapide sur colonne de silice (Woelm Act. I) en utilisant un mélange d'hexane et d'acétate d'éthyle (8/2 v/v) pour éliminer les traces de pyridine et d'alcool de départ, leur pureté a été contrôlée par CPV et IR.

<u>c</u> Préparation des Fluorures 2a-h (Tab.V)

Méthode générale : dans un bicol muni d'un réfrigérant surmonté d'une garde d'azote sec, d'une ampoule à additionner contenant PhPF₄ (un équivalent) en solution dans le dichlorométhane ou le benzène anhydre, on place le silyléther (un équivalent) en solution dans le même solvant. Le mélange agité est porté à la température θ . et l'appareil est purgé de son air. On ajoute le réactif goutte à goutte pendant environ une heure. Le mélange réactionnel est encore agité une heure à une heure et demie pendant laquelle le cours de la réaction est suivie en CPV. Puis, le mélange est neutralisé par une solution froide de NaHCO₃ (5 %) et extrait par CH₂Cl₂.

Un filtration rapide sur colonne de silice avec 100 ml de CH₂Cl₂ pur permet de recueillir le fluor**u**re.

thréo-fluoro-3 phényl-3 méthyl-2 propanoate de méthyle (1-a v)

1,33 g du silyléther 2-a (0,005 mole) sont dissous dans 10 ml de CH₂Cl₂ fraîchement distillé. Le mélange agité est maintenu à 19°C et 0,92 g (0,005 mole) dans le même solvant est ajouté goutte à goutte. On recueille après traitement et filtration 0,86 g de fluorure pur.

<u>érythro-fluoro-3 phényl-3 isopropyl-2 propanoate de méthyle</u> ${}^{4-f}_{Tab.V}$ 0,8 g de silyléther ${}^{2-f}_{Tab.IV}$ soit 0,0027 mole est dissout dans 10 ml de benzène anhydre. Le mélange est porté à 50°C et 0,5 g (0,0027 mole) de PhPF, dans 10 ml du même solvant est ajouté.

A la fin de la réaction, le même traitement et filtration sur colonne de silice (éluant CH2C12) donnent 0,483 g de fluorure pur.

three-alkoxytrifluorophenylphosphorane 3-g

On place dans un bicol équipé d'une garde d'azote sec et d'une ampoule à additionner, 1,48 g (0,005 mole) du silyléther 2-3 en solution dans CHCl₂. Après avoir purgé l'appareillage, 0,92 g (0,005 mole de PhPF, dans 10 ml du même solvant est ajouté à la température ambiante.

A la fin de la réaction, le solvant est évaporé sous vide partiel et le produit brut obtenu filtré sur colonne de silice (Eluant CH₂Cl₂ 95 Ether 5). Après évaporation des solwants, on recueille une huile légèrement jaune dont l'analyse montre qu'il s'agit du phosphorane 3-g

1725 cm⁻¹; IR : v_{CO} = RMN ¹H : $\delta ppm/TMS$; CDC1₃ : 1,10 {(CH₃)₃, s, 9H}, 2,81 (H_a, d, 1H, ³J_{HaHβ} = 10 Hz), 3,53 (OCH₃, s, 3H), 5,28 (H_β, dd, ³J_{HaHβ}=10 Hz, ³J_{HCOP} = 7,6 Hz)

 $\frac{threo-fluoro-3 phenyl-3 ter-butyl-2 propanoate de méthyle { 4-g Tab.V }{ Tab.V } a <u>à partir de { 3-g </u>: L'alkoxytrifluorophosphorane { 3-g } est repris par$ du benzène anhydre et chauffé à 70°C pendant 1 H durant laquelle le cours de

la réaction est suivi en CPV. A la fin, le mélange réactionnel est neutralisé et traité comme précédemment. Après évaporation, on obtient le fluorure pur.

<u>b</u> à partir de $\begin{cases} 2-g\\ Tab, Ty \end{cases}$: Le silyléther $\begin{cases} 2-g\\ Tab, Ty \end{cases}$ est solubilisé dans 10 ml de benzène anhydre. Le mélange est agité et porté à 70° C et PhPF₄ en solution dans le même solvant est ajouté goutte à goutte en une heure. Une heure après la fin de l'addition, le mélange est traité comme à l'accoutumée. Après évaporation des solvants et filtration rapide (CH2C12) sur colonne de silice, le produit que l'on recueille possède les mêmes caractéristiques que celui obtenu à partir de 3g (.

142

CONCLUSION

Nous avons montré que la réaction de PhPF₄ sur les huit dérivés triméthylsiléthers $2a-h \\ Tab,IV$ correspondants aux hydroxyesters $2a-h \\ Tab,IV$ est hautement stéréosélective. Par l'analyse détaillée des propriétés RNN des fluorures $4a-h \\ Tab,V$ obtenus quantitativement, nous avons pu calculé les populations relatives des rotamères stables pour chaque isomère. Les résultats nous ont permis de calculer les constantes de couplage $3J_{H_{\alpha}H_{\beta}}$ pour les fluoroesters qui sont en bon accord avec les valeurs expérimentales.

REFERENCES

- 1 A.I. Ayi, R. Condom, P.C. Maria, T.N. Wade et R. Guedj, Tetrahedron Letters, 46 (1978), 4507
- 2 A.I. Ayi, R. Condom, T.N. Wade et R. Guedj, J. Fluorine Chem., 14 (1979), 437
- 3 D.U. Robert, G.N. Flateau, A. Cambon et J.G. Riess, Tetrahedron, <u>29</u> (1973), 1877
- 4 N. Mori, S. Omura, N. Kobayashi et Y. Tzuzuki, Bull. Chem. Soc. Jap., <u>38</u> (1965), 2149
- 5 J. Sicher, M. Cherest, Y. Gault et H. Felkin, Coll. Czech. Chem. Comm., 28 (1963), 72
- 6 J. Canceill, J. Gabard et J. Jacques, Bull. Soc. Chim. Fr., (1966), 2653
- 7 J. Canceill, J.J. Basselier et J. Jacques, Bull. Soc. Chim. Fr., <u>3</u> (1967), 1024
- 8 M. Karplus, J. Chem. Phys., 30 (1958), 6
- 9 H. Booth, Tetrahedron, 20 (1964), 224
- 10 K.G.R. Pachler, Spectro. Chim. Acta., 20 (1964), 581
- 11 J.A. Pople, W.G. Schneider et H.J. Bernstein, High Resol. N.M.R., Mc Graw Hill, (1959), 380
- 12 W. Gerrard et K.B. Kilburn, J. Chem. Soc., (1956), 1536
- 13 M. Karplus, J. Chem. Phys., 30 (1959), 11
- 14 S. Wolfe et J.R. Campbell, Chem. Comm., (1967), 872
- 15 R.J. Abraham et G. Gatti, J. Chem. Soc., (1969), 961
- 16 R.J. Abraham, L. Cavalli et K.G.R. Pachler, Mol. Phys., 11 (1966), 471
- 17 G. Aranda, J. Jullien et J.A. Martin, Bull. Soc. Chim. Fr., 9 (1966), 2850
- 18 R. Gardaix-Lavielle et J. Jullien, Bull. Soc. Chim. Fr., 8 (1969), 2721
- 19 A.I. Ayi, R. Remli, R. Condom et R. Guedj, J. Fluorine Chem., (soumis à publication -(1980)
- 20 A.I. Ayi, Thèse Doctorat 3ème cycle, Univ. Nice (1978)