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ABSTRACT
An efficient and selective synthesis of 3-acetyl free(N-H)/N-substi-
tuded indoles and 3-acetoacetyl free(N-H)/N-substituded indoles has
been developed via the hydrolysis reaction of b-ethylthio-b-indoly a,
b-unsaturated ketones in the presence of 3 equivalent of NaOH and
5mol% of H2SO4, respectively. The procedure features easy oper-
ation, excellent yields, and high selectivity, compatibility and practic-
ability.
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Introduction

Indole derivatives are frequently found in many natural bioactive products and in
important pharmaceuticals.[1] 3-acylindoles are an important subset of indole derivatives
due to their versatile synthetic values and their privileged core structures in many bio-
logically active indole derivatives.[2] Consequently, much effort has focused on the syn-
thesis of 3-acylindoles.[3–12] In the past decades, the direct 3-acylation of indoles had
been well-documented, and is well known synthetic procedures of 3-acylindoles. These
acylation reactions include Friedel-Crafts acylations,[3] Vilsmeier-Haack reactions,[4]

reactions of indole salts with acetyl chlorides,[5] reaction between indole and N-(2-hal-
oacyl)pyridinium[6] and transition –metal catalyzed acylation of indoles with Nitriles[7]

or anlines.[8] Recently, transition-metal catalyzed cyclization reactions of acyclic N-aryl
enamines bearing acyl group to afford 3-acylindoles had been also developed.[9] For
3-acetoacetylindoles, besides Friedel-Crafts acylation of indoles,[10] they can also be effi-
ciently synthesized from either the nucleophilic addition between indoles and diketene
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[11] or the condensation reaction of 3-acetylindoles and carboxylate ester.[12] However,
despite tremendous efforts to develop more efficient strategies in these areas, some
marked drawbacks, such as harsh conditions, poor yields especially on free (N-H)
indoles due to competing reactions at N1 and C3 as well as polymerization and dimer-
ization under acidic conditions, the need of expensive catalyst, and poor generality, limit
their practical applicability. Therefore, an efficient, simple, practical and general meth-
odology for the synthesis of both 3-acylindoles and 3-acetoacetylindoles are
highly desirable.
Our group recently initiated the investigation of the functionalization of indoles based

on versatile synthetic intermediate a-ketene dithioacetals,[13] and b-ethyltho- b-indolyl
a, b- unsaturated ketones 1 had successfully been prepared in good yields via trifluoro-
acetic acid (TFA) or FeCl3-mediated selective desulfitative carbon-carbon coupling reac-
tion between indoles and a-oxo ketene dithioacetals.[13a,13b] Compounds 1 could be
regarded as versatile intermediates in the synthesis of potentially useful indole deriva-
tives due to their structural features of multi-reaction center and multi-functional group
(Scheme 1). As a result, we are interested in their transformation, and their condensa-
tion reactions with guanidine affording indole alkaloids meridianin derivatives had
recently been realized (Scheme 1).[13a] As part of our continuing research in the context,
on the basis of the significance of 3-acetyl/acetoacetyl indoles, our group more recently
studied the desulfitative hydrolysis reaction of compounds 1 to synthesize 3-acetyl/ace-
toacetylindoles. It was found that the hydrolysis reaction efficiently occurred in the
presence of alkali or acid affording 3-acetylindoles and 3-acetoacetylindoles in excellent
yields, respectively (Scheme 1). Herein, we would like to report our findings.

Results and discussion

The hydrolysis reaction of 4-(ethylthio)-4-(1H-indol-3-yl)but-3-en-2-one 1a was selected
as a model reaction to screen the experimental conditions. Initially, we examined the
reaction in the presence of NaOH (1 equiv.) in EtOH (95%). The reaction did not occur
at 25 �C, the starting material 1a was recovered in 95% yield (Table 1, entry 1). To our
delight, when the reaction was carried out in reflux for 24 h, two stable white solid

Scheme 1. Synthesis and application b-ethyltho-b-indolyl a, b-unsaturated ketones 1.
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product were obtained in 39% and 18% yield, respectively, with 34% recovery of the
starting material 1a. From the spectral and analytical data, the products were character-
ized as 1-(1H-indol-3-yl)ethanone 2a (39%) and 1-(1H-indol-3-yl) butane-1, 3-dione 3a
(13%), respectively (Table 1, entry 2). It was noteworthy that 3a was an indissociable
mixture of enol and keto isomers, reaching the keto/enol ratio of 10:9 determined by
1H NMR. The result suggested that the reaction in the present of NaOH gave 3-acety-
lindole 2a in preference to 3-acetoacetylindole 3a, in which the deacetylation reaction of
3a easily happened to yield 2a. The yield of 2a was markedly improved by further ele-
vating the amount of NaOH (Table 1, Entries 3, 4), and the reaction exclusively
afforded 2a in 94% in the presence of 3 equivalent of NaOH (Table 1, Entry 4). We
recently developed an efficient protocol for FeCl3�6H2O or protonic acids catalyzed
desulfitative hydrolysis of chain a-ketene dithioacetals in CH3CN/H2O (volume ratio
4:1) to afford b-ketothioester.[14] Therefore, we next examined the desulfitative hydroly-
sis of 1a in reflux in the present of 10mol% of FeCl3�6H2O in CH3CN/H2O (volume
ratio 4:1), and only the desired 1-(1H-indol-3-yl) butane-1,3-dione 3a was yield in 96%
yield, (Table 1, entry 5). Further screening revealed that readily available H2SO4 showed
the best catalytic effect to the hydrolysis reaction (Table 1, entries 6–10), and the reac-
tion could be performed very efficiently to produce 3a in 96% yield in the present of
5% of H2SO4 (Table 1, entry 9). Additionally, it was found that further lessening either
the ratio of CH3CN to H2O or the amount of H2SO4 markedly reduced the reaction
efficiency (Table 1, Entries 11, 12). Accordingly, the reaction conditions are optimized
as follow: conditions A for the synthesis of 3-acetylindoles 2: EtOH (95%) as reaction
medium, 3 equivalent of NaOH as catalyst and in reflux; conditions B for the synthesis
of 3-acetoacetylindoles 3: CH3CN/H2O (v/v¼ 4:1) as reaction medium, 5mol% of
H2SO4 as catalyst and in reflux.

Table 1. Screening of conditionsa.

Entry catalyst Solvent Temp. (oC) Time (h)

Yield/%b

2a 3a

1 NaOH (1 equiv.) EtOH (95%) 25 24 0 (95)c 0
2 NaOH (1 equiv.) EtOH (95%) reflux 24 39(34)c 18
3 NaOH (2 equiv.) EtOH (95%) reflux 24 84 10
4 NaOH (3 equiv.) EtOH (95%) reflux 18 94 0
5 FeCl3�6H2O (10mol%) CH3CNþH2O

(v/v ¼ 4:1)
reflux 3 0 95

6 HAc (10mol%) CH3CNþH2O
(v/v ¼ 4:1)

reflux 10 0 88(5)c

7 H2SO4 (10mol%) CH3CNþH2O
(v/v ¼ 4:1)

reflux 2 0 95

8 H3PO4 (10mol%) CH3CNþH2O
(v/v ¼ 4:1)

reflux 4 0 93

9 HCl (10mol%) CH3CNþH2O
(v/v ¼ 4:1)

reflux 8 0 85(7)c

10 H2SO4 (5mol%) CH3CNþH2O
(v/v ¼ 4:1)

reflux 3 0 96

11 H2SO4 (3mol%) CH3CNþH2O
(v/v ¼ 4:1)

reflux 7 0 94

12 H2SO4 (5mol%) CH3CNþH2O
(v/v ¼ 7:3)

reflux 5 0 93

aReaction condition: 1a (0.25mmol), solvent 1mL.
bIsolated yield.
cPercentage recovery of 1a.
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Table 2. Selective synthesis of 2 and 3a.

(continued)
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With the optimized conditions in hand, we investigated the scope for the synthesis of
both 3-acetylindoles 2 and 3-acetoacetylindoles 3. The results were summarized in Table
2. The hydrolysis of 4-(ethylthio)-4-(indol-3-yl)but-3-en-2-one 1a-1f proceeded smoothly
to efficiently give corresponding 3-acetyl free (N-H) indoles 2 and 3-acetoacetyl free
indoles 3 in excellent yields, respectively (Table 2, entries 1–12), and obviously the elec-
tronic effects of both electron-withdrawing and -donating substitutents at the 5-, 6- and
7-positions on the indole rings in 1 are insignicant to the hydrolysis reaction (Table 2,
entries 2–12). However, the substitutents at the 2- positions on the indole rings in 1
showed a significant impact on the reaction due to the steric hindrance effect. The
hydrolysis of 4-(ethylthio)-4- (2-methyl-1H-indol-3-yl)but-3-en-2-one 1 g could effi-
ciently performed to afford 2 g or 3 g in excellent yield by both prolonging reaction time
and increasing the amount of catalysts (Table 2, entries 13–14). Similarly, 4-(1-alkyl-1H-
indol-3-yl) -4-(ethylthio) but-3-en-2-ones 1h-1j were also suitable for the hydrolysis, and
corresponding 3-acytal N-substitued indoles 2h-2j and 3-acetoacetyl N-substitued indoles
3h-3j were obtained in excellent yields, respectively (Table 2, entries 15–20).
Furthermore, we explored the reaction outcome of the hydrolysis reactions of 3-(ethyl-
thio)-3- (indol-3-yl)-1–aryl prop-2-en-1-one 1k-1p under condition B, and found
that the reactions proceeded smoothly to offer corresponding 1-(indol-3-yl)-3-aryl pro-
pane- 1,3-dione 3k-3p in excellent yields (Table 2, entries 21–26). It was worth noting
that 3-acetoacetylindoles 3 were always obtained as the mixture of enol/keto isomers,
and their molar ratios were determined by 1H NMR. In general, the enol isomers of
compounds 3 are in preference to their keto isomers, compound 3o reaching the highest
keto/enol ratio of 9:1(Table 2, Entry 25).

aReaction condition: condition A: 1 (0.25mmol), NaOH (0.075mmol), 95% EtOH (1mL), reflux, 18 h; condition B: 1
(0.25mmol), H2SO4 (5mol%), H2O/CH3CN (1mL, v/v¼ 1:4), reflux, 3 h.

bIsolated yields.
cKeto/enol ratio of 3 determined by 1H NMR.
dThe reaction was carried out in the presence of 5 equiv. of NaOH for 30 h.
eThe reaction was completed in the presence of 30mol% of H2SO4 for 12 h.
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On the basis of the reported work[14] and the obtained results, a possible reaction
mechanism for the synthesis of both 3-acetylindoles 2 and 3-acetoacetylindoles 3 was
proposed in Scheme 2.
In the presence of NaOH, Michael addition of 1 (R1=CH3) initially occured with the

formation of adduct I, which is transformed into 3-acetoacetylindoles 3a-3j by elimin-
ation of ethanethiol. Then, 3-acetylindoles 2 were obtained from the NaOH promoted
the deacetylation of 3 by intermediate II. In the presence of H2SO4, 1 formed the carbo-
cation III by the combination of 1 with Hþ. Subsequently, nucleophilic attack at the
cationic carbon atom of III by H2O lead to the formation of intermediate IV, which
converted into the intermediate V after the removal of thiol. Finally, 3-acetoacetylin-
doles 3 were yielded after the elimination of Hþ of intermediate V. The released Hþ

further completes the catalytic cycle.
In summary, very first time we have developed a novel and efficient route to select-

ively generate 3-acetylindoles 2 and 3-acetoacetylindoles 3 from the NaOH-mediated
and H2SO4 catalyzed hydrolysis reaction of readily available b-ethyltho-b-indolyl a,
b-unsaturated ketones 1, respectively. Further investigation of the application of b-ethyl-
tho-b-indolyl a, b-unsaturated ketones is ongoing in our group.

Experimental

General considerations

A 1H and 13C{1H} NMR spectra were recorded on a Bruker DRX-600 spectrometer
and all chemical shift values refer to TMS = 0.00 ppm or CDCl3 ((1H), 7.26 ppm; (13C),
77.16 ppm). The HRMS analysis was achieved on Bruck microTof by using ESI method.
All the melting points were uncorrected. Analytical TLC plates, Sigma-Aldrich silica gel

Scheme 2. Plausible Mechanism for the synthesis of compounds 2 and 3.
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60F200 were viewed by UV light (254 nm). Chromatogr-aphic purifications were per-
formed on SDZF silica gel 160.

Typical procedure for the preparation of 3-acetyl-indoles 2: synthesis of 2a

The mixture of 4-(ethylthio)-4-(1H-indol-3-yl)but-3-en-2-one 1a (61.3mg, 0.25mmol),
NaOH (30mg, 0.75mmol) in 95% of EtOH (1mL) was stirred in reflux for 18 h until
1a was completely consumed by TLC monitoring. Water (20mL) was then added to the
reaction mixture, and 1-(1H-indol-3-yl)ethanone 2a as a solid deposited from the reac-
tion system. After filtered, the crude product 2a was purified by flash silica gel chroma-
tography (petroleum ether (60–90 �C)/acetic ether = 8:1, v/v) to give pure 2a (37.4mg,
94%) as a colorless crystal.«

Typical procedure for the preparation of 3-aceto-acetylindoles 3: synthesis of 3a

To a stirred solution of 4-(ethylthio)-4-(1H-indol-3-yl)but-3-en-2-one 1a (61.3mg,
0.25mmol) and H2O (0.2mL) in acetonitrile (0.8mL) was added H2SO4 (0.68 mL,
0.0125mmol), and the resulting mixture was heated to reflux. When TLC monitoring
on silica gel indicated complete consumption of 1a, the mixture was cooled to ambient
temperature, and solvent was evaporated under reduced pressure. The resulting residue
was purified by silica gel column chromatography [eluent: petroleum ether (60�90 �C)/
AcOEt =10:1 v/v], affording 1-(1H-indol-3-yl) butane-1, 3-dione 3a (48.2mg, 96%) as a
colorless crystal.
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