

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

PTSA-Catalyzed One-Pot Synthesis of Quinoxalines Using DMSO as the Oxidant

Zeyuan Zhang, Caixia Xie, Lei Feng & Chen Ma

To cite this article: Zeyuan Zhang, Caixia Xie, Lei Feng & Chen Ma (2016): PTSA-Catalyzed One-Pot Synthesis of Quinoxalines Using DMSO as the Oxidant, Synthetic Communications, DOI: <u>10.1080/00397911.2016.1213297</u>

To link to this article: <u>http://dx.doi.org/10.1080/00397911.2016.1213297</u>

- T.

View supplementary material 🕝

Accepted author version posted online: 22 Jul 2016. Published online: 22 Jul 2016.

|--|

Submit your article to this journal 🕝

View related articles 🕑

🕨 View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

PTSA-catalyzed One-pot Synthesis of Quinoxalines Using DMSO as the Oxidant

Zeyuan Zhang¹, Caixia Xie¹, Lei Feng¹, Chen Ma^{1,2}

¹School of Chemistry and Chemical Engineering, Shandong University, Jinan, P R China, ²State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China

Corresponding author: E-mail: chenma@sdu.edu.cn

Abstract

An efficient PTSA catalyzed one-pot two-step oxidative system for cyclization of o-

diaminobenzene with 1,2-diaryl-2-hydroxyethanone to quinoxalines was described. A

nontoxic, readily available oxidant-DMSO was applied in this process. A broad range of

substrates were applied to this method, and target compounds were obtained with good

yields.

GRAPHICAL ABSTRACT

 $\label{eq:R} \begin{array}{l} {\sf R} = {\sf H}; \; 4{\sf -}C{\sf H}_3; \; 4{\sf ,}5{\sf -} {\sf Dimethyl}; \; 4{\sf -}C{\sf I}; \; 4{\sf -} {\sf N}{\sf O}_2; \\ {\sf Ar} = {\sf C}_6{\sf H}_5; \; 4{\sf -} {\sf C}{\sf H}_3{\sf C}_6{\sf H}_4; \; 4{\sf -} {\sf C}{\sf H}_3{\sf O}{\sf C}_6{\sf H}_4; \; {\sf furan-2-yl}; \; {\sf Pyridin-2-yl} \end{array}$

KEYWORDS: quinoxalines, PTSA-catalyzed, oxidant–DMSO, one-pot, transition metal-free, tandem process

INTRODUCTION

Quinoxaline derivatives are an important class of nitrogen-containing heterocyclic compounds and play an important role in pharmaceutical chemistry for their bioactivities, such as antiviral,¹ antibacterial,² anti-inflammatory,³ anticancer and anthelmintic.⁴ Furthermore, quinoxalines have been reported to be biocides,⁵ dyes,⁶ efficient electroluminescent materials,⁷ pharmaceuticals,⁸ and organic semiconductors.⁹

Many synthetic strategies have been reported for the preparation of substituted quinoxalines.¹⁰ However, most of these methods suffer from expensive and detrimental metal precursors, harsh reaction conditions, critical product isolation procedures and unsatisfactory product yields which limit their use in green chemistry.

Since DMSO as Oxidant was first reported in 1956,¹¹ it has received significant attention. From previous literature, DMSO can act as an inexpensive, nontoxic, readily available oxidant for various organic transformations under mild and convenient conditions.¹² However, there is no example of quinoxaline synthesis using DMSO as oxidant. Initially, we expected to isolate 2,4,5-triphenyloxazole from the cyclization reaction of benzoin with benzamide catalyzed by PTSA (p-toluene sulfonic acid, TsOH \cdot H₂O) in air atmosphere. Unexpectedly, benzil was obtained in a good yield (Scheme 1).

In the beginning, we assumed that benzil was generated by the oxidation of benzoin in air. However, benzil was still obtained in the presence of PTSA and DMSO under N₂ (Scheme 2). Kornblum reported that benzyl *p*-toluenesulfonate can be oxidized to benzaldehyde by DMSO. ¹¹ Therefore, we eventually determined that benzil was obtained from *p*-toluenesulfonate intermediate by DMSO oxidation (Scheme 3, **a** and **b**).

Yao reported that Lewis acids catalyzed the cyclization of o-diaminobenzene with benzil to afford quinoxaline.^{15a} Therefore, we carried out a one-pot two-step cyclization reaction of o-diaminobenzene with 1,2-diary1-2-hydroxyethanone to afford the corresponding quinoxalines; 2,3-diphenylquinoxaline was obtained in a good yield (Scheme 3, **c**).

We have been focusing on the direct synthesis of heterocyclic systems using tandem reactions.¹³ In this paper, we developed an efficient PTSA-catalyzed one-pot two-step oxidation reaction for the cyclization of *o*-diaminobenzene with 1,2-diaryl-2-hydroxyethanone to afford the corresponding quinoxalines.

RESULTS AND DISCUSSION

Although 2,3-diphenylquinoxaline was obtained in a good yield by the abovementioned method, the optimum condition for this reaction were determined. The results are summarized in Table 1.

First, several solvents were investigated under N_2 atmosphere, no product was detected until DMSO was used (Table 1, entries 1-6). Based on this result, several sulfonic acids such as TsOH, MSA (methanesulfonic acid), and TfOH (trifluoromethanesulfonic acid) were screened for the reaction. MSA and TfOH showed the same catalytic activity as TsOH (Table 1, entries 6-8). However, TfOH was selected as the catalyst for its low price. Furthermore, **3a** was not obtained without adding acid (Table 1, entry 9). The amount of TsOH was also investigated; **50** mol% TsOH resulted in the highest yield of 90% (Table 1, entries 6 and 10-12). A low yield (**3a**) was obtained when **1a** and **2a** were added simultaneously (Table 1, entry 13). Further, air had no significant effect on the reaction (Table 1, entry 14).

With the optimized conditions in hand, the substrate scope of this reaction was investigated and the results are summarized in Table 2. In the presence of electron-donating substituents on the amine part, the yields of the products increased. Low yields were obtained when electron- withdrawing substituents were present on the amine except **3ae**. In contrast, electron-donating substituents on the aromatic ring attached to hydroxy ketones decreased the product yields and reversed the trend observed with the electronwithdrawing groups. Interestingly, considerable yields were obtained when nitro substituents group were present on the amines (**3ae**, **3be**, **3ce**, **3de** and **3ee**). Previous studies either did not achieve this result¹⁴ or attempt this reaction¹⁵. The presence of an electrondonating group in hydroxy ketones may hinder the nucleophilic attack on the *in situ* formed dicarbonyl, leading to a lower yield. On the other hand, an electron-withdrawing substituent on the hydroxy ketone part resulted in a shorter reaction time in the oxidation process (Table 2, entries 20-23). Over all, both the catalyst and oxidant showed exceptionally high reactivity towards this reaction.

To gain some insights into the mechanism of the reaction, several control experiments were carried out (Scheme 5). Possible intermediate **1aa** was observed to react with **2a** to generate **3aa** in good yield without TsOH. The target molecule **3aa** was also obtained from possible intermediate **1ac** reacting with **2a** in the presence of TsOH.

Based on the above experiments, the possible mechanism for this reaction can be illustrated in Scheme 6. Firstly, the dehydration of benzion **1a** and PTSA could generate sulfonic acid ester **1aa**. And secondly, sulfonic acid ester **1aa** could be oxidized to benzyl **1ac** by DMSO. In the end, PTSA could catalyze the cyclization of benzyl with diamine to quinoxaline.

CONCLUSIONS

A variety of quinoxaline derivatives were synthesized by cyclization of odiaminobenzene with 1,2-diaryl-2-hydroxyethanone using PTSA as catalyst and DMSO as oxidant. Quinoxalines were obtained in good yields and this methodology applied to a broad range of substrates. Further studies on the application of this procedure to the synthesis of pharmaceutical compounds are in progress.

EXPERIMENTAL SECTION

Reagents were commercially available and were used without further purification. All reactions were monitored by thin-layer chromatography (TLC). ¹H NMR spectra were recorded on a Bruker Avance 400 or 300 spectrometer at 400 or 300 MHz, using CDCl₃ or DMSO-d₆ as solvent and tetramethylsilane (TMS) as internal standard. ¹³C NMR spectra were run in the same instrument at 100 or 75 MHz. Melting points were determined on an XD-4 digital micro melting point apparatus. HRMS spectra were determined on a Q-TOF6510 spectrograph (Agilent).

General Procedure For The Synthesis Of Compounds 3

A mixture of 1,2-diaryl-2-hydroxyethanone **1** (1.0 mmol), PTSA (0.5 mmol) in DMSO (2 mL) was heated to 100 °C (TLC monitored). Then the mixture was added in odiaminobenzene **2** (1 mmol), and stirred for 1 h. Then the mixture was cooled to room temperature and diluted with brine (30 mL) and extracted with dichloromethane twice (2 \times 30 mL). The combined organic layers were dried with MgSO₄ and the solvent was removed in vacuo to afford a residue. The residue was purified by column chromatography to afford **3**.

2,3-Diphenylquinoxaline (3aa).

White solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.19-8.14 (2H, m), 7.95-7.81 (2H, m), 7.50-7.47 (4H, m), 7.45-7.33 (6H, m); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 153.04, 140.43, 138.75, 130.38, 129.66, 129.55, 129.47, 128.78, 128.73, 128.01; HRMS calcd for C₂₀H₁₄N₂ (M+H)⁺ 283,1230; found: 283.1232.

6-Methyl-2,3-Diphenylquinoxaline (3ab).

White solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.04 (1H, *J* = 8.4 Hz, d), 7.94 (1H, s), 7.71 (2H, *J* = 8.4, 1.8 Hz, dd), 7.48-7.45 (4H, m), 7.43-7.32 (6H, m), 2.59 (3H, s); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 152.82, 152.08, 140.52, 140.50, 138.92, 138.85, 132.52, 129.63, 128.64, 128.57, 128.32, 127.98, 127.47, 21.32; HRMS calcd for C₂₁H₁₆N₂ (M+H)⁺ 297.1386; found: 297.1391.

6,7-Dimethyl-2,3-Diphenylquinoxaline (3ac).

White solid. ¹H NMR (300 M, CDCl₃): δ 7.92 (2H, s), 7.511-7.47 (4H, m), 7.35-7.26 (6H, m), 2.52 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 152.50, 140.53, 140.22, 139.38, 129.86, 128.53, 128.22, 128.19, 20.42; HRMS calcd for C₂₂H₁₈N₂ (M+H)⁺ 311.1543; found: 311.1550.

6-Chloro-2,3-Diphenylquinoxaline (3ad).

White solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.25 (1H, *J* = 2.1 Hz, d), 8.19 (1H, *J* =9.0 Hz), 7.92 (1H, *J* = 2.1, 9.0 Hz, dd), 7.50-7.35 (10H, m); ¹³C NMR (75 MHz, DMSO-d₆): δ 154.04, 153.45, 140.76, 139.10, 138.39, 138.33, 134.60, 130.94, 129.68, 129.65, 129.00, 128.04, 127.48; HRMS calcd for C₂₀H₁₃ClN₂ (M+H)⁺ 317.0840; found: 317.0851.

6-Nitro-2,3-Diphenylquinoxaline (3ae).

Yellow solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.95 (1H, *J* = 1.8 Hz, d), 8.57 (1H, *J* = 1.8, 9.0 Hz, dd), 8.38 (1H, *J* = 9.3 Hz, d), 7.54-7.52 (4H, m), 7.48-7.37 (6H, m); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 156.04, 155.38, 147.64, 142.98, 139.21, 137.97, 137.94, 130.94, 129.79, 129.71, 129.5, 129.36, 128.13, 124.83, 123.57; HRMS calcd for C₂₀H₁₃N₃O₂ (M+H)⁺ 328.1081; found: 328.1083.

2,3-Di-P-Tolylquinoxaline (3ba).

White solid. ¹H NMR (300 M, DMSO- d_6): δ 8.16-8.10 (2H, m), 7.89-7.83 (2H, m), 7.39 (4H, J = 8.1 Hz, d), 7.18 (4H, J = 7.8 Hz, d), 2.33 (6H, s); ¹³C NMR (75 MHz, DMSO- d_6): δ 152.93, 140.34, 138.27, 136.04, 130.14, 129.56, 128.68, 128.64, 20.81; HRMS calcd for C₂₂H₁₈N₂(M+H)⁺ 311.1543; found: 311.1542.

6-Methyl-2,3-Di-P-Tolylquinoxaline (3bb).

White solid. ¹H NMR (300 M, CDCl₃): δ 8.04 (1H, *J* = 8.4 Hz, d), 7.93 (1H, s), 7.57 (1H, *J* = 8.4, 1.8 Hz, dd), 7.41 (4H, *J* = 1.2, 7.8 Hz, dd), 7.13 (4H, *J* = 7.8 Hz, d), 2.60 (3H, s), 2.36 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 153.30, 152.59, 141.14, 140.18, 139.59, 138.65, 138.57,136.47, 132.02, 129.74, 129.71, 128.94, 128.60, 127.92, 21.87, 21.83;HR MS calcd for C₂₃H₂₀N₂ (M+H)⁺ 325,1699; found: 325.1699.

6,7-Dimethyl-2,3-Di-P-Tolylquinoxaline (3bc).

White solid. ¹H NMR (300 M, CDCl₃): δ 7.89 (2H, s), 7.40 (4H, J = 8.1 Hz, d), 7.13 (4H, J = 8.1 Hz, d), 2.50 (6H, s), 2.360 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 152.49, 140.19, 140.09, 138.43, 136.63, 129.73, 128.90, 128.13, 21.32, 20.37; HRMS calcd for C₂₄H₂₂N₂ (M+H)⁺ 339.1856; found: 339.1847.

6-Nitro-2,3-Di-P-Tolylquinoxaline (3be).

Yellow solid. ¹H NMR (300 M, CDCl₃): δ 9.40 (1H, *J* = 2.7 Hz, d), 8.49 (1H, *J* = 2.4, 9.0 Hz, dd), 8.25 (1H, *J* = 9.0 Hz, d), 7.49-7.45 (4H, m), 7.26-7.17 (4H, m), 2.39 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 156.32, 155.70, 147,71, 143.56, 140.02, 139.88, 139.83, 135.44, 135.38, 130.61, 129.84, 129.74, 129.18, 125.54, 123.03, 21.42; HRMS calcd for C₂₂H₁₇N₃O₂ (M+H)⁺ 356.1394; found: 356.1390.

2,3-Bis(4-Methoxyphenyl)Quinoxaline (3ca).

White solid. ¹H NMR (300 M, CDCl₃): δ 8.17-8.12 (2H, m), 7.76-7.70 (2H, m), 7.52-7.48 (4H, m), 7.26-6.85 (4H, m), 3.84 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 160.24, 152.99, 140.96, 131.57, 131.28, 129.61, 128.94, 113.81, 55.31; HR MS calcd for C₂₂H₁₈N₂O₂ (M+H)⁺ 343.1441; found: 343.1442.

2,3-Bis(4-Methoxyphenyl)-6-Methylquinoxaline (3cb).

White solid. ¹H NMR (300 M, CDCl₃): δ 8.02 (1H, *J* = 8.4 Hz, d), 7.92 (1H, s), 7.56 (1H, *J* = 1.8, 8.7 Hz, dd), 7.51-7.45 (4H, m), 6.89-6.85 (4H, m), 3.83 (6H, s), 2.60 (3H, s); ¹³C NMR (75 MHz, CDCl₃): δ 160.16, 160.09, 152.81, 152.12, 140.99, 140.11, 139.46, 131.93, 131.75, 131.70, 131.27, 131.22, 128.47, 127.78, 113.76, 55.30; HRMS calcd for C₂₃H₂₀N₂O₂ (M+H)⁺ 357.1598; found: 357.1587.

2,3-Bis(4-Methoxyphenyl)-6,7-Dimethylquinoxaline (3cc).

White solid. ¹H NMR (300 M, CDCl₃): δ 7.89 (2H, s), 7.49-7.44 (4H, m), 6.89-6.84 (4H, m), 3.83 (6H, s), 2.50 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 159.98, 152.08, 140.06, 140.00, 132.09, 131.22, 128.10, 113.72, 55.31; HRMS calcd for C₂₄H₂₂N₂O₂ (M+H)⁺ 371.1754; found: 371.1756.

6-Chloro-2,3-Bis(4-Methoxyphenyl)Quinoxaline (3cd).

White solid. ¹H NMR (300 M, CDCl₃): δ 8.13 (1H, J = 2.1 Hz, d), 8.07 (1H, J = 9.0Hz, d), 7.66 (1H, J = 2.4, 9.0 Hz, dd), 7.51-7.47 (4H, m), 6.90-6.85 (4H, m), 3.837 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 160.49, 160.42, 153,79,153,11,141.24, 139.42, 135.24, 131.32, 131.25, 131.20,131.13, 130.55, 130.13, 127.82, 113.86,55.33; HRMS calcd for C₂₂H₁₇ClN₂O₂ (M+H)⁺ 377.1051; found: 377.1050.

2,3-Bis(4-Methoxyphenyl)-6-Nitroquinoxaline (3ce).

Yellow solid. ¹H NMR (300 M, CDCl₃): δ 9.02 (1H, *J* = 2.4 Hz, d), 8.48 (1H, *J* = 2.4, 9.0 Hz, dd), 8.24 (1H, *J* = 9.0Hz, d), 7.59-7.52 (4H, m), 6.92-6.89 (4H, t), 3.86 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 161.02, 160.87, 155.75, 155.17, 147.58, 143.46, 139.75, 131.50, 131.34, 130.64, 130.39, 125.39, 122.87, 113.98, 55.37; HRMS calcd for C₂₂H₁₇N₃O₄ (M+H)⁺ 388.1292; found: 388.1393.

2,3-Di(Furan-2-Yl)Quinoxaline (3da).

Gray solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.14-8.08 (1H, m), 7.92-7.86 (4H, m), 6.74-6.72 (4H, m); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 150.31, 144.91, 142.07, 139.92, 130.90, 128.68, 112.85, 112.15; HRMS calcd for $C_{16}H_{10}N_2O_2$ (M+H)⁺ 263.0815; found: 263.0827.

2,3-Di(Furan-2-Yl)-6-Methylquinoxaline (3db).

Gray solid. ¹H NMR (300 M, CDCl₃): δ 8.05 (2H, J = 8.4 Hz, d), 7.95 (1H, s), 7.62-7.57 (3H, t), 6.67-6.55 (4H, m), 2.60 (3H, s); ¹³C NMR (75 MHz, CDCl₃): δ 150.89, 144.18, 144.04, 142.56, 141.85, 141.20, 140.68, 139.10, 132.84, 128.62, 127.94, 112.92, 112.64, 111.90, 111.87, 21.94; HRMS calcd for $C_{17}H_{12}N_2O_2$ (M+H)⁺ 277.0972; found: 277.0970.

2,3-Di(Furan-2-Yl)-6,7-Dimethylquinoxaline (3dc).

Yellow solid. ¹H NMR (300 M, CDCl₃): δ 7.89 (2H, s), 7.606-7.60 (2H, t), 6.61-6.54 (4H, m), 2.50 (6H, s); ¹³C NMR (75 MHz, CDCl₃): δ 151.08, 143.88, 141.85, 141.16, 139.64, 128.17, 112.38, 111.79, 20.41; HRMS calcd for $C_{18}H_{14}N_2O_2$ (M+H)⁺ 291.1128; found: 291.1129

6-Chloro-2,3-Di(Furan-2-Yl)Quinoxaline (3dd).

Gray solid. ¹H NMR (300 M, DMSO- d_6): δ 8.19 (1H, J = 2.1 Hz, d), 8.16 (1H, J = 9.0 Hz, d), 7.94-7.87 (3H, m), 6.78-6.72 (4H, m); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 150.03,

149.95, 145.32, 145.15, 142.83, 140.28, 138.59, 135.12, 131.37, 130.50, 127.36, 113.58, 113.28, 112.29, 112.25; HRMS calcd for C₁₆H₉ClN₂O₂ (M+H)⁺ 297.0425; found: 297.0427.

2,3-Di(Furan-2-Yl)-6-Nitroquinoxaline (3de).

Yellow solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.83 (1H, *J* = 2.7 Hz, d), 8.51 (1H, *J* = 2.4, 9.3 Hz, dd), 8.27 (1H, J = 9.0 Hz, d), 8.00-7.98 (2H, m), 6.93-6.76 (4H, m); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 149.74, 149.64, 147.70, 146.10, 145.66, 144.20, 143.67, 143.48, 138.58, 130.43, 124.55, 123.86, 115.10, 114.26, 112.62, 112.43; HR MS calcd for C₁₆H₉N₃O₄ (M+H)⁺ 308.0666; found: 308.0677.

2,3-Di(Pyridin-2-Yl)Quinoxaline (3ea).

Yellow solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.29-8.20 (4H, m), 8.03-7.93 (6H, m), 7.38-7.34 (2H, m); ¹³C NMR (75 MHz, DMSO-d₆): δ 158.09, 153.54, 149.20, 141.37, 137.94, 132.14, 130.08, 125.01, 124.39; HRMS calcd for C₁₈H₁₂N₄ (M+H)⁺ 285.1135; found: 285.1135.

6-Methyl-2,3-Di(Pyridin-2-Yl)Quinoxaline (3eb).

Yellow solid. ¹H NMR (300 M, CDCl₃): δ 8.39-8.37 (2H, m), 8.12 (1H, *J* = 8.7 Hz, d),

8.00-7.94 (3H, m), 7.85-7.78 (2H, m), 7.66 (1H, *J* = 8.7, 2.1 Hz, dd), 7.26-7.22 (2H, m);

¹³C NMR (75 MHz, CDCl₃): δ 157.46, 152.18, 148.43, 141.27, 142.19, 139.69, 136.73, 132.90, 128.90, 124.32, 124.30, 122.95, 122.89, 21.95; HRMS calcd for C₁₉H₁₄N₄
(M+H)⁺ 299.1291; found: 299.1294.

6-Chloro-2,3-Di(Pyridin-2-Yl)Quinoxaline (3ed).

Yellow solid. ¹H NMR (300 M, DMSO-*d*₆): δ 8.32-8.24 (4H, m), 8.03-7.93 (5H, m), 7.40-7.34 (2H, m); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 156.94, 156.90, 153.63, 153.04, 148.46, 140.95, 139.28, 137.22, 135.65, 131.94, 128.04, 124.29, 124.24, 123.82, 123.76; HRMS calcd for C₁₈H₁₁ClN₄ (M+H)⁺ 319.0745; found: 319.0745.

6-Nitro-2,3-Di(Pyridin-2-Yl)Quinoxaline (3ee).

Yellow solid. ¹H NMR (300 M, DMSO-*d*₆): δ 9.04 (1H, *J* = 2.7 Hz, d), 8.49 (1H, *J* = 2.4, 9.0 Hz, dd), 8.25 (1H, *J* = 9.0 Hz, d), 7.49-7.45 (4H, m), 7.26-7.17 (4H, t); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 156.08, 154.93, 154.34, 148.18, 148.10, 142.75, 139.10, 137.01, 130.89, 124.95, 124.19, 124.08, 123.96, 123.81, 123.71; HRMS calcd for C₁₈H₁₁N₅O₂ (M+H)⁺ 330.0986; found: 330.0981.

ACKNOWLEDGEMENTS

We are grateful to the National Science Foundation of China (No. 21572117) and State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (No. GTZK201405) for financial support of this research.

REFERENCES

Sakata, G.; Makino, K.; Kuraswa, Y. Recent Progress in the Quinoline Chemistry.
 Synthesis and Biological Activity. *Heterocycles*, **1988**, 27, 2481.

He, W.; Meyers, M. R.; Hanney, B.; Spada, A.; Blider, G.; Galzeinski, H.; Amin,
 D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, H. Potent quinoxaline-Based inhibitors of
 PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of
 RPR127963 an orally bioavailable inhibitor. *Bioorg. Med. Chem. Lett.*, 2003, 13, 3097.

Kim, Y. B.; Kim, Y. H.; Park, J. Y.; Kim, S. K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. *Bioorg. Med. Chem. Lett.*, 2004, 14, 541.

Sakata, G.; Makino, K.; Kuraswa, Y. Recent Progress in the Quinoline Chemistry.
 Synthesis and Biological Activity. *Heterocycles*, **1988**, 27, 2481.

5. Sarges, R.; Howard, H. R.; Browne, R. G.; Lebel, L. A.; Seymour, P. A. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. *J. Med. Chem.*, **1990**, 33, 2240.

 Brock, E. D.; Lewis, D. M.; Yousaf, T. I.; Harper, H. H. (The Procter and Gamble Company, USA) Reactive Dye Compounds. WO 9951688, 1999. 7. Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chuen, C.; Tao, Y. Chromophore-Labeled Quinoxaline Derivatives as Efficient Electroluminescent Materials. *Chem. Mater.* **2005**, 17, 1860.

8. Seitz, L. E.; Suling, W. J.; Reynolds, R. C. Synthesis and Antimycobacterial Activity of Pyrazine and Quinoxaline Derivatives. *J. Med. Chem.*, **2002**, 45, 5605.

9. Dailey, S. Feast, J. W.; Peace, R. J.; Sage, I. Till, C. S.; Wood, E. L. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. *J. Mater. Chem.*, **2001**, 11, 2238.

10. (a) Sithambaram, S.; Ding, Y.; Li, W.; Shen, X.; Gaenzler, F.; Suib, S. L. Manganese octahedral molecular sieves catalyzed tandem process for synthesis of quinoxalines. *Green Chem.*, **2008**, 10, 1029. (b) Kotharkar, S. A.; Shinde, D. B. A facile synthesis of phenazine and quinoxaline (new 1,4-benzo diazine) derivatives using magnesium sulfate heptahydrate as a catalyst. *J. Serb. Chem. Soc.*, **2006**, 3, 267. (c) Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Et₃N-catalyzed oxidative dehydrogenative coupling of αunsubstituted aldehydes and ketones with aryl diamines leading to quinoxalines using molecular oxygen as oxidant. *Tetrahedron*, **2012**, 68, 5258. (d) Heravi, M. M.; M. Tehrani, H. Bakhtiari, K.; Oskooie, H. A. Zn[(L)proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature. *Catal. Commun.*, **2007**, 8, 1341. (e) Song, W.; Liu, P.; Lei, M.; You, H.; Chen, X.; Chen, H.; Ma, L.; Hu, L. FeCl₃ and Morpholine as Efficient Cocatalysts for the One-Step Synthesis of Quinoxalines from α-Hydroxyketones and 1, 2-Diamines. *Syn. Commun.*, **2012**, 42, 236; (f) Liu Y., Chen X., Zhang J., Xu Z. Gold(I)-Catalyzed Diketonization of Alkynes and Its Application for the One-Pot Synthesis of Quinoxaline Derivatives. *Synlett*, **2013**, 24, 1371.

Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.;
 Levand, O.; Weaver, W. M. A New and Selective Method of Oxidation. *J. Am. Chem. Soc.*, **1957**, 79, 6562.

Wu Anxin's work: (a) Jia, F.; Zhu, Y.; Liu, M.; Lian, M.; Gao, Q.; Cai, Q.; Wu, A. 12. I_2 -promoted direct one-pot synthesis of 2,2-bisindolyl-1-arylethanones from multiform substrates arylethenes, 2-hydroxy-aromatic ketones, and carbinols. Tetrahedron, 2013, 69, 7038. (b) Fei, Z.; Zhu, Y.; Liu, M.; Jia, F.; Wu, A. I₂-promoted direct one-pot synthesis of 2-aryl-3-(pyridine-2-ylamino)imidazo[1,2-a]pyridines from aromatic ketones and 2aminopyridines. Tetrahedron Lett., 2013, 54, 1222. (c) Zhu, Y.; Fei, Z.; Liu, M.; Jia, F.; Wu, A. Direct One-Pot Synthesis of Luotonin Fand Analogues via Rational Logical Design. Org. Lett., 2013, 15, 378. (d) Zhu, Y.; Jia, F.; Liu, M.; Wu, A. A Multipathway Coupled Domino Strategy: Metal-free Oxidative Cyclization for One-Pot Synthesis of 2-Acylbenzothiazoles from Multiform Substrates. Org. Lett., 2012, 14, 4414. (e) Xue, W.; Guo, Y.; Gao, F.; Li, H.; Wu, A. A Novel Self-Sequence Reaction Network Involving a Set of Six Reactions in One Pot: The Synthesis of Substituted Benzothiazoles from Aromatic Ketones and Anilines. Org. Lett., 2013, 14, 890.

Wei Yunyang's work: (a) Ge, W.; Wei, Y. Iodine-catalyzed oxidative system for cyclization of primary alcohols with *o*-aminobenzamides to quinazolinones using DMSO as the oxidant in dimethyl carbonate. *RSC Adv.*, **2013**, 3, 10817. (b) Ge, W.; Zhu, X.; Wei, Y. Iodine-catalyzed oxidative system for 3-sulfenylation

of indoles with disulfides using DMSO as oxidant under ambient conditions in dimethyl carbonate. *Green Chem.*, **2012**, 14, 2066.

Jun-ichi Yoshida's work: Ashikari, Y.; Shimizu, A.; Nokami, T.; Yoshida, J. Halogen and Chalcogen Cation Pools Stabilized by DMSO Versatile Reagents for Alkene Difunctionalization. *J. Am. Chem. Soc.*, **2013**, 135, 16070.

(a) Huang, A. P.; Chen, Y. M.; Zhou, Y. G.; Guo, W.; Wu, X. D.; Ma, C. An Efficient One-Pot Synthesis of Benzo[4,5]imidazo[1,2-a]quinoxalines via Copper-Catalyzed Process. *Org. Lett.*, **2013**, 15, 5480. (b) Zhao, Y. M.; Wu, Y. M.; Jia, J.; Zhang, D. J.; Ma, C. One-Pot Synthesis of Benzo[1,4]thiazin-3(4H)-ones and a Theoretical Study of the S–N Type Smiles Rearrangement Mechanism. *J. Org. Chem.*, **2012**, 77, 8501. (c) Niu, X. Y., Yang, B. C., Fang, S., Li, Y. Q., Zhang, Z. Y., Jia, J., Ma, C. An Efficient One-Pot Synthesis of 1,2,4-Triazoloquinoxalines. *Tetrahedron*, **2014**, 70, 4657. (d) Yang, B. C., Niu, X. Y.; Huang, Z. X.; Zhao, C. H.; Liu, Y.; Ma, C. A novel kind of dimmer (excimer)-induced-AIE compound 2-phenylisothiazolo[5,4-*b*]pyridin-3(2*H*)-one as high selective bisulfite anion probe. *Tetrahedron* **2013**, 69, 8250. (e) Yang, B. C.; Huang, Z. X.; Guan, H. G.; Niu, X. Y.; Li, Y. Q.; Fang, S.; Ma, C. New routes for the synthesis of

fused pyrrole scaffolds through transition metal-free tandem reactions. Tetrahedron Lett., 2013, 54, 5994. (f) Niu, X. Y.; Yang, B. C.; Li, Y. O.; Fang, S.; Huang, Z. X.; Xie, C. X.; Ma, C. A transition metal-free tandem process to pyridazinopyrido[3,2-f][1,4]thiazepinediones via Smiles rearrangement. Org. Biomol. Chem., 2013, 11, 4102. (g) Liu, Y. L.; Chu, C. X.; Huang, A. P.; Zhan, C. J.; Ma, Y.; Ma, C. Regioselective Synthesis of Fused Oxazepinone Scaffolds through One-Pot Smiles Rearrangement Tandem Reaction. ACS comb. Sci., 2011, 13, 547. (h) Fang, S.; Niu, X, Y.; Yang, B. C.; Li, Y. Q.; Si, X. M.; Feng, L.; Ma, C. One-Pot Synthesis of Benzo[4,5]imidazo[1,2-a]quinazoline Derivatives via Facile Transition-Metal-Free Tandem Process. ACS comb. Sci., 2014, 16, 328. (i) Fang, S.; Niu, X. Y.; Zhang, Z. Y.; Sun, Y., Si, X. M.; Shan, C. C.; Wei, L.; Xu, A. Q.; Feng, L.; Ma, C. A one-pot synthetic strategy for construction of the dibenzodiazepine skeleton via a transition metal-free process. Org. Biomol. Chem., 2014, 12, 6895. (a) Aghapoor, K.; Mohsenzadeh, F.; Morad, M. M.; Darabi, H. R. Sustainable ap-14. proach to tandem catalysis: Expedient access to quinoxalines and pyrido[2,3-b]pyrazines from alpha-hydroxyketones via microwave-induced $[(NH_4)(6)Mo_7O_{24} \text{ center dot } 4H(2)O_{24}]$ PEG 300] polar paste catalyst system. C. R. Chimie, 2012, 15, 764. (b) Sithambaram, S.; Ding, Y. S.; Li, W. N.; Shen, X. F.; Gaenzler, F. S.; Suib, L. Manganese octahedral molecular sieves catalyzed tandem process for synthesis of quinoxalines. Green Chem., 2008,

10, 1029.

15. (a) More, S. V.; Sastry, M. N. V.; Wang, C. C.; Yao, C. F. Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines. *Tetrahedron Lett.*,
2005, 46, 6345. (b) Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.;
Bhusare, S. R.; Pawar, R. P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst. *Tetrahedron Lett.*, 2005, 46, 7183.

Table 1. Optimization of reaction conditions for the one-pot synthesis of $3a^{a}$

$\begin{array}{c} OH \\ \hline \\ O \end{array} \qquad \begin{array}{c} \text{acid, solvent,} \\ \text{temp.} \\ \hline \\ \text{step 1. } t_1 = 5h \end{array} \qquad \begin{array}{c} O \\ \hline \\ O \end{array} \qquad \begin{array}{c} O \\ \text{step 2. } t_1 = 1h \end{array} \qquad \begin{array}{c} VH_2 \\ \hline \\ NH_2 \\ \hline \\ \text{step 2. } t_1 = 1h \end{array}$					
Entry	Acid	Solvent	Yield ^{b} (%)		
1	TsOH·H ₂ O	DME	n.d		
2	TsOH·H ₂ O	DCE	n.d		
3	TsOH·H ₂ O	Toluene	n.d		
4	TsOH·H ₂ O	PhCl	n.d		
5	TsOH·H ₂ O	MeCN	n.d		
6	TsOH·H ₂ O	DMSO	90		
7	MSA	DMSO	91		
8	ТfOH	DMSO	90		
9	none	DMSO	Trace		
10 ^c	TsOH·H ₂ O	DMSO	73		
11 ^d	TsOH·H ₂ O	DMSO	90		
12 ^e	TsOH·H ₂ O	DMSO	89		
	TsOH·H ₂ O	DMSO	82		
14g	TsOH·H ₂ O	DMSO	90		

^aReaction conditions: **1a** (1 mmol), acid (50 mol%), solvent (2 mL), in a sealed tube at 100 °C under air atmosphere for 5h. This reaction mixture were added 2a (1 mmol), until the disappearance of 2a, monitored by TLC. [b] Yield of isolated product. [c] TsOH (40 mol%) was used. [d] TsOH (60 mol%) was used. [e] TsOH (80 mol%) was used. [f]

Reaction conditions: **1a** (1 mmol), **2a** (1 mmol), acid (50 mol%), solvent (2 mL), in a sealed tube at 100 °C under air atmosphere for 5h. [g] Under air.

DME: 2-methoxyethyl ether; DCE: 1,2-dichloroethane.

 Table 2. Scope of 4-substituted benzene-1,2-diamines and 2-hydroxy-1,2

diarylethanones^a

$Ar \xrightarrow{f_1} Ar \xrightarrow{f_2} Ar \xrightarrow{f_1} Ar \xrightarrow{f_1} R \xrightarrow{f_1} R \xrightarrow{f_1} N \xrightarrow{f_1} Ar$						
Entry	Ar	R	t ₁ (h)	Product	Yield (%)b	
1	C ₆ H ₅	Н	5	3aa	90	
2	C ₆ H ₅	4-CH ₃	5	3ab	93	
3	C ₆ H ₅	4,5-Dimethyl	5	3ac	92	
4	C ₆ H ₅	4-Cl	5	3ad	85	
5	C ₆ H ₅	4-NO ₂	5	3ae	92	
6	4-CH ₃ C ₆ H ₄	Н	5	3ba	89	
7	4-CH ₃ C ₆ H ₄	4-CH ₃	5	3bb	88	
8	4-CH ₃ C ₆ H ₄	4,5-Dimethyl	5	3bc	87	
9	4-CH ₃ C ₆ H ₄	4-NO ₂	5	3be	84	
10	4-CH ₃ OC ₆ H ₄	Н	6	3ca	85	
11	4-CH ₃ OC ₆ H ₄	4-CH ₃	6	3cb	86	
12	4-CH ₃ OC ₆ H ₄	4,5-Dimethyl	6	3cc	85	
13	4-CH ₃ OC ₆ H ₄	4-Cl	6	3cd	81	
14	4-CH ₃ OC ₆ H ₄	4-NO ₂	6	3ce	78	
15	Furan-2-yl	Н	5	3da	83	
16	Furan-2-yl	4-CH ₃	5	3db	85	
17	Furan-2-yl	4,5-Dimethyl	5	3dc	87	

18	Furan-2-yl	4-C1	5	3dd	82
19	Furan-2-yl	4-NO ₂	5	3de	80
20	Pyridin-2-yl	Н	1	3ea	92
21	Pyridin-2-yl	4-CH ₃	1	3eb	89
22	Pyridin-2-yl	4-C1	1	3ed	88
23	Pyridin-2-yl	4-NO ₂	1	3ee	87

^aReaction conditions: 1,2-diaryl-2-hydroxyethanone 1 (1.0 mmol), PTSA (0.5 mmol) in

DMSO (2 mL) was heated to 100 °C (TLC monitored), then o-diaminobenzene (1

mmol)was added.

CeR

^bIsolated yield

Scheme 2. Repeated test under N₂.

Scheme 3. Previous work and our idea.

Scheme 4. Structures of the desired compounds 3aa-ee.

Scheme 5. Control Experiments.

Scheme 6. Proposed mechanism.

