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In this work, 17a-methyltestosterone was effectively hydroxylated by Absidia coerulea KCh 93,
Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651. A. coerulea KCh 93 afforded 6b-,
12b-, 7a-, 11a-, 15a-hydroxy derivatives with 44%, 29%, 6%, 5% and 9% yields, respectively. S. racemosum
KCh 105 afforded 7a-, 15a- and 11a-hydroxy derivatives with yields of 45%, 19% and 17%, respectively.
Chaetomium sp. KCh 6651 afforded 15a-, 11a-, 7a-, 6b-, 9a-, 14a-hydroxy and 6b,14a-dihydroxy deriva-
tives with yields of 31%, 20%, 16%, 7%, 5%, 7% and 4%, respectively. 14a-Hydroxy and 6b,14a-dihydroxy
derivatives were determined as new compounds. Effect of various sources of nitrogen and carbon in
the media on biotransformations were tested, however did not affect the degree of substrate conversion
or the composition of the products formed. The addition of a- or b-naphthoflavones inhibited 17a-
methyltestosterone hydroxylation but did not change the percentage composition of the resulting
products.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction ity and is used in the treatment of endocrine diseases. The
Steroid compounds possess a wide range of biological properties
essential for the pharmaceutical industry. They exhibit anti-
inflammatory, immunosuppressive, diuretic, anabolic and contra-
ceptive properties. They are used in the treatment of breast cancer,
prostate cancer, osteoporosis, adrenal insufficiency, in the preven-
tion of heart disease, as anti-obesity, antifungal and antidepressant
agents, and play a key role in the management of human fertility
[1–5]. Steroids are a group of compounds that have basic functions
in the life processes of eukaryotic organisms and are mainly used in
the pharmaceutical industry. Due to hydroxylation of steroids using
microbiological monooxygenases (cytochrome P-450 enzymes),
compounds with the desired biological activity can be obtained
[2,3,6–8]. Some of the advantages of biotransformation are selectiv-
ity of enzymes, mild process conditions and biodegradability of
reagents [9]. The biohydroxylation process is characterised by high
regio- and stereospecificity, whichmakes it possible to obtain com-
pounds difficult to obtain by classical synthesis [10,11].

In this work, 17a-methyltestosterone (1) was used as a sub-
strate. This compound is characterised by high androgenic activ-
widespread use of this compound results from its better absorp-
tion from the gut in relation to testosterone. Due to this property,
it is also used illegally by athletes [12,13]. Verification, whether
the tested athlete used an illicit agent, is performed by gas chro-
matography (GC) or high performance liquid chromatography
(HPLC) analysis by comparing the compounds present in his or
her blood with the standards present in the base of prohibited
compounds [1,14]. Therefore it is extremely important to identify
and produce new derivatives that will expand the base of known
anabolics.

17a-Methyltestosterone (1) may undergo similar transforma-
tions in the cultures of microorganisms as in the human body
(products of both may be identical). 17a-Methyltestosterone is
rapidly metabolised in the human body, and therefore monitoring
the abuse of this steroid usually involves detecting its products
[12]. Twomain products of this compound’s metabolism have been
identified in humans: 17a-methyl-5a- and 17a-methyl-5b-andro
stan-3a,17b-diol [13]. In other mammals, hydroxyderivatives were
also identified, suggesting that these derivatives may be formed in
humans. During in vivo studies on horses, cows and rabbits, in
addition to the ring A reduction products, the effects of monooxy-
genases (6-, 15- and 16-hydroxy-17-methyltestosterone) were also
observed [15–17].
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17a-Methyltestosterone is used in fish (Danio rerio and Oncor-
hynchus mykiss) farming to induce male monosex cultures
[18,19]. Male individuals are economically advantageous because
they have higher growth rates not inhibited by energy losses asso-
ciated with the development of female gonads and eggs [20]. How-
ever, intensive use of this steroid for tilapia (Oreochromis niloticus)
still raises concerns about risks to the health of consumers and the
natural environment [20]. Although 17a-methyltestosterone (1)
effects on industrial species are investigated, possible negative
effects on non-target species are not fully understood. Several
authors have described the negative effects of this compound
exposure on sexual development and reproduction of juvenile
and adult individuals of various fish species showing fertility
decline, development of male secondary sex characteristics and
inhibition of gonadal development in females [21–23].
2. Materials and methods

2.1. Materials

The substrate, 17a-methyl-17b-hydroxyandrost-4-en-3-one
(1), was purchased from Sigma-Aldrich. a- and b-Naphthoflavone
and their derivatives (11–18) were obtained from relevant 20-
hydroxychalcones according to the previously described method
[24,25]. Two grams of the substrate was dissolved in DMSO (75
ml) with the addition of I2 (0.1 eqv.), and the reaction mixture
was refluxed for 4 h. Crystallization from ethanol afforded pure fla-
vones (11–18). 20-Hydroxynaphthochalcones were obtained from
20-hydroxyacetophenone and aldehyde derivatives with the meth-
ods described previously [24,26,27]. Spectral data of all obtained
chalcones and flavones are indentical to those previously pub-
lished [24,28–35]. The strains of Absidia coerulea KCh 93, Syncepha-
lastrum racemosum KCh 105, and Chaetomium sp. KCh 6651 used in
this study were obtained from the collection of the Department of
Chemistry, Wrocław University of Environmental and Life Sciences,
Poland. They were isolated from a forest environment (in southern
Poland) from dead parts of leafy plants. The strains were main-
tained on Sabouraud 4% dextrose-agar slopes and freshly subcul-
tured before use in the transformation experiments.

2.2. Screening procedure

Erlenmeyer flasks (300 ml), each containing 100 ml of the med-
ium consisting of 3 g of glucose and 1 g of aminobac dissolved in
water, were inoculated with a suspension of microorganisms and
then incubated for 3 days at 25 �C on a rotary shaker. After full
growth of the culture (about 12 g of cell dry weight/l) 20 mg of a
substrate dissolved in 1 ml of acetone was added. After the first,
third, sixth and ninth days of incubation under the above condi-
tions, portions of 10 ml of the transformation mixture were taken
out and extracted with CHCl3 (3 � 10 ml). The extracts were dried
over MgSO4, concentrated in vacuo and analysed by GC. All the
experiments were repeated three times.

2.3. Preparative biotransformation

The same transformations were performed on the preparative
scale in 2000 ml flasks, each containing 500 ml of the cultivation
medium. The cultures were incubated under the same conditions,
and then 200 mg of substrate dissolved in 2 ml of acetone was
added to the grown cultures. After 3 days of incubation, the mix-
tures were extracted with CHCl3 (3 � 300 ml), dried over MgSO4

and concentrated in vacuo. The transformation products were sep-
arated by column chromatography and analysed by TLC, GC and
GC–MS.
2.4. Effects of nitrogen sources

Erlenmeyer flasks (300 ml), each containing 100 ml of the med-
ium consisting of 3 g of glucose and 1 g of tested nitrogen source
(aminobac, peptone or yeast extract dissolved in water), were inoc-
ulated with a suspension of microorganisms. After a 3-day incuba-
tion at 25 �C on a rotary shaker, the experiments were carried out
according to the procedure described in Section 2.2.
2.5. Effects of carbon sources

Erlenmeyer flasks (300 ml), each containing 100 ml of the med-
ium consisting of 3 g of tested monosaccharide (D-ribose, D-xylose,

D-arabinose, L-arabinose, D-glucose, L-glucose, D-mannose and D-
fructose) or disaccharide (lactose, maltose, sucrose) and 1 g of ami-
nobac dissolved in water, were inoculated with a suspension of
microorganisms and then incubated for 3 days at 25 �C on a rotary
shaker. The experiments were carried out according to the proce-
dure described in Section 2.2.
2.6. Biotransformation with inhibitors

Biotransformations were carried out under the same conditions
as described in Section 2.2. After full growth of the selected culture
2 mg of inhibitor (one of a- or b-naphthoflavones) dissolved in 0.5
ml of acetone was added. After one hour, 20 mg of a substrate dis-
solved in 1 ml of acetone was added. The reactions were analysed
as in Section 2.2.
2.7. Analytical methods

The course of biotransformation was analysed using TLC. The
composition of product mixtures was established by GC. Products
were separated by column chromatography using silica gel (Kiesel-
gel 60, 230–400 mesh, Merck) and a hexane/acetone mixture (2:1,
v/v) as eluent. Analytical TLC was carried out on silica gel G (Mer-
ck). Compounds were detected by spraying the plates with a
H2SO4/CH3OH mixture (1:1, v/v). GC analysis was performed using
a Hewlett-Packard 5890A (Series II) GC instrument fitted with a
flame ionisation detector (FID). A DB-5MS (crosslinked phenyl
methyl siloxane) capillary column (30 m � 0.32 mm � 0.25 lm)
was used to determine the composition of product mixtures. The
following temperature programme was used: 200 �C (0 min)/10
�C/min/270 �C (0 min)/30 �C/min/300 �C (5 min). The NMR spectra
were recorded on a DRX 500 MHz Bruker spectrometer and mea-
sured in CDCl3 or THF-d8. MS analyses were performed on a Varian
Chrompack GC CP-3800 Saturn 2000GC/MS/MS with an ionizing
energy of 70 eV. Elemental analysis was carried out on the Vario
EL III CHNS (Elementor).
2.8. Identification of isolated products

The products’ structures were determined by means of elemen-
tal analysis, 1H NMR, 13C NMR and correlation spectroscopy. 13C
NMR spectra of all the products obtained are summarised in
Table 1.
2.8.1. 7a-Hydroxy-17a-methyltestosterone (2)
White crystalline solid, 1H NMR (500 MHz, CDCl3) d (ppm): 0.90

(s, 3H, 18-CH3); 1.20 (s, 3H, 19-CH3); 1.23 (s, 3H, 17a-CH3); 3.96 (q,
1H, J = 2.7 Hz, H-7b) 5.79 (s, 1H, H-4).



Table 1
13C NMR chemical shifts of products in CDCl3.

Atom number Products

2 3 4 7 5 5* 6 8 9 10

1 38.7 38.9 35.8 34.1 38.2 38.5 32.8 33.5 28.4 33.6
2 35.5 34.2 32.8 32.9 34.3 35.1 35.7 34.0 34.0 34.2
3 199.0 200.4 199.6 199.7 200.3 198.9 199.5 199.6 199.1 200.3
4 126.9 124.5 123.8 124.1 126.4 126.4 124.1 123.9 126.9 126.3
5 167.8 171.3 171.0 171.2 168.2 169.4 170.6 170.7 168.6 167.8
6 41.1 33.7 34.0 32.8 73.1 73.4 22.9 32.6 31.7 73.4
7 67.8 31.3 32.3 32.2 38.9 40.1 38.2 38.8 25.0 39.0
8 40.7 36.2 36.1 35.9 30.6 31.8 35.5 35.8 38.3 33.4
9 45.4 59.1 53.8 54.3 53.6 55.3 52.4 46.6 76.6 53.8
10 38.6 40.1 38.7 38.9 38.1 39.1 38.5 38.9 44.5 37.2
11 20.5 69.3 20.5 20.7 20.6 21.8 29.5 19.9 26.1 19.8
12 31.1 43.8 31.5 31.5 31.4 32.8 73.3 30.6 27.0 33.3
13 45.3 46.2 46.6 44.9 45.4 46.6 49.4 49.8 45.2 49.9
14 44.6 49.5 57.9 54.8 50.1 51.6 48.7 84.1 43.8 84.3
15 22.7 23.2 72.3 69.2 23.1 24.4 23.0 25.6 22.9 23.7
16 34.0 37.5 50.6 52.0 37.1 39.9 31.1 39.5 38.8 38.3
17 81.6 81.1 79.1 81.4 81.5 80.9 81.8 81.8 81.5 81.8
18 13.8 15.1 15.4 16.7 14.0 14.7 8.5 18.8 13.0 18.9
19 19.1 18.4 17.5 17.5 19.6 19.9 17.3 17.2 19.8 19.4
20 26.0 25.9 26.2 25.4 25.7 26.6 25.7 29.3 26.1 25.7

5* in THF-d8.
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2.8.2. 11a-Hydroxy-17a-methyltestosterone (3)
White solid, 1H NMR (500 MHz, CDCl3) d (ppm): 0.92 (s, 3H, 18-

CH3); 1.22 (s, 3H, 17a-CH3); 1.32 (s, 3H, 19-CH3); 4.05 (td, 1H, J =
10.3, 4.7 Hz, H-15b); 5.72 (s, 1H, H-4).
2.8.3. 15a-Hydroxy-17a-methyltestosterone (4)
White crystalline solid, 1H NMR (500 MHz, CDCl3) d (ppm): 0.91

(s, 3H, 18-CH3); 1.21 (s, 3H, 19-CH3); 1.35 (s, 3H, 17a-CH3); 4.09
(td, 1H, J = 9.3, 3.4 Hz, H-15b); 5.73 (s, 1H, H-4).
2.8.4. 6b-Hydroxy-17a-methyltestosterone (5)
White crystalline solid, 1H NMR (500 MHz, CDCl3) d (ppm): 0.94

(s, 3H, 18-CH3); 1.40 (s, 3H, 19-CH3); 1.22 (s, 3H, 17a-CH3); 4.35 (t,
1H, J = 2.8 Hz, H-6a); 5.82 (s, 1H, H-4). 1H NMR (500 MHz, THF-D8)
d (ppm): 0.90 (s, 3H, 18-CH3); 1.13 (s, 3H, 17a-CH3); 1.39 (s, 3H,
19-CH3); 3.28 (s, 1H, 17b-OH); 4.17 (q, 1H, J = 2.8 Hz, H-6a); 4.29
(dd, 1H, J = 2.7, 1.4 Hz, 6b-OH); 5.66 (s, 1H, H-4).
2.8.5. 12b-Hydroxy-17a-methyltestosterone (6)
Bright yellow thick oil, 1H NMR (500 MHz, CDCl3) d (ppm): 0.95

(s, 3H, 18-CH3); 1.19 (s, 3H, 19-CH3); 1.33 (s, 3H, 17a-CH3); 3.73
(dd, 1H, J = 16.8, 7.2 Hz, H-12a); 5.71 (s, 1H, H-4).
2.8.6. 15b-Hydroxy-17a-methyltestosterone (7)
White solid, 1H NMR (500 MHz, CDCl3) d (ppm): 1.15 (s, 3H,

17a-CH3); 1.18 (s, 3H, 18-CH3); 1.23 (s, 3H, 19-CH3); 4.20 (ddd,
1H, J = 7.9, 5.5, 2.4 Hz, H-15a); 5.73 (s, 1H, H-4).
2.8.7. 14a-Hydroxy-17a-methyltestosterone (8)
Bright yellow thick oil, Anal. Calcd. for C20H30O3: C 75.43, H

9.50%; found: C 75.39, H 9.52%. Mass spectrum indicated a molec-
ular ion at m/z 319.34 [M]+; 1H NMR (500 MHz, CDCl3) d (ppm):
1.03 (s, 3H, 18-CH3); 1.21 (s, 3H, 19-CH3); 1.49 (s, 3H, 17a-CH3);
5.72 (s, 1H, H-4).
2.8.8. 9a-Hydroxy-17a-methyltestosterone (9)
Bright yellow thick oil, 1H NMR (500 MHz, CDCl3) d (ppm): 0.91

(s, 3H, 18-CH3); 1.33 (s, 3H, 19-CH3); 1.24 (s, 3H, 17a-CH3); 5.86 (d,
1H, J = 0.9 Hz, H-4).
2.8.9. 6b,14a-Dihydroxy-17a-methyltestosterone (10)
Bright yellow thick oil; Anal. Calcd. for C20H30O4: C 71.82, H

9.04%; found: C 71.76, H 9.07%. Mass spectrum indicated a molec-
ular ion at m/z 335.33 [M]+; 1H NMR (500 MHz, CDCl3) d (ppm):
1.07 (s, 3H, 18-CH3); 1.25 (s, 3H, 19-CH3); 1.51 (s, 3H, 17a-CH3);
4.42 (t, 1H, J = 2.8 Hz, H-6a); 5.81 (s, 1H, H-4).
3. Results and discussion

Biotransformations of 17a-methyltestosterone (1) were per-
formed by Syncephalastrum racemosum KCh 105, Absidia coerulea
KCh 93, Chaetomium sp. KCh 6651, which were chosen on the basis
of their known ability to transform steroid compounds effectively.
The substrate (1) was hydroxylated in high yield by all selected
strains, however none of the cultures characterised high selectivity
of a single hydroxylation process. Mixtures of many products were
obtained in all described biotransformations (Table 2). Structures
of all obtained compounds were determined by spectroscopic
methods (NMR, GC–MS) For all obtained products a characteristic
shift of a single (two for compound 10) carbon signal downfield
(67–85 ppm) on a 13C NMR spectra was observed, indicating intro-
duction of a hydroxyl group to a structure. Similar characteristic
changes were observed on 1H NMR spectra of products, where
introduction of a hydroxyl group resulted in new signals downfield
(3.7–4.5 ppm). In case of products 8 and 9, no characteristic
changes in chemical shifts of signals on 1H NMR spectra were
observed, albeit signals at 84.1 and 76.6 on 13C NMR spectra,
respectively, indicating hydroxylation of one of the tertiary car-
bons in the substrate (Table 1). Further analysis of correlation spec-
tra (COSY, HMQC, HMBC) and comparison with NMR spectra of
17a-methyltestosterone (1) allowed unambiguous structure eluci-
dation of obtained products including hydroxyl group orientation.
Spectral data of new compounds were additionally compared with
similar molecules [36], for known compounds spectral data
obtained were in agreement with literature values [9,37–41].

The highest selectivity of hydroxylation was observed in the
culture of the S. racemosum KCh 105. Three products were
obtained: 7a-hydroxy-17a-methyltestosterone (2), 4, 3 in yields
45%, 19%, 17%, respectively (Fig. 1). In the literature, strains from
this species are described as effective biocatalysts due to their
highly active monooxygenases. The enzymes allow them to trans-



O

OH

OH
O

OH
OH

O

OH

O

OH

OH

+ +

2 3 41 

Fig. 1. Transformation of 17a-methyltestosterone (1) by Syncephalastrum racemosum KCh 105.
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Fig. 2. Transformation of 17a-methyltestosterone (1) by Absidia coerulea KCh 93.
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Fig. 3. Transformation of 17a-methyltestosterone (1) by Chaetomium sp. KCh 6651.
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form compounds of diverse structure, such as cannabinoids [42],
chalcones [43], and 8-prenylnaringenin [44]. Their ability to
hydroxylate unsaturated lactones in the allylic position has also
been demonstrated [45,46]. The literature also describes biotrans-
formations of 3-hydroxysteroids – cinobufagin [47], diosgenin
[48], protostane derivatives [49], rotundic [50] and ursolic acids
[51,52] – for which several hydroxylated products were observed.
Moreover, two new hydroxy-derivatives of 7-oxo-DHEA: 1b,3b-di
hydroxy-androst-5-en-7,17-dione and 3b,12b-dihydroxy-androst-
5-en-7,17-dione were obtained in the culture of this strain [53].
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The biotransformation of 4-en-3-one steroids in S. racemosum cul-
tures has not been described so far.

Absidia. coerulea strains have been described as highly selective
in hydroxylation of steroid compounds, efficiently hydroxylated
16,17a-epoxyprogesterone leading to one product: 11b-hydroxy
derivative [54]. DHEA in the culture of the same strain was trans-
formed into 7a- and 7b-hydroxyderivatives [55]. A new
CYP5311B1 11a-hydroxylase gene from A. coerulea AS3.65 [56],
which may be responsible for hydroxylation at both positions
11a and 7, was identified [55]. The presence of similar enzyme
was also confirmed by 7a-hydroxylation of 17a-
methyltestosterone (1) [38]. In this work, we describe other
hydroxylation products, in the 6b, 12b and 15a positions, what
may indicate activity of different enzyme or the presence of other
steroid monooxygenases in cells of A. coerulea KCh 93. This strain
afforded five products (Fig. 2): the main product, 6b-hydroxy
Table 2
Isolated products’ yields obtained in transformation of 17a-methyltestosterone (1).

No. of
compound

Isolated yields [%]

Chaetomium sp. KCh
6651

A. coerulea KCh
93

S. racemosum KCh
105

2 16 6 45
3 20 5 17
4 31 9 19
5 7 34 –
6 – 29 –
7 – 4 –
8 7 – –
9 5 – –
10 4 – –

Table 3
Inhibitors used in the studies.

No. of compound Structure of inhibitor Recovery of the

Chaetomium sp.

11 45 ± 5

12 47 ± 3

13 51 ± 6

14 49 ± 1

15 46 ± 6

16 34 ± 2

17 60 ± 3

18 49 ± 2
derivative (5), as well as 12b-, 7a-, 11a- and 15a-hydroxy deriva-
tives, with yields of 44%, 29%, 6%, 5% and 9%, respectively.

Chaetomium sp. KCh 6651 afforded five known products: 4, 3, 2,
5 and 9with yields of 31%, 20%, 16%, 7% and 5%, respectively. More-
over, two other products not described in the literature so far were
obtained: 14a-hydroxy (8) with yield of 7% and 6b,14a-dihydroxy
derivative (10) with a yield of 4% (Table 1 and Fig. 3). This result
was a surprise because, in our previous biotransformation studies
of other 4-en-3-oxo steroids, we obtained no more than three
products. Testosterone was hydroxylated at the 7b position,
androstenedione at the 14a position, while progesterone under-
went double hydroxylation which resulted in 6b,14a-dihydroxy
progesterone [57]. In addition to the previously described hydrox-
ylations at C-6 and C-14 carbon atoms, 17a-methyltestosterone (1)
also underwent functionalization at other non-activated carbon
atoms of the steroid skeleton (C-7, C-9, C-11 and C-15).

Due to a large number of products resulting from the biotrans-
formation of 17a-methyltestosterone (1) in cultures of tested
strains and information that the medium’s composition may affect
the yields, we decided to determine whether a change in the
source of both carbon and nitrogen will affect the composition of
the products. Biotransformations were carried out using various
sources of amino acids (aminobac, peptone and yeast extract)
and various monosaccharides (D-ribose, D-xylose, D-arabinose, L-
arabinose, D-glucose, L-glucose, D-mannose and D-fructose) and dis-
accharides (lactose, maltose, sucrose). Based on this experiment, it
was found that the change of these nutrient components does not
affect the degree of substrate conversion and the composition of
the products formed. Therefore, medium changes did not affect
expression levels of monooxygenases, nor induced expression of
new enzymes.
untransformed substrate (effect of added flavone) [%]

KCh 6651 A. coerulea KCh 93 S. racemosum KCh 105

40 ± 4 47 ± 6

32 ± 1 49 ± 5

45 ± 3 41 ± 5

48 ± 2 45 ± 3

42 ± 1 36 ± 4

41 ± 5 38 ± 6

73 ± 2 54 ± 4

61 ± 3 51 ± 7
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In the literature, numerous experiments on the use of a- and b-
naphthoflavone (ANF and BNF) as inhibitors or inducers of
monooxygenases have been described [58–61]. ANF has been
described as an effective hydroxylation inhibitor at the 6b position
of progesterone and testosterone catalysed by CYP3A6 in RIF-
microsomes. Also, time- and concentration-dependent inactiva-
tion of human CYP3A4-mediated 6b-hydroxylation of testosterone
by ANF was determined [62]. For this reason, it was decided to
investigate the effect of selected derivatives of a- and b-
naphthoflavone on monooxygenases of the investigated biocata-
lysts. The purpose of our experiment was to determine whether
any of the tested naphthoflavones would be able to selectively
modulate the activity of any of the monooxygenases involved in
the methyltestosterone (1) transformation. The observed effect
should be the change in the percentage composition of the
obtained products. All applied a- and b-naphthoflavones (2 mg)
were added one hour before addition of the substrate (20 mg) to
the grown culture. A significant reduction in substrate conversion
was observed. Table 2 shows the percentage of substrate present
in the reaction mixture after incubation with tested
naphthoflavones.

The contribution of the untransformed substrate was deter-
mined after three days of incubation of the substrate in the micro-
bial cultures. The percentage of the substrate in the
biotransformation without the addition of naphthoflavone did
not exceed 1%. The strong inhibitors used in this study, a- and b-
naphthoflavones, inhibited monooxygenases, and compound 15
was the most effective one (Table 3). A similar effect of ANF
inhibiting P450 1A1 binding to benzo[a]pyrene via a classical com-
petitive mechanism was described [63]. However, none of the used
inhibitors changed the percentage composition of the obtained
products. Since all monooxygenases catalysing the hydroxylation
of steroid compounds have a very similar structure of the catalytic
centre it is possible that inhibitors used were most likely cross-
reacting with all active isoenzymes involved in the hydroxylation
reactions of the test substrate. This conclusion is consistent with
other research, where ANF cannot be regarded as specific for inhi-
bition of CYP1A activity from either mammals or fish, even at low
micromolar concentrations [58].
4. Conclusions

The selected microorganisms were characterised by high trans-
formation ability of 17a-methyltestosterone (1).

All products were purified using chromatographic methods. By
GC and TLC analyses as well as 1H NMR, 13C NMR and correlation
spectroscopy, the structures of nine products were established,
including two new ones not described in the literature so far.
The compounds obtained through biotransformations can serve
as standards of metabolites of higher organisms and contribute
to understanding the metabolism of this important steroid in the
human body.

Biotransformations were also carried out using various sources
of nitrogen (aminobac, peptone, yeast extract) and carbon (D-
ribose, D-xylose, D-arabinose, L-arabinose, D-glucose, L-glucose, D-
mannose, D-fructose, lactose, maltose, sucrose). It was found that
the change of these nutrient components does not affect the degree
of substrate conversion or the composition of the products formed.

The a- and b-naphthoflavones used as monooxygenase inhibi-
tors or inducers resulted in inhibition of the hydroxylation process
but did not change the percentage composition of the formed
products. Due to this action, the tested naphthoflavones may
applied in medicine as inhibitors of steroid compounds’ metabo-
lism for dose reduction of the drug.
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